CSE Discrete Structures

Size: px
Start display at page:

Download "CSE Discrete Structures"

Transcription

1 CSE Discrete Structures Homework 2- Fall 2010 Due Date: Oct , 3:30 pm Proofs using Predicate Logic For all your predicate logic proofs you can use only the rules given in the following tables. In addition you are allowed to apply the deduction method and to use the method of temporary hypotheses. All other rules have to be proven first. Equivalence Rules Rule Name Expression Equivalent Expression Commutativity (comm) P Q Q P P Q Q P Associativity (ass) (P Q) R P (Q R) (P Q) R P (Q R) Distributivity (dis) (P Q) R (P R) (Q R) (P Q) R (P R) (Q R) De Morgan s Laws (De Morgan) (P Q) P Q (P Q) P Q Implication (imp) P Q P Q Double negation (dn) (P ) P Self-reference (self) P P P Negation (neg) ( x)p (x) ( x)p (x) 2010 Manfred Huber Page 1

2 Inference Rules Rule Name From Can Derive Conjunction (con) P, Q P Q Simplification (sim) P Q P, Q Modus ponens (mp) P, P Q Q Modus tollens (mt) P Q, Q P Addition (add) P P Q Universal instantiation (ui) ( x)p (x) P (y) (Be careful with the rule s restrictions) ( x)p (x) P (a) Existential Instantiation (ei) ( x)p (x) P (y) (Be careful with the rule s restrictions) ( x)p (x) P (a) Universal generalization (ug) P (x) ( x)p (x) (Be careful with the rule s restrictions) Existential generalization (eg) P (x) ( x)p (x) (Be careful with the rule s restrictions) P (a) ( x)p (x) For all proofs the steps have to be annotated such as to indicate the rule and which elements of the proof sequence it was applied to. 1. For each instantiation and generalization step in the following proof sequences indicate if it is legal. You have to justify your decision (a short justification is sufficient). a) 1. ( x)r(x) hyp 2. ( x)( y)(r(y) P (x, y, z)) hyp 3. ( y)(r(y) P (z, y, z)) 2 ui 4. R(z) P (z, a, z) 3 ui 5. R(z) 1 ui b) 1. ( z)q(x, z) hyp 2. ( x)( y)(q(x, y) P (x)) hyp 3. ( y)(q(x, y) P (x)) 2 ui 4. Q(x, z) 1 ei 5. Q(x, z) P (x) 3 ui 2010 Manfred Huber Page 2

3 c) 1. ( x)( y)p (x, y) hyp 2. ( x)(p (x, a) S(a)) hyp 3. ( y)p (x, y) 1 ui 4. P (x, a) 3 ei 5. P (x, a) S(a)) 2 ui 6. S(a) 4, 5 mp d) 1. ( x)p (x) hyp 2. ( y)(p (y) Q(y, z)) hyp 3. P (z) 1 ei 4. P (z) Q(z, z) 2 ui 5. Q(z, z) 4, 3 mp 6. ( z)q(z, z) 5 eg e) 1. ( x)(r(x) ( y)q(x, y)) hyp 2. ( z)( y)q(z, y) hyp 3. R(z) ( y)q(z, y) 1 ui 4. ( y)q(z, y) 2 ui 5. R(z) 4, 3 mt 6. ( x)r(x) 4 eg f) 1. ( x)p (x) hyp 2. ( x)(( y)p (y) Q(x, y)) hyp 3. P (y) 1 ei 4. ( y)p (y) Q(x, y) 2 ui 5. ( y)p (y) 3 eg 6. Q(x, y) 5, 4 mp 7. ( x)q(x, y) 6 ug 8. ( y)( x)q(x, y) 7 ug g) 1. ( x)r(x) hyp 2. ( y)(r(y) Q(y)) hyp 3. R(z) Q(z) 2 ei 4. R(z) 1 ui 5. Q(z) 3, 4 mp 6. ( z)q(z) 5 ug 2010 Manfred Huber Page 3

4 2. Use predicate logic to prove the following arguments: a) ( x)(p (x) ( y)q(x, y)) ( x)q(x, a) (P (b) R(a)) R(a) b) Q(x) ( x)(p (x) (( y)(q(y) R(x, y)))) ( y)r(y, x) P (b) c) ( x)(p (x) Q(x, a)) Q(b, a) Q(a, a) ( x)( y)(q(x, y) P (x) Q(y, a)) P (b) d) P (a) ( x)(( y)q(y, a) R(x, a)) ( x)( y)(p (x) Q(y, x)) ( z)r(z, a) e) ( x)( y)(p (x, y) R(y, x) ( x)( y)(p (x, y) Q(y) ( x)( y)(r(x, y) Q(y)) f) P (a) ( x)(p (x) Q(x, x)) ( y)(p (y) Q(y, y)) ( x)p (x) ( y)p (y) Proof Techniques 3. For each of the following informal proofs indicate which proof technique was used (exhaustive proof, direct proof, proof by contraposition, or proof by contradiction). a) Conjecture: All odd numbers between 3 and 25 are either prime numbers or the product of exactly 2 prime numbers. Proof: 3, 5, 7, 11, 13, 17, 19, and 23 are all prime numbers and 9 = 3 3, 15 = 3 5, 21 = 3 7, and 25 = 5 5 are the product of exactly two prime numbers, therefore all odd numbers between 3 and 25 are either prime or the product of exactly 2 prime numbers. b) Conjecture: If the product of two non-zero integers is an even number then at least one of them has to be an even number. Proof: Suppose that none of the numbers is even, i.e. x = 2 k + 1 and y = 2 l + 1 but their product is even, i.e. x y = 2 m. Then, x y = (2 k + 1)(2 l + 1) = 4 k l + 2 k + 2 l + 1 = 2 (2 k l + k + l) + 1 would have to be equal to 2 m and therefore 2 m = 2 (n) + 1. Since this is not possible for integers, at least one of the two non-zero integers has to be even. c) Conjecture: The sum of two non-zero integers is even if and only if either both integers are even or if both are odd. Proof:Assume both integers are even, i.e. x = 2 k and y = 2 l. Then x + y = 2 k + 2 l = 2 (k + l) which is even. Assuming both integers are odd, i.e. x = 2 k + 1 and y = 2 l + 1. Then x + y = 2 k l + 1 = 2 (k + l) + 2 which is even. Assuming that one is even and one is odd, i.e. x = 2 k + 1 and y = 2 l. Then x + y = 2 k l = 2 (k + l) + 1 which is odd. Since there is no other possibility for two non-zero integers, the sum of two non-zero integers is even if and only if either both integers are even or if both are odd. d) Conjecture: if an integer is even then its square is even. Proof: Assume the integer is even with x = 2 k. Then its square is x 2 = x x = 2 k 2 k = 2 (2 k k) which is even. Therefore the square of an even integer is even Manfred Huber Page 4

5 e) Conjecture: If the product of two integers is odd, then both of them are odd. Proof: Assume that one of the integers is even, i.e. x = 2 k. Then the product is x y = 2 k y = 2 (k y) which is even. Therefore, if the product of two integers is odd, then both of them are odd. 4. Prove or disprove the following conjectures. You can use an informal proof (the proof has to have enough detail for everyone to understand it). a) The sum of four consecutive integers is even. b) If the sum of two integers is 0 then either both of them are 0 or one is negative and one is positive. c) The square of a natural number is always larger than the sum of all the numbers between 1 and the number. d) If the afternoon trains from Fort Worth to San Antonio and from San Antonio to Fort Worth run on the same track at the same time, they will collide. But since both trains arrived, they did not run on the same track. e) The result of dividing a rational number by a rational number is a rational number. f) Any odd integer greater than 2 can be written as the sum of an odd and an even number. Induction 5. Use mathematical induction to prove the following statements for positive integers. Also state if you are using the first or the second principle of induction. a) No palindrome of even length contains any symbol an odd number of times. b) For any positive integer, n, greater than 2 the product of all even, positive integers smaller than it is less than n n/2. c) n + m n (m + 1) for all n, m 1 d) Any even positive integer that is a square number can be written as the product of 4 and a set of odd prime numbers. e) The sum of all integers between 1 and n is equal to n 1+n 2. f) Any string constructed by concatenating an arbitrary number of strings of even length has to be of even length. Recursion 6. Give a recursive definition of the following sequences. a) P (n) = {x x is a power of 3} b) P (n) is the number of all possible ways to select 2 cards from a set of n distinct cards Manfred Huber Page 5

6 c) P (n) = 2 n + 7 n + 1 for all positive integers n. d) P (n) is an alternating bit sequence of length n. e) P (n) is the number of possible ways to obtain the positive integer n by summing exactly two positive integers smaller than n. 7. Prove that the correctness of the following properties of the given recursive sequences. a) Given the sequence P (1) = 1, P (n + 1) = P (n) + 2 (n + 1) 1 for all positive integers, prove that P (n) = n 2 b) Given the sequence P (1) = 1, P (2) = 1, P (3) = 1, P (n) = P (n 3) + 2 P (n 2) for all n 3, prove that for all positive integers n P (n) + P (n + 1) = Manfred Huber Page 6

CSE Discrete Structures

CSE Discrete Structures CSE 2315 - Discrete Structures Homework 1- Fall 2010 Due Date: Sept. 16 2010, 3:30 pm Statements, Truth Values, and Tautologies 1. Which of the following are statements? a) 3 + 7 = 10 b) All cars are blue.

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

Discrete Mathematics Logics and Proofs. Liangfeng Zhang School of Information Science and Technology ShanghaiTech University

Discrete Mathematics Logics and Proofs. Liangfeng Zhang School of Information Science and Technology ShanghaiTech University Discrete Mathematics Logics and Proofs Liangfeng Zhang School of Information Science and Technology ShanghaiTech University Resolution Theorem: p q p r (q r) p q p r q r p q r p q p p r q r T T T T F T

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

Section 1.1 Propositions

Section 1.1 Propositions Set Theory & Logic Section 1.1 Propositions Fall, 2009 Section 1.1 Propositions In Chapter 1, our main goals are to prove sentences about numbers, equations or functions and to write the proofs. Definition.

More information

Review. Propositions, propositional operators, truth tables. Logical Equivalences. Tautologies & contradictions

Review. Propositions, propositional operators, truth tables. Logical Equivalences. Tautologies & contradictions Review Propositions, propositional operators, truth tables Logical Equivalences. Tautologies & contradictions Some common logical equivalences Predicates & quantifiers Some logical equivalences involving

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017 3. The Logic of Quantified Statements Summary Aaron Tan 28 31 August 2017 1 3. The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I Predicate; domain; truth set Universal quantifier,

More information

2. Use quantifiers to express the associative law for multiplication of real numbers.

2. Use quantifiers to express the associative law for multiplication of real numbers. 1. Define statement function of one variable. When it will become a statement? Statement function is an expression containing symbols and an individual variable. It becomes a statement when the variable

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura March 1, 2012 1:00 pm Duration: 1:15 hs Closed book, no calculators THIS MIDTERM AND ITS SOLUTION IS SUBJECT TO COPYRIGHT; NO PARTS OF

More information

Readings: Conjecture. Theorem. Rosen Section 1.5

Readings: Conjecture. Theorem. Rosen Section 1.5 Readings: Conjecture Theorem Lemma Lemma Step 1 Step 2 Step 3 : Step n-1 Step n a rule of inference an axiom a rule of inference Rosen Section 1.5 Provide justification of the steps used to show that a

More information

DISCRETE MATH: FINAL REVIEW

DISCRETE MATH: FINAL REVIEW DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review

More information

Chapter 1 Elementary Logic

Chapter 1 Elementary Logic 2017-2018 Chapter 1 Elementary Logic The study of logic is the study of the principles and methods used in distinguishing valid arguments from those that are not valid. The aim of this chapter is to help

More information

1 The Foundation: Logic and Proofs

1 The Foundation: Logic and Proofs 1 The Foundation: Logic and Proofs 1.1 Propositional Logic Propositions( 명제 ) a declarative sentence that is either true or false, but not both nor neither letters denoting propositions p, q, r, s, T:

More information

1 The Foundation: Logic and Proofs

1 The Foundation: Logic and Proofs 1 The Foundation: Logic and Proofs 1.1 Propositional Logic Propositions( ) a declarative sentence that is either true or false, but not both nor neither letters denoting propostions p, q, r, s, T: true

More information

MACM 101 Discrete Mathematics I. Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class)

MACM 101 Discrete Mathematics I. Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class) MACM 101 Discrete Mathematics I Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class) Reminder: the work you submit must be your own. Any collaboration and

More information

CITS2211 Discrete Structures Proofs

CITS2211 Discrete Structures Proofs CITS2211 Discrete Structures Proofs Unit coordinator: Rachel Cardell-Oliver August 13, 2017 Highlights 1 Arguments vs Proofs. 2 Proof strategies 3 Famous proofs Reading Chapter 1: What is a proof? Mathematics

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP)

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP) Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning Terminology, Notations, Definitions, & Principles: Mathematical Proof and Proving (MPP) 1. A statement

More information

software design & management Gachon University Chulyun Kim

software design & management Gachon University Chulyun Kim Gachon University Chulyun Kim 2 Outline Propositional Logic Propositional Equivalences Predicates and Quantifiers Nested Quantifiers Rules of Inference Introduction to Proofs 3 1.1 Propositional Logic

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

Supplementary Logic Notes CSE 321 Winter 2009

Supplementary Logic Notes CSE 321 Winter 2009 1 Propositional Logic Supplementary Logic Notes CSE 321 Winter 2009 1.1 More efficient truth table methods The method of using truth tables to prove facts about propositional formulas can be a very tedious

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

Rules Build Arguments Rules Building Arguments

Rules Build Arguments Rules Building Arguments Section 1.6 1 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments Rules of Inference for Quantified Statements Building Arguments for Quantified

More information

Math 3336: Discrete Mathematics Practice Problems for Exam I

Math 3336: Discrete Mathematics Practice Problems for Exam I Math 3336: Discrete Mathematics Practice Problems for Exam I The upcoming exam on Tuesday, February 26, will cover the material in Chapter 1 and Chapter 2*. You will be provided with a sheet containing

More information

Chapter 2: The Logic of Quantified Statements

Chapter 2: The Logic of Quantified Statements Chapter 2: The Logic of Quantified Statements Topics include 2.1, 2.2 Predicates and Quantified Statements, 2.3 Statements with Multiple Quantifiers, and 2.4 Arguments with Quantified Statements. cs1231y

More information

Section 1.2: Propositional Logic

Section 1.2: Propositional Logic Section 1.2: Propositional Logic January 17, 2017 Abstract Now we re going to use the tools of formal logic to reach logical conclusions ( prove theorems ) based on wffs formed by some given statements.

More information

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box.

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box. Question 1. [10 marks] Part (a) [2 marks] What is the decimal (base 10) representation of the binary number 110101? Show your work and place your final answer in the box. 2 0 + 2 2 + 2 4 + 2 5 = 1 + 4

More information

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Predicate Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Predicates A function P from a set D to the set Prop of propositions is called a predicate.

More information

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s).

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s). PREDICATE CALCULUS Predicates Statement function Variables Free and bound variables Quantifiers Universe of discourse Logical equivalences and implications for quantified statements Theory of inference

More information

MAT 243 Test 1 SOLUTIONS, FORM A

MAT 243 Test 1 SOLUTIONS, FORM A t MAT 243 Test 1 SOLUTIONS, FORM A 1. [10 points] Rewrite the statement below in positive form (i.e., so that all negation symbols immediately precede a predicate). ( x IR)( y IR)((T (x, y) Q(x, y)) R(x,

More information

STRATEGIES OF PROBLEM SOLVING

STRATEGIES OF PROBLEM SOLVING STRATEGIES OF PROBLEM SOLVING Second Edition Maria Nogin Department of Mathematics College of Science and Mathematics California State University, Fresno 2014 2 Chapter 1 Introduction Solving mathematical

More information

CPSC 121: Models of Computation

CPSC 121: Models of Computation CPSC 121: Models of Computation Unit 6 Rewriting Predicate Logic Statements Based on slides by Patrice Belleville and Steve Wolfman Coming Up Pre-class quiz #7 is due Wednesday October 25th at 9:00 pm.

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

Chapter 3. The Logic of Quantified Statements

Chapter 3. The Logic of Quantified Statements Chapter 3. The Logic of Quantified Statements 3.1. Predicates and Quantified Statements I Predicate in grammar Predicate refers to the part of a sentence that gives information about the subject. Example:

More information

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. Math 0413 Appendix A.0 Logic Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. This type of logic is called propositional.

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows. Chapter 1 Logic 1.1 Introduction and Definitions Definitions. A sentence (statement, proposition) is an utterance (that is, a string of characters) which is either true (T) or false (F). A predicate is

More information

Predicate Logic - Deductive Systems

Predicate Logic - Deductive Systems CS402, Spring 2018 G for Predicate Logic Let s remind ourselves of semantic tableaux. Consider xp(x) xq(x) x(p(x) q(x)). ( xp(x) xq(x) x(p(x) q(x))) xp(x) xq(x), x(p(x) q(x)) xp(x), x(p(x) q(x)) xq(x),

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

CSE 20. Final Review. CSE 20: Final Review

CSE 20. Final Review. CSE 20: Final Review CSE 20 Final Review Final Review Representation of integers in base b Logic Proof systems: Direct Proof Proof by contradiction Contraposetive Sets Theory Functions Induction Final Review Representation

More information

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them.

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them. Proofs A mathematical system consists of axioms, definitions and undefined terms. An axiom is assumed true. Definitions are used to create new concepts in terms of existing ones. Undefined terms are only

More information

ECOM Discrete Mathematics

ECOM Discrete Mathematics ECOM 2311- Discrete Mathematics Chapter # 1 : The Foundations: Logic and Proofs Fall, 2013/2014 ECOM 2311- Discrete Mathematics - Ch.1 Dr. Musbah Shaat 1 / 85 Outline 1 Propositional Logic 2 Propositional

More information

5. Use a truth table to determine whether the two statements are equivalent. Let t be a tautology and c be a contradiction.

5. Use a truth table to determine whether the two statements are equivalent. Let t be a tautology and c be a contradiction. Statements Compounds and Truth Tables. Statements, Negations, Compounds, Conjunctions, Disjunctions, Truth Tables, Logical Equivalence, De Morgan s Law, Tautology, Contradictions, Proofs with Logical Equivalent

More information

A. Propositional Logic

A. Propositional Logic CmSc 175 Discrete Mathematics A. Propositional Logic 1. Statements (Propositions ): Statements are sentences that claim certain things. Can be either true or false, but not both. Propositional logic deals

More information

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements CPSC 121: Models of Computation Pre-class quiz #7 is due Wednesday October 16th at 17:00. Assigned reading for the quiz: Epp, 4th edition: 4.1, 4.6, Theorem 4.4.1 Epp, 3rd edition: 3.1, 3.6, Theorem 3.4.1.

More information

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points Introduction to Discrete Mathematics 3450:208 Test 1 1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : The inverse of E : The

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

9/5/17. Fermat s last theorem. CS 220: Discrete Structures and their Applications. Proofs sections in zybooks. Proofs.

9/5/17. Fermat s last theorem. CS 220: Discrete Structures and their Applications. Proofs sections in zybooks. Proofs. Fermat s last theorem CS 220: Discrete Structures and their Applications Theorem: For every integer n > 2 there is no solution to the equation a n + b n = c n where a,b, and c are positive integers Proofs

More information

Notes from How to Prove it: A Structured Approach by Daniel J. Velleman

Notes from How to Prove it: A Structured Approach by Daniel J. Velleman Notes from How to Prove it: A Structured Approach by Daniel J. Velleman DeMorgan s laws: (P Q) is equivalent to P Q) (P Q) is equivalent to P Q) Commutative laws: (P Q) is equivalent to (Q P ) (P Q) is

More information

CS 214 Introduction to Discrete Structures. Chapter 1 Formal Logic. Mikel D. Petty, Ph.D.

CS 214 Introduction to Discrete Structures. Chapter 1 Formal Logic. Mikel D. Petty, Ph.D. CS 214 Introduction to Discrete Structures Chapter 1 Formal Logic Mikel D. Petty, Ph.D. Center for Modeling, Simulation, and Analysis CS 214 Formal Logic 1.2 Chapter sections and objectives 1.1 Statements,

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Winter Quarter 2011 Wright State University, Dayton, OH, U.S.A. [final version: 03/10/2011] Contents 1 Propositional

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Spring Quarter 2010 Wright State University, Dayton, OH, U.S.A. Final version. Contents 1 Propositional Logic

More information

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms)

More information

Discrete Mathematics

Discrete Mathematics Department of Mathematics National Cheng Kung University 2008 2.4: The use of Quantifiers Definition (2.5) A declarative sentence is an open statement if 1) it contains one or more variables, and 1 ) quantifier:

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura February 9, 2010 11:30 pm Duration: 1:50 hs Closed book, no calculators Last name: First name: Student number: There are 5 questions and

More information

Proofs: A General How To II. Rules of Inference. Rules of Inference Modus Ponens. Rules of Inference Addition. Rules of Inference Conjunction

Proofs: A General How To II. Rules of Inference. Rules of Inference Modus Ponens. Rules of Inference Addition. Rules of Inference Conjunction Introduction I Proofs Computer Science & Engineering 235 Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu A proof is a proof. What kind of a proof? It s a proof. A proof is a proof. And when

More information

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic CS 103 Discrete Structures Chapter 1 Propositional Logic Chapter 1.1 Propositional Logic 1 1.1 Propositional Logic Definition: A proposition :is a declarative sentence (that is, a sentence that declares

More information

Full file at

Full file at Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Introduction Chapter 1 - Introduction Applications of discrete mathematics: Formal Languages (computer languages) Compiler Design

More information

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

2. The Logic of Compound Statements Summary. Aaron Tan August 2017 2. The Logic of Compound Statements Summary Aaron Tan 21 25 August 2017 1 2. The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence Statements; Compound Statements; Statement Form (Propositional

More information

Proofs. Introduction II. Notes. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Proofs. Introduction II. Notes. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Proofs Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.5, 1.6, and 1.7 of Rosen cse235@cse.unl.edu

More information

cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference

cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference cse 311: foundations of computing Fall 2015 Lecture 6: Predicate Logic, Logical Inference quantifiers x P(x) P(x) is true for every x in the domain read as for all x, P of x x P x There is an x in the

More information

Outline. Rules of Inferences Discrete Mathematics I MATH/COSC 1056E. Example: Existence of Superman. Outline

Outline. Rules of Inferences Discrete Mathematics I MATH/COSC 1056E. Example: Existence of Superman. Outline Outline s Discrete Mathematics I MATH/COSC 1056E Julien Dompierre Department of Mathematics and Computer Science Laurentian University Sudbury, August 6, 2008 Using to Build Arguments and Quantifiers Outline

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

Name: ID# (last 4 digits): PIN: CSE Discrete Structures

Name: ID# (last 4 digits): PIN: CSE Discrete Structures CSE - Discrete Structures Exm : Comprehensive Nme: ID# (lst digits): PIN: CSE - Discrete Structures Finl Exm - Fll 00 Closed book, closed notes Dte: Dec. 9 00, :00 pm - :0 pm. Indicte if the following

More information

Test 1 Solutions(COT3100) (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology:

Test 1 Solutions(COT3100) (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology: Test 1 Solutions(COT3100) Sitharam (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology: ( q (p q) (r p)) r Solution. This is Modus Tollens applied twice, with transitivity

More information

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Part A 1. (a) Some dog does not have his day. (b) Some action has no equal and opposite reaction. (c) Some golfer will never be eated

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.11-1.12) Section 1.11 Exercise 1.11.1 (a) p q q r r p 1. q r Hypothesis 2. p q Hypothesis 3. p r Hypothetical syllogism, 1, 2 4. r Hypothesis 5. p Modus tollens, 3, 4. (b) p

More information

Chapter 4, Logic using Propositional Calculus Handout

Chapter 4, Logic using Propositional Calculus Handout ECS 20 Chapter 4, Logic using Propositional Calculus Handout 0. Introduction to Discrete Mathematics. 0.1. Discrete = Individually separate and distinct as opposed to continuous and capable of infinitesimal

More information

CS0441 Discrete Structures Recitation 3. Xiang Xiao

CS0441 Discrete Structures Recitation 3. Xiang Xiao CS0441 Discrete Structures Recitation 3 Xiang Xiao Section 1.5 Q10 Let F(x, y) be the statement x can fool y, where the domain consists of all people in the world. Use quantifiers to express each of these

More information

First order Logic ( Predicate Logic) and Methods of Proof

First order Logic ( Predicate Logic) and Methods of Proof First order Logic ( Predicate Logic) and Methods of Proof 1 Outline Introduction Terminology: Propositional functions; arguments; arity; universe of discourse Quantifiers Definition; using, mixing, negating

More information

Mathematical Reasoning Rules of Inference & Mathematical Induction. 1. Assign propositional variables to the component propositional argument.

Mathematical Reasoning Rules of Inference & Mathematical Induction. 1. Assign propositional variables to the component propositional argument. Mathematical Reasoning Rules of Inference & Mathematical Induction Example. If I take the day off it either rains or snows 2. When It rains, my basement floods 3. When the basement floods or it snows,

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology 1 Math/CSE 1019N: Discrete Mathematics for Computer Science Winter 2007 Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/1019

More information

1 Introduction to Predicate Resolution

1 Introduction to Predicate Resolution 1 Introduction to Predicate Resolution The resolution proof system for Predicate Logic operates, as in propositional case on sets of clauses and uses a resolution rule as the only rule of inference. The

More information

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference Math.3336: Discrete Mathematics Nested Quantifiers/Rules of Inference Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Spring 2018 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday.

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday. Logic and Proof Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement is called the conclusion. An argument is valid

More information

Today s Lecture 2/25/10. Truth Tables Continued Introduction to Proofs (the implicational rules of inference)

Today s Lecture 2/25/10. Truth Tables Continued Introduction to Proofs (the implicational rules of inference) Today s Lecture 2/25/10 Truth Tables Continued Introduction to Proofs (the implicational rules of inference) Announcements Homework: -- Ex 7.3 pg. 320 Part B (2-20 Even). --Read chapter 8.1 pgs. 345-361.

More information

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional) Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.6) TOPICS Propositional Logic Logical Operators Truth Tables Implication Logical Equivalence Inference Rules What you should know about propositional

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 1 Dr. Hyunyoung Lee 1 Topics Propositional Logic (Sections 1.1, 1.2 and 1.3) Predicate Logic (Sections 1.4 and 1.5) Rules of Inferences and Proofs

More information

Foundations of Mathematics Worksheet 2

Foundations of Mathematics Worksheet 2 Foundations of Mathematics Worksheet 2 L. Pedro Poitevin June 24, 2007 1. What are the atomic truth assignments on {a 1,..., a n } that satisfy: (a) The proposition p = ((a 1 a 2 ) (a 2 a 3 ) (a n 1 a

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Winter Quarter 2012 Wright State University, Dayton, OH, U.S.A. [version: 03/01/2012] Contents 1 Propositional

More information

1.1 Statements and Compound Statements

1.1 Statements and Compound Statements Chapter 1 Propositional Logic 1.1 Statements and Compound Statements A statement or proposition is an assertion which is either true or false, though you may not know which. That is, a statement is something

More information

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Summary Valid Arguments and Rules of Inference Proof Methods Proof Strategies Rules of Inference Section 1.6 Section Summary Valid Arguments

More information

Logic and Proof. Aiichiro Nakano

Logic and Proof. Aiichiro Nakano Logic and Proof Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering & Materials Science

More information

CSE 1400 Applied Discrete Mathematics Proofs

CSE 1400 Applied Discrete Mathematics Proofs CSE 1400 Applied Discrete Mathematics Proofs Department of Computer Sciences College of Engineering Florida Tech Fall 2011 Axioms 1 Logical Axioms 2 Models 2 Number Theory 3 Graph Theory 4 Set Theory 4

More information

Propositional Logic: Syntax

Propositional Logic: Syntax Logic Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and programs) epistemic

More information

Manual of Logical Style

Manual of Logical Style Manual of Logical Style Dr. Holmes January 9, 2015 Contents 1 Introduction 2 2 Conjunction 3 2.1 Proving a conjunction...................... 3 2.2 Using a conjunction........................ 3 3 Implication

More information

Boolean Algebra and Proof. Notes. Proving Propositions. Propositional Equivalences. Notes. Notes. Notes. Notes. March 5, 2012

Boolean Algebra and Proof. Notes. Proving Propositions. Propositional Equivalences. Notes. Notes. Notes. Notes. March 5, 2012 March 5, 2012 Webwork Homework. The handout on Logic is Chapter 4 from Mary Attenborough s book Mathematics for Electrical Engineering and Computing. Proving Propositions We combine basic propositions

More information

The Logic of Compound Statements cont.

The Logic of Compound Statements cont. The Logic of Compound Statements cont. CSE 215, Computer Science 1, Fall 2011 Stony Brook University http://www.cs.stonybrook.edu/~cse215 Refresh from last time: Logical Equivalences Commutativity of :

More information

PROBLEM SET 3: PROOF TECHNIQUES

PROBLEM SET 3: PROOF TECHNIQUES PROBLEM SET 3: PROOF TECHNIQUES CS 198-087: INTRODUCTION TO MATHEMATICAL THINKING UC BERKELEY EECS FALL 2018 This homework is due on Monday, September 24th, at 6:30PM, on Gradescope. As usual, this homework

More information

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications:

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: Tools for reasoning: Logic Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: 1 Why study propositional logic? A formal mathematical language for precise

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Evaluate which proof technique(s) is appropriate for a given proposition Direct proof Proofs by contraposition

More information

CSE 20 DISCRETE MATH SPRING

CSE 20 DISCRETE MATH SPRING CSE 20 DISCRETE MATH SPRING 2016 http://cseweb.ucsd.edu/classes/sp16/cse20-ac/ Today's learning goals Evaluate which proof technique(s) is appropriate for a given proposition Direct proof Proofs by contraposition

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information