TBA Equations for Minimal Surfaces in AdS

Size: px
Start display at page:

Download "TBA Equations for Minimal Surfaces in AdS"

Transcription

1 Equations for Minimal Surfaces in AdS Katsushi Ito Tokyo Institute of Technology Y. Hatsuda, KI, K. Sakai, Y. Satoh, arxiv: JHEP 004 (200) 08, arxiv: JHEP 009 (200) 064 November 9, University November 9, University

2 Outline Introduction 2 Minimal surface in AdS 3 3 equations and minimal area 4 Remainder Function and Perturbative CFT 5 Outlook November 9, University 2

3 Introduction AdS/CFT Correspondence N = 4 U(N) SYM type IIB Superstrings on AdS 5 S 5 Gluon Scattering Amplitudes [Alday-Maldacena ] gluon scattering Disk amplitude in AdS Wilson Loop in AdS z=0 z=z IR z=0 z=z IR AdS/CFT T-dual vev of Wilson loop = area of minimal surface r=0 y y y 0.5 November 9, University 3

4 Gluon Scattering Amplitudes in N = 4 SYM the BDS conjecture Bern-Dixon-Smirnov, Anastasiou-Bern-Dixon-Kosower Planar L-loop, n-point amplitude (recursive structure) A (L) n (k,,k n ) = A (0) n (k,,k n )M (L) n (ǫ) M n (ǫ) + n (ǫ) IR divergence: Dimensional regularization (D = 4 2ǫ) L= λl M (L) ln M n(ǫ) = A2 ǫ + A 2 ǫ n 6 f(λ) X µ 2 ln f(λ) = 4 g(λ) = 2 For n = 4 i= l= f(l) f (l) l= s i,i+ «2 g(λ) 4 nx i= 0 λl : cusp anomalous dimension l λ l : collinear anomalous dimension 4 = ( s ) 2 log2 + 2π2 t 3 F BDS «µ 2 ln + f(λ) s i,i+ 4 F n (BDS) + C November 9, University 4

5 Test of the BDS conjecture (Weak Coupling) loop calculations (n 5) BDS,... Dual conformal invariance: determines n 5 amplitudes Gluon amplitude/wilson loop duality at weak coupling Drummond-Henn-Korchemsky-Sokatchev Discrepancy in 6-point 2-loop amplitude Bern-Dixon-Kosower-Roiban-Spradlin-Volovich Drummond-Henn-Korchemsky-Sokatchev lnm MHV 6 = lnw(c 6 ) + const., F WL 6 = F BDS 6 + R 6 (u), R 6 0 remainder function R n (u): F n = Fn BDS + R n Non-trivial dependence on the cross-ratios (3n 5) u ij,kl = x2 ij x2 kl x 2, (x 2 ik x2 ij = t [j i] i ) jl For n = 6, u 3,46, u 24,5, u 35,26 are independent cross ratios. November 9, University 5

6 Minimal Surface in AdS AdS 5 : embedding coordinates in R 2,4 : isometry SO(2,4) Y 2 Y Y 2 + Y Y Y 2 4 = Poincaré coordinates: (y µ,r) µ = 0,,2,3 Y µ = yµ r, Y + Y 4 = r, Y Y 4 = r2 + y µ y µ r Action in confomal gauge: S = R2 d 2 z yµ yµ + r r 2π r 2 Euler-Lagrange equation+boundary condition ends at r 0 (AdS boundary) y µ : light-like segments M n exp( S[y,r]) k k 2 y r=0 November 9, University 6

7 Alday-Maldacena s Solution (4pt amplitude) Alday-Maldacena arxiv: AdS 3 constraint: Y 3 = Y 4 = 0 r 2 (y 0 ) 2 + (y ) 2 + (y 2 ) 2 = static gauge: r = r(y,y 2 ), y 0 = y 0 (y,y 2 ) dimesnional regularization D = 3 2ǫ conformal boost: s = t general (s, t) 4-point amplitude (s = t): s = (k + k 2 ) 2, t = (k + k 4 ) 2 y2 0.5 boundary condition: r(±,y 2 ) = r(y, ±) = 0, 0.5 y0 0 y 0 (±,y 2 ) = ±y 2, y 0 (y, ±) = ±y -0.5 y 0 = y y 2, r = ( y 2)( y2 2 ) y r y y S 4 = ln M 4 f(λ) λ November 9, University 7

8 Minimal surface in AdS 3 We consider the classical string solutions in AdS 3. (z, z): worldsheet coordinates (Euclidean) emmbedding coordinates Y = (Y,Y 0,Y,Y 2 ) in R 2,2 Y Y := Y 2 Y Y 2 + Y 2 2 = action ( Y z = zy, Y z = z Y ) { S = d 2 z Yz Y z + λ( Y Y } + ) equations of motion Virasoro constraints Y z z ( Y z Y z ) Y = 0 Y 2 z = Y 2 z = 0 November 9, University 8

9 Pohlmeyer reduction [Pohlmeyer CMP 46 (976) 207; de Vega-Sanchez PRD 47 (993) 3394] variables Y α(z, z)(real), p(z)(holomorphic), p( z) (anti-hol) e 2α = 2 Y z Y z N i = 2 e 2α ǫ ijkl Y j Y k z Y l z, ǫ ( )02 = +, p = 2 N Y zz p = 2 N Y z z N: normal vector to the surface N Y = N Y z = N Y z = 0, N N = Moving-frame basis q = Y, q 2 = e α Y z, q 3 = e α Yz, q 4 = N. November 9, University 9

10 evolution of moving-frame basis q 0 0 e α 0 z q 2 q 3 = 2e α α z α z 2pe α q 4 0 pe α 0 0 z q q 2 q 3 q 4 = 0 e α α z 0 2 pe α 0 0 α z 2e α 0 0 pe 0 q q 2 q 3 q 4 q q 2 q 3 q 4 Spinor notation: (a, ȧ): spacetime SL(2, R) SL(2, R) ( ) ( ) Y Y Y aȧ = 2 Y + Y = 2 Y Y 0 Y 2 Y 22 Y + Y 0 Y Y 2 ( ) W,aȧ W W α α,aȧ = 2,aȧ = ( (q + q 4 ) aȧ (q 2 ) aȧ 2 (q 3 ) aȧ (q q 4 ) aȧ W 2,aȧ W 22,aȧ ), November 9, University

11 evolution of W α α,aȧ z W α α,aȧ + (Bz L ) α β W β α,aȧ + (Bz R ) β α W α β,aȧ = 0, z W α α,aȧ + (B L z) β α W β α,aȧ + (B R z ) β α W α β,aȧ = 0, Bz L = B z(), Bz R = UB z(i)u, B L z = B z(), B R z = UB z(i)u B z (ζ) = α ( z ( B z (ζ) = α z ( ) 0 e πi 4 U =. e 3πi 4 0 ) ( 0 e α ζ e α p 0 ) ζ ( 0 e α p e α 0 ), ), November 9, University

12 Each entry of the matrix W α α,aȧ is a null vector evolution of ψ W α α,aȧ = ψ L α,aψ Ṙ α,ȧ z ψ L α,a + (BL z ) α β ψ L β,a = 0, zψ L α,a + (BL z ) α β ψ L β,a = 0, z ψα, Ṙ α + (BR z ) β α ψ Ṙ β, α = 0, zψ α, Ṙ α + (BR z ) β α ψ Ṙ β, α = 0. compatibility condition B L z B z L + [BL z,bl z ] = 0, BR z B z R + [BR z,br z ] = 0, = generalized sinh-gordon equation α(z, z) 2e 2α(z, z) + p(z) 2 e 2α(z, z) = 0 November 9, University

13 The left/right linear problem can be promoted to a family of linear problems with the general spectral parameter ζ: ( ) ( ) z + B z (ζ) ψ(z, z;ζ) = 0, z + B z (ζ) ψ(z, z;ζ) = 0, ζ = (left) ζ = i (right) B z (ζ) = A z + ζ Φ z, B z (ζ) = A z + ζφ z = SU(2) Hitchin equations: D z Φ z = D z Φ z = 0, F z z + [Φ z,φ z ] = 0 Area A = 2 d 2 ztrφ z Φ z = 4 d 2 ze 2α November 9, University

14 change of variable dw = p(z)dz gauge transformation ˆα = α log p p 4 ˆψ = gψ, g = e i π 4 σ3 e i π 4 σ2 e 8 log p p σ3 ˆB w (ζ) = ˆB w (ζ) = ˆα w 2 ( w + ˆB w ) ˆψ = 0, ( w + ˆB w ) ˆψ = 0, ˆα ( w 0 i 2 i 0 ( 0 i i 0 ) ( cosh ˆα isinh ˆα ζ isinh ˆα cosh ˆα ) ζ compatibility cond. = sinh-gordon equation ( cosh ˆα isinh ˆα isinh ˆα cosh ˆα w wˆα e 2ˆα + e 2ˆα = 0 ), ). November 9, University

15 solutions with light-like boundary ˆα 0 w p(z): polynomial of degree n 2 (2n-gonal boundary) at large w ( w ζ σ 3 ) ˆψ = 0, ( w ζσ 3 ) ˆψ = 0, have two independent solutions (big and small) ( w ) ( ζ ˆη + = e + wζ 0, ˆη = 0 e w ζ + wζ ( ) w = w e iθ, ζ = ζ e iα, Re w ζ + wζ = w ( ζ )cos(θ + ζ α) cos(θ α) < 0 ˆη + : small ˆη : large cos(θ α) > 0 ˆη : small ˆη + : large ). November 9, University

16 Bases of solutions the Stokes sector Ŵ j : (j 3 2 )π + arg ζ < arg w < (j 2 )π + arg ζ ŝ j : the small solution in Ŵ j (unique up to rescaling) W 2 W ŝ 2k = ( ) k ˆη for w Ŵ 2k ŝ 2k = ( ) kˆη + for w Ŵ 2k W0 W- In Ŵ j one can take ŝ j (large) and ŝ j (small) as the basis of the solution. normalization ŝ j ŝ j+ det(ŝ j,ŝ j+ ) = Stokes data ŝ j+ = ŝ j + b j (ζ)ŝ j, b j (ζ) = ŝ j ŝ j+ November 9, University

17 small solutions in the z-plane the small solution s j = g ŝ j the Stokes sector in the z-plane W j : (2j 3)π n + 2 n arg ζ < arg z < (2j )π n + 2 n arg ζ the differential equation is regular for z <, W j+n = W j monodromy factor µ j : s j+n = µ j s j Ŝ j = (ŝ j,ŝ j+ ), Ŝ j+ = Ŝ j B j+, Ŝ j+n = Ŝ j M j. ( 0 B j = b j = µ 2k = µ 2k = µ, b j+n = µ 2 j b j ) ( µj 0, M j = 0 µ j+ ) November 9, University

18 Two involutions holomorphic involution (Z 2 symmetry) σ 2 [ w + ˆB w (ζ)]σ 2 = [ w + ˆB w ( ζ)],σ 2 [ w + ˆB w (ζ)]σ 2 = [ w + ˆB w ( ζ)] σ 2 ŝ j (w, w;e πi ζ) = iŝ j+ (w, w;ζ) b j (e πi ζ) = b j+ (ζ). antiholomorphic involution w + ˆB w (ζ) = w + ˆB w ( ζ ), w + ˆB w (ζ) = w + ˆB w ( ζ ). ŝ j (w, w; ζ ) = ŝ j (w, w;ζ) b j ( ζ ) = b j (ζ). November 9, University

19 Equations and minimal area Alday-Gaiotto-Maldacena , Hatsuda-Ito-Sakai-Satoh The functional form b j (ζ) (the Riemann-Hilber problem) monodromy factor, constraints from involutions asymptotic form ζ,0 evaluated by the WKB analysis b j (ζ) has nontrivial asymptotics in each angular (Stokes) sector Introduce the Fock-Goncharov coordinates χ j (ζ) cross-ratio simple asymptotics in all angular sectors discontinuities across the Stokes-line = equations Alday-Maldacena-Sever-Vieira Plücker relation for s j +constraints = T-system = Y-system ( equations) November 9, University

20 Decagon solution (n = 5) polynomial: p(z) = z 3 3Λ 2 z + u = (z z )(z z 2 )(z z 3 ) conditions for the Stokes coefficients b b 2 = µb 4, b 2 b 3 = µ b 5, b 3 b 4 = µ b, b 4 b 5 = µb 2. β 2k = µ b 2k, β j β j+ = β j+3, β 2k = µb 2k β j+5 = β j November 9, University 2

21 the Fock-Goncharov coordinates the WKB line: Re( ) ζ p(z)dz largest the WKB triangulation: quadrant the Fock-Goncharov coordinates χ E = (s s 2 )(s 3 s 4 ) (s 2 s 3 )(s 4 s ) aysmptotic boundary condition ζ 0, ( ) Zi χ γi (ζ) exp ζ + Z i ζ, Z i = p(z)dz γ i 2 χ γ = (s s 2 )(s 3 s 5 ) (s 2 s 3 )(s 5 s ) = β 4, χ γ 2 = χ γ2 = (s 5 s )(s 3 s 4 ) (s s 3 )(s 4 s 5 ) = β 2 3 z 2 z 3 z γ γ November 9, University 2

22 The WKB triangulation jumps discontinuously when argζ crosses the BPS rays (A) (B) (C) (D) (E) 3 arg ζ (A) (B) (C) (D) (E) χ γ β5 β 4 β 4 β3 β3 χ γ2 β 2 β 2 β β β 5 Discontinuities= Integral equations F(ζ) = dx x+ζ 0 x z ζ f(x) F(y + iǫ) F(y iǫ) = 0 4iǫ (x y) 2 + ǫ2f(x) 2πif(y)(ǫ 0) November 9, University 2

23 ln χ γ (ζ) = Z ζ + Z ζ dζ 4πi Zlγ2 ζ + ζ ζ ζ ζ ln( + χγ 2 (ζ )) + dζ 4πi Zl γ2 ζ + ζ ζ ζ ζ ln( + χ γ 2 (ζ )) ln χ γ2 (ζ) = Z 2 ζ + Z 2 ζ + dζ 4πi Zlγ ζ + ζ ζ ζ ζ ln( + χγ (ζ )) dζ 4πi Zl γ ζ + ζ ζ ζ ζ ln( + χ γ (ζ )) We can rewrite the integral equations in the form equations: ǫ (θ) = 2 Z cosh θ ǫ 2 (θ) = 2 Z 2 cosh θ dθ 2π dθ 2π cosh(θ θ + i α) log( + e ǫ 2(θ ) ), cosh(θ θ i α) log( + e ǫ (θ ) ) Z k = Z k e iα k, ζ = e θ+iα k, α = π/2 (α α 2 ) ǫ k (θ) = ǫ γk (θ), ǫ γk (θ) = ǫ γk (θ) (Z 2 -symmetry) χ γk (ζ = e θ+iα k) = e ǫγ k (θ), November 9, University 2

24 Integral equation and equations for general n Gaiotto-Moore-Neitzke log χ γk (ζ) = Z γ k ζ + Z γk ζ γ k,γ 4πi γ l γ dζ ζ ζ + ζ ζ ζ log( + χ γ (ζ )) γ = ±γ, ±γ 2,, ±γ n 2 Z l γ : γ ζ R γ γ γ equations n 3 ǫ k (θ) = 2 Z k cosh θ Z k = Z γk l= 3 2 dθ i γ k,γ l 2π sinh(θ θ + iα k iα l ) log(+e ǫ l(θ ) ) November 9, University 2

25 Homogeneous sine-gordon model This equations are identified with those of the homogeneous sine-gordon model Fernandez-Pouza-Gallas-Hollowood-Miramontes perturbed CFT: generalized parafermions SU(N) 2 /U() N S-matrix Castro-Alvaredo-Fring S ab (θ) = ( ) δ ab [c a tanh 2 (θ + σ ab π ] 2 i) Iab eqs ǫ a (θ) = m a R cosh θ b dθ 2π ii ab sinh(θ θ + σ ab + π 2 i) log(+e ǫ b ). minimal surface HSG model n 2 N 2 Z a m a R γ a,γ b ǫ ab I ab i(α α b ) σ ab + π 2 i November 9, University 2

26 Regularized area and Free energy cross ratios x± ij x± kl x ± ik x± jl = (s i s j )(s k s l ) (s i s k )(s j s l ) x ± = Y ±Y 0 Y +Y 2 light-cone coordinates at the AdS boundary ζ = left (+), ζ = i right (-) Area (finite+divergent) A = 4 d 2 ze 2α = A Sinh + 4 finite part= free energy F regular 2n-gon solution (CFT limit) d 2 w, A Sinh = 4 d 2 w(e 2α p p) A sinh = F + c n, c n = 7 (n 2)π 2 The constant c n is determined by the superposition of hexagon solutions where zeros of p(z) become far apart from each other. F = π 6 c = π 6n (n 2)(n 3) A Sinh = π 4n (3n2 8n + 4) agrees with regular polygon solutions Alday-Malacena November 9, University 2

27 Remainder Function and Perturbative CFT 6-point gluon scattering amplitudes minimal surface with 6 cusps in AdS 5 SU(4) Hitchin equations with Z 4 -automorphism Stokes data equations for A 3 -integrable (Z 4 -symmetric) field theory [Alday-Gaiotto-Maldacena] Y-function Y a (θ) (a =,2,3) Y = Y 3 Y (θ + iπ 4 )Y (θ iπ 4 ) = + Y 2(θ) Y 2 (θ + iπ 4 )Y 2(θ iπ 4 ) = ( + µy (θ))( + µ Y (θ)) periodicity Y a (θ + 3iπ 2 ) = Y a(θ), reality: Y a (θ) = Y a ( θ) µ = e iφ : monodromy (s i+6 = µ ( )j s i ) November 9, University 2

28 equations (6pt amplitude) cross-ratio U = b 2 b 3 = x2 4 x2 36 x 2 3 x2 46 monodromy b k = Y (, U 2 = b 3 b = x2 25 x2 4 x 2 24 x2 5, U 3 = b b 2 = x2 36 x2 25 x 2, 35 x2 26 (k )πi (2k + )πi ), U k = + Y 2 ( ) 2 4 b b 2 b 3 = b + b 2 + b 3 + µ + µ equations: ǫ(θ) = log Y (θ + iϕ), ǫ(θ) = log Y 2 (θ + iϕ) (Z = Z e iϕ ) ǫ = 2 Z coshθ + K 2 log( + e ǫ ) + K log( + µe ǫ )( + µ e ǫ ) ǫ = 2 2 Z coshθ + 2K log( + e ǫ ) + K 2 log( + µe ǫ )( + µ e ǫ ) 2coshθ K (θ) = K 2 (θ) = 2π coshθ π cosh2θ f g(θ) = dθ f(θ θ )g(θ ): convolution November 9, University 2

29 Remainder function (6pt amplitude) Z Area = 4 d 2 z(e 2α (P P) 4 ) + 4 Z R F = 2π Z d 2 z(p P) 4 4 d ZΣ 2 w + 4 d 2 w 0 Σ 0 = A BDS A BDS like A period A free = 3X Li 2( U k ) Z 2 ( F) 4 Z + k= n dθ 2 Z cosh θ log( + µe ǫ(θ) ))( + µ e ǫ(θ) ) +2 2 Z cosh θ log( + e ǫ(θ)o φ=0 φ=π/4 φ=π/2 φ=3π/ φ=0 φ=π/4 φ=π/2 φ=3π/ Afree 0.2 R Z Z November 9, University 2

30 Thermodynamic Bethe Ansatz Al. Zamoldchikov, NPB 342 ( ) + dim Euclidean QFT on a cylinder with periodic B.C. partiton function Z(R,L) = Tre RH L = Tre LH R L e LRf(R) e LE 0(R) f(r): free energy per unit length at temperature /R E 0 (R): ground state energy L time R L R time E 0 (R) = Rf(R) particle A a (a =,,n) with mass m a (E = m coshθ, p = m sinhθ) purely elastic scattering matrix S ab (θ) = e iδ ab(θ) Bethe wave function Ψ(x,,x N ) = N i= eip ix i Bethe eqs. e ip il j i S ij(θ i θ j ) = ± November 9, University 3

31 thermodynamic limit L, N a, N a /L:fixed ρ (r) a (θ):denisty of roots ρ a (h) :denisty of holes ρ = ρ (r) + ρ (h) total energy n E = m a coshθρ (r) a (θ)dθ entropy S = n a= a= [ρ a lnρ a ρ (r) a lnρ (r) a ρ a (h) lnρ a (h) ] minimizing free energy F = E TS with constraint dθρ (r) a = N a /L = equation n m a R cosh θ = ǫ a (θ) + ϕ ab log( + e ǫ b ), b= ρ (r) a ρ a = e ǫa + e ǫa ϕ ab = i d dθ log S ab(θ) November 9, University 3

32 Analytic solution in the IR and UV limits r = m R (m :lowest mass gap) IR (large mass ) limit r ǫ a ˆm a r coshθ ( ˆm a = m a /m ) free massive field theory (or other CFT) UV (small mass) limit r 0 ǫ a :const ǫ a = b N ab ln( + e ǫ b) CFT E 0 (R) = 6R c(r) π L(x) = 2 { 6 r n c(r) = π 2 a= ˆm ak ( ˆm a r) r 6 n π 2 a= L( +e ) = c ǫa CFT r 0 ( ) x 0 dt ln t t + ln( t) t : Rogers dilogarithm function November 9, University 3

33 small mass expansion: perturbed CFT Klassen-Melzer, NPB338 (990) 485 S = S CFT + λ d 2 wǫ(w, w) ǫ(w, w) has conformal weight (D ǫ,d ǫ ) partition function Z = exp ( λ d 2 wǫ(w, w) ) 0 R F = lim L L log Z = RE(R) 4 (mr)2 E(R) = E 0 R 2 ( λ) n ( ) 2π 2+2n(Dǫ ) d 2 z 2 d 2 z n n! R n= V (0)ǫ()ǫ(z 2 ) ǫ(z n )V ( ) 0,connected z i 2(Dε ) i November 9, University 3

34 Remainder function for 6-point amplitude Z 4 parafermion (c = 2(N 2) N+2 = ) deformed by enegy operator ǫ(z, z) with conformal dims. ( 3, 3 ) (2πλ) 2 = [ m πγ( 3 4 )] 8 3 γ( Γ(x) 6 ) (γ(x) = Γ( x) ) Fateev PLB 324 R = 3 4 k= Li 2( Y 2 ( (2k+)πi 2 )) Z 2 F C 8 3 F = π 2 = π2 6 + φ2 [ ] 8 π γ( 3 4 ) 3 γ( 6 )γ( 3 ) 3π + Z 2 C 8 3 γ( 3 + φ 2π )γ( 3 φ 3π ) Z Y 2 (θ) = Ỹ (0) (θ,φ) + Ỹ () 2 (θ,φ) Z Ỹ (0) 2 = + 2cos( 2φ () ), Ỹ 2 = y () (φ)cos 3 4(ϕ + iθ) 3 y () (φ) cos φ cos 2φ 3 November 9, University 3

35 Numerical results vs CFT perturbation pert large Z R φ=0 φ=0(pert) 0.7 φ=π/4 φ=π/4(pert) φ=π/ φ=π/2(pert) φ=3π/4 φ=3π/4(pert) Z R Z November 9, University 3

36 Outlook AdS 3 case: 2n-point amplitudes SU(n 2) 2 /U() n 3 parafermions AdS 5 case: m-point amplitudes: SU(m 4) 4 U() m 5 [SU(4) ] m 4 SU(4) m 4 Y-system is different from that of HSG model. (new integrable field theory?) CFT perturbation of generalized parafermions = analytical (power series) results for the remainder function m = 6 SU(2) 4 /U() (Z 4 parafermion) form factor Maldacena-Zhiboedov Hitchin eqs. / CFT correspondence (ODE/IM correspondence Dorey-Tateo, Bazhanov-Lukyanov-Zamolodchikov) November 9, University 3

Six-point gluon scattering amplitudes from -symmetric integrable model

Six-point gluon scattering amplitudes from -symmetric integrable model YITP Workshop 2010 Six-point gluon scattering amplitudes from -symmetric integrable model Yasuyuki Hatsuda (YITP) Based on arxiv:1005.4487 [hep-th] in collaboration with K. Ito (TITECH), K. Sakai (Keio

More information

Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS 3

Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS 3 RIKEN-TH-8 TIT/HEP-60 UTHEP-60 arxiv:00.9 Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS Yasuyuki Hatsuda, Katsushi Ito, Kazuhiro Sakai and Yuji Satoh Theoretical Physics Laboratory,

More information

Gluon scattering amplitudes and two-dimensional integrable systems

Gluon scattering amplitudes and two-dimensional integrable systems Gluon scattering amplitudes and two-dimensional integrable systems Yuji Satoh (University of Tsukuba) Based on Y. Hatsuda (DESY), K. Ito (TIT), K. Sakai (YITP) and Y.S. JHEP 004(200)08; 009(200)064; 04(20)00

More information

Gluon Scattering Amplitudes from Gauge/String Duality and Integrability

Gluon Scattering Amplitudes from Gauge/String Duality and Integrability Gluon Scattering Amplitudes from Gauge/String Duality and Integrability University of Tsukuba Yuji Satoh based on JHEP 0910:001; JHEP 1001:077 w/ K. Sakai (Keio Univ.) JHEP 1004:108; JHEP 1009:064, arxiv:1101:xxxx

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

arxiv: v3 [hep-th] 14 Dec 2011

arxiv: v3 [hep-th] 14 Dec 2011 arxiv:1012.4003 overview article: arxiv:1012.3982 Review of AdS/CFT Integrability, Chapter V.3: Scattering Amplitudes at Strong Coupling Luis F. Alday arxiv:1012.4003v3 [hep-th] 14 Dec 2011 Mathematical

More information

Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space

Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space arxiv:0904.0663v2 [hep-th] 19 Oct 2009 Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space Luis F. Alday and Juan Maldacena School of Natural Sciences, Institute for Advanced Study

More information

New insights in the amplitude/wilson loop duality

New insights in the amplitude/wilson loop duality New insights in the amplitude/wilson loop duality Paul Heslop Amplitudes 2010 6th May based on 0910.4898: Brandhuber, Khoze, Travaglini, PH 1004.2855: Brandhuber, Katsaroumpas, Nguyen, Spence, Spradlin,

More information

Computing amplitudes using Wilson loops

Computing amplitudes using Wilson loops Computing amplitudes using Wilson loops Paul Heslop Queen Mary, University of London NBIA, Copenhagen 13th August 2009 based on: 0707.1153 Brandhuber, Travaglini, P.H. 0902.2245 Anastasiou, Brandhuber,

More information

Series Solution and Minimal Surfaces in AdS arxiv: v3 [hep-th] 23 Dec 2009

Series Solution and Minimal Surfaces in AdS arxiv: v3 [hep-th] 23 Dec 2009 Preprint typeset in JHEP style - HYPER VERSION BROWN-HET-1588 Series Solution and Minimal Surfaces in AdS arxiv:0911.1107v3 [hep-th] 23 Dec 2009 Antal Jevicki, Kewang Jin Department of Physics, Brown University,

More information

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Spiky strings, light-like Wilson loops and a pp-wave anomaly Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arxiv:080.039 A. Tseytlin, M.K. arxiv:0804.3438 R. Ishizeki, A. Tirziu, M.K. Summary Introduction

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Exact results for Wilson loops in N = 4 SYM

Exact results for Wilson loops in N = 4 SYM Exact results for Wilson loops in N = 4 SYM Diego H. Correa Universidad Nacional de La Plata - CONICET - Argentina Based on arxives: 1202.4455, 1203.1019 and 1203.1913 In collaboration with: J. Henn, J.

More information

Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills

Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills L. Dixon, J. Drummond, M. von Hippel and J. Pennington, 1307.nnnn LMS Symposium, Durham July 8, 2013 All planar N=4 SYM integrands

More information

Feynman Integrals, Polylogarithms and Symbols

Feynman Integrals, Polylogarithms and Symbols Feynman Integrals, Polylogarithms and Symbols Vittorio Del Duca INFN LNF based on work with Claude Duhr & Volodya Smirnov ACAT2011 7 September 2011 let us consider l-loop n-point Feynman integrals example:

More information

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin Classical AdS String Dynamics In collaboration with Ines Aniceto, Kewang Jin Outline The polygon problem Classical string solutions: spiky strings Spikes as sinh-gordon solitons AdS string ti as a σ-model

More information

Wilson loops and amplitudes in N=4 Super Yang-Mills

Wilson loops and amplitudes in N=4 Super Yang-Mills Wilson loops and amplitudes in N=4 Super Yang-Mills Vittorio Del Duca INFN Frascati 7 March 2011 N=4 Super Yang-Mills maximal supersymmetric theory (without gravity) conformally invariant, β fn. = 0 spin

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

S Leurent, V. Kazakov. 6 July 2010

S Leurent, V. Kazakov. 6 July 2010 NLIE for SU(N) SU(N) Principal Chiral Field via Hirota dynamics S Leurent, V. Kazakov 6 July 2010 1 Thermodynaamic Bethe Ansatz (TBA) and Y -system Ground state energy Excited states 2 3 Principal Chiral

More information

Amplitudes & Wilson Loops at weak & strong coupling

Amplitudes & Wilson Loops at weak & strong coupling Amplitudes & Wilson Loops at weak & strong coupling David Skinner - Perimeter Institute Caltech - 29 th March 2012 N=4 SYM, 35 years a!er Twistor space is CP 3, described by co-ords It carries a natural

More information

arxiv: v2 [hep-th] 23 Mar 2010

arxiv: v2 [hep-th] 23 Mar 2010 Y-system for Scattering Amplitudes Luis F. Alday a, Juan Maldacena a, Amit Sever b and Pedro Vieira b a School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA. alday,malda@ias.edu

More information

Numerics and strong coupling results in the planar AdS/CFT correspondence. Based on: Á. Hegedűs, J. Konczer: arxiv:

Numerics and strong coupling results in the planar AdS/CFT correspondence. Based on: Á. Hegedűs, J. Konczer: arxiv: Numerics and strong coupling results in the planar AdS/CFT correspondence Based on: Á. Hegedűs, J. Konczer: arxiv:1604.02346 Outline Introduction : planar AdS/CFT spectral problem From integrability to

More information

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF MSYM amplitudes in the high-energy limit Vittorio Del Duca INFN LNF Gauge theory and String theory Zürich 2 July 2008 In principio erat Bern-Dixon-Smirnov ansatz... an ansatz for MHV amplitudes in N=4

More information

Continuum limit of fishnet graphs and AdS sigma model

Continuum limit of fishnet graphs and AdS sigma model Continuum limit of fishnet graphs and AdS sigma model Benjamin Basso LPTENS 15th Workshop on Non-Perturbative QCD, IAP, Paris, June 2018 based on work done in collaboration with De-liang Zhong Motivation

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

1 What s the big deal?

1 What s the big deal? This note is written for a talk given at the graduate student seminar, titled how to solve quantum mechanics with x 4 potential. What s the big deal? The subject of interest is quantum mechanics in an

More information

The Steinmann-Assisted Bootstrap at Five Loops

The Steinmann-Assisted Bootstrap at Five Loops The Steinmann-Assisted Bootstrap at Five Loops Lance Dixon (SLAC) S. Caron-Huot, LD, M. von Hippel, A. McLeod, 1609.00669 New Formulations for Scattering Amplitudes LMU, Munich 5 Sept., 2016 Hexagon function

More information

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Based on arxiv:1201.2635v1 and on-going work With C. Ahn, D. Bombardelli and B-H. Lee February 21, 2012 Table of contents 1 One parameter generalization

More information

Spectrum of Holographic Wilson Loops

Spectrum of Holographic Wilson Loops Spectrum of Holographic Wilson Loops Leopoldo Pando Zayas University of Michigan Continuous Advances in QCD 2011 University of Minnesota Based on arxiv:1101.5145 Alberto Faraggi and LPZ Work in Progress,

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Seminar in Wigner Research Centre for Physics Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Introduction - Old aspects of String theory - AdS/CFT and its Integrability String non-linear sigma

More information

Wilson loops and amplitudes in N=4 Super Yang-Mills

Wilson loops and amplitudes in N=4 Super Yang-Mills Wilson loops and amplitudes in N=4 Super Yang-Mills Vittorio Del Duca INFN LNF TH-LPCC CERN 8 August 2011 N=4 Super Yang-Mills maximal supersymmetric theory (without gravity) conformally invariant, β fn.

More information

Duality between Wilson Loops and Scattering Amplitudes in QCD

Duality between Wilson Loops and Scattering Amplitudes in QCD Duality between Wilson Loops and Scattering Amplitudes in QCD by Yuri Makeenko (ITEP, Moscow) Based on: Y. M., Poul Olesen Phys. Rev. Lett. 12, 7162 (29) [arxiv:81.4778 [hep-th]] arxiv:93.4114 [hep-th]

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

August 2008 Solitons and AdS string solutions 2

August 2008 Solitons and AdS string solutions 2 * In collaboration with Kewang Jin, Chrysostomos Kalousios and AnastasiaVolovich. Outline Classical string solutions: spiky strings Spikes as sinh Gordon solitons AdS string as a σ model Inverse scattering

More information

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou 1412.3763 w/ Drummond,Spradlin 1612.08976 w/ Dixon,Drummond,Harrington,McLeod,Spradlin + in progress w/ Caron-Huot,Dixon,McLeod,von

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA The Mirror TBA Through the Looking-Glass, and, What Alice Found There Gleb Arutyunov Institute for Theoretical Physics, Utrecht University Lorentz Center, Leiden, 12 April 2010 Summary of the mirror TBA

More information

AdS/CFT duality, spin chains and 2d effective actions

AdS/CFT duality, spin chains and 2d effective actions AdS/CFT duality, spin chains and 2d effective actions R. Roiban, A. Tirziu and A. A. Tseytlin Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz type effective 2-d actions, hep-th/0604199 also talks

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Finite temperature form factors in the free Majorana theory

Finite temperature form factors in the free Majorana theory Finite temperature form factors in the free Majorana theory Benjamin Doyon Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK supported by EPSRC postdoctoral fellowship hep-th/0506105

More information

AdS 6 /CFT 5 in Type IIB

AdS 6 /CFT 5 in Type IIB AdS 6 /CFT 5 in Type IIB Part II: Dualities, tests and applications Christoph Uhlemann UCLA Strings, Branes and Gauge Theories APCTP, July 2018 arxiv: 1606.01254, 1611.09411, 1703.08186, 1705.01561, 1706.00433,

More information

Exact Half-BPS Solutions in Type IIB and M-theory

Exact Half-BPS Solutions in Type IIB and M-theory Exact Half-BPS Solutions in Type IIB and M-theory, John Estes, Michael Gutperle Amsterdam 2008 Exact half-bps Type IIB interface solutions I, Local solutions and supersymmetric Janus, arxiv:0705.0022 Exact

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

TESTING ADS/CFT. John H. Schwarz STRINGS 2003

TESTING ADS/CFT. John H. Schwarz STRINGS 2003 TESTING ADS/CFT John H. Schwarz STRINGS 2003 July 6, 2003 1 INTRODUCTION During the past few years 1 Blau et al. constructed a maximally supersymmetric plane-wave background of type IIB string theory as

More information

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit PACIFIC 2015 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12-19, 2015, Moorea, French Polynesia Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

Y-system for the Spectrum of Planar AdS/CFT: News and Checks

Y-system for the Spectrum of Planar AdS/CFT: News and Checks -,,,,, Y-system for the Spectrum of Planar AdS/CFT: News and Checks Vladimir Kazakov (ENS, Paris) Collaborations with N.Gromov, A.Kozak, S.Leurent, Z.Tsuboi and P.Vieira Outline Integrability for QFT in

More information

Master Symmetry and Wilson Loops in AdS/CFT

Master Symmetry and Wilson Loops in AdS/CFT Master Symmetry and Wilson Loops in AdS/CFT Florian Loebbert Humboldt University Berlin Phys.Rev. D94 (2016), arxiv: 1606.04104 Nucl.Phys. B916 (2017), arxiv: 1610.01161 with Thomas Klose and Hagen Münkler

More information

Cluster Algebras, Steinmann Relations, and the Lie Cobracket in planar N = 4 sym

Cluster Algebras, Steinmann Relations, and the Lie Cobracket in planar N = 4 sym Steinmann Relations, and in sym (Niels Bohr Institute) Galileo Galilei Institute November 8, 2018 Based on work in collaboration with John Golden 1810.12181, 190x.xxxxx Outline Planar N = 4 supersymmetric

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Integrability of spectrum of N=4 SYM theory

Integrability of spectrum of N=4 SYM theory Todai/Riken joint workshop on Super Yang-Mills, solvable systems and related subjects University of Tokyo, October 23, 2013 Integrability of spectrum of N=4 SYM theory Vladimir Kazakov (ENS, Paris) Collaborations

More information

Nikolay Gromov. Based on

Nikolay Gromov. Based on Nikolay Gromov Based on N. G., V.Kazakov, S.Leurent, D.Volin 1305.1939,????.???? N. G., F. Levkovich-Maslyuk, G. Sizov, S.Valatka????.???? A. Cavaglia, D. Fioravanti, N.G, R.Tateo????.???? December, 2013

More information

Twistors, amplitudes and gravity

Twistors, amplitudes and gravity Twistors, amplitudes and gravity From twistor strings to quantum gravity? L.J.Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk LQG, Zakopane 4/3/2010 Based on JHEP10(2005)009 (hep-th/0507269),

More information

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev Four-point functions in the AdS/CFT correspondence: Old and new facts Emery Sokatchev Laboratoire d Annecy-le-Vieux de Physique Théorique LAPTH Annecy, France 1 I. The early AdS/CFT correspondence The

More information

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants ddd (KIAS) USTC 26 Sep 2013 Base on: H. Kim, J. Park, ZLW and P. Yi, JHEP 1109 (2011) 079 S.-J. Lee, ZLW and P. Yi, JHEP 1207 (2012) 169

More information

Bootstrapping the three-loop hexagon

Bootstrapping the three-loop hexagon CERN PH TH/2011/189 SLAC PUB 14528 LAPTH-029/11 HU-EP-11-38 NSF-KITP-11-176 Bootstrapping the three-loop hexagon Lance J. Dixon (1,2), James M. Drummond (1,3) and Johannes M. Henn (4,5) (1) PH-TH Division,

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

Scaling and integrability from AdS 5 S 5

Scaling and integrability from AdS 5 S 5 Scaling and integrability from AdS 5 S 5 Riccardo Ricci Imperial College London DAMTP Cambridge 14th October Work in collaboration with S. Giombi, R.Roiban, A. Tseytlin and C.Vergu Outline Introduction

More information

arxiv: v2 [hep-th] 29 May 2014

arxiv: v2 [hep-th] 29 May 2014 Prepared for submission to JHEP DESY 14-057 Wilson loop OPE, analytic continuation and multi-regge limit arxiv:1404.6506v hep-th] 9 May 014 Yasuyuki Hatsuda DESY Theory Group, DESY Hamburg, Notkestrasse

More information

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Yoshiyuki Nakagawa Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku,

More information

Near BPS Wilson loop in AdS/CFT Correspondence

Near BPS Wilson loop in AdS/CFT Correspondence Near BPS Wilson loop in AdS/CFT Correspondence Chong-Sun Chu Durham University, UK Based on paper arxiv:0708.0797[hep-th] written in colaboration with Dimitrios Giataganas Talk given at National Chiao-Tung

More information

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works Introduction AdS/CFT correspondence N = 4 SYM type IIB superstring Wilson loop area of world-sheet Wilson loop + heavy local operator area of deformed world-sheet Zarembo s solution (1/2 BPS Wilson Loop)

More information

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute THE Secret Life OF SCATTERING AMPLITUDES based on work with Lionel Mason and with Mat Bullimore David Skinner - Perimeter Institute Kavli IPMU - 21 st May 2012 { Scattering amplitudes are quantum mechanical

More information

Superstring in the plane-wave background with RR-flux as a conformal field theory

Superstring in the plane-wave background with RR-flux as a conformal field theory 0th December, 008 At Towards New Developments of QFT and Strings, RIKEN Superstring in the plane-wave background with RR-flux as a conformal field theory Naoto Yokoi Institute of Physics, University of

More information

8.821 F2008 Lecture 18: Wilson Loops

8.821 F2008 Lecture 18: Wilson Loops 8.821 F2008 Lecture 18: Wilson Loops Lecturer: McGreevy Scribe: Koushik Balasubramanian Decemebr 28, 2008 1 Minimum Surfaces The expectation value of Wilson loop operators W [C] in the CFT can be computed

More information

Bremsstrahlung function for ABJM theory based on work in progress with L. Griguolo, M. Preti and D. Seminara

Bremsstrahlung function for ABJM theory based on work in progress with L. Griguolo, M. Preti and D. Seminara Bremsstrahlung function for ABJM theory based on work in progress with L. Griguolo, M. Preti and D. Seminara Lorenzo Bianchi Universität Hamburg March 3 rd,2017. YRISW, Dublin Lorenzo Bianchi (HH) Bremsstrahlung

More information

Solving the AdS/CFT Y-system

Solving the AdS/CFT Y-system Solving the AdS/CFT Y-system Dmytro Volin Nordita, Stockholm IHP, 2011 1110.0562 N.Gromov, V.Kazakov, S.Leurent. D.V. Setup: = IIB, AdS 5 xs 5 0 This is a talk about the spectral problem: Conformal dimension

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

Non-perturbative effects in ABJM theory

Non-perturbative effects in ABJM theory October 9, 2015 Non-perturbative effects in ABJM theory 1 / 43 Outline 1. Non-perturbative effects 1.1 General aspects 1.2 Non-perturbative aspects of string theory 1.3 Non-perturbative effects in M-theory

More information

Exact spectral equations in planar N=4 SYM theory

Exact spectral equations in planar N=4 SYM theory Euler Symposium on Theoretical and Mathematical Physics Euler International Mathematical Institute, St. Petersburg, July 12-17, 2013 Exact spectral equations in planar N=4 SYM theory Vladimir Kazakov (ENS,

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Conformal blocks in nonrational CFTs with c 1

Conformal blocks in nonrational CFTs with c 1 Conformal blocks in nonrational CFTs with c 1 Eveliina Peltola Université de Genève Section de Mathématiques < eveliina.peltola@unige.ch > March 15th 2018 Based on various joint works with Steven M. Flores,

More information

arxiv: v1 [hep-th] 25 Apr 2011

arxiv: v1 [hep-th] 25 Apr 2011 DESY--05 Collinear and Regge behavior of 4 MHV amplitude in N = 4 super Yang-Mills theory J. Bartels, L. N. Lipatov, and A. Prygarin arxiv:04.4709v [hep-th] 5 Apr 0 II. Institute of Theoretical Physics,

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

New open string solutions in AdS 5

New open string solutions in AdS 5 Preprint typeset in JHEP style - PAPER VERSION New open string solutions in AdS 5 arxiv:0804.3438v1 [hep-th] Apr 008 R. Ishizeki, M. Kruczenski and A. Tirziu Department of Physics, Purdue University, 55

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Antenna on Null Polygon ABJM Wilson Loop

Antenna on Null Polygon ABJM Wilson Loop Antenna on Null Polygon ABJM Wilson Loop Soo-Jong Rey Seoul National University, Seoul KOREA Institute of Basic Sciences, Daejeon KOREA Scattering Amplitudes at Hong Kong IAS November 21, 2014 Soo-Jong

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010 N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR Silvia Penati Perugia, 25/6/2010 Motivations AdS 4 /CFT 3 correspondence states that the strong coupling dynamics of a N = 6 Chern-Simons theory

More information

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Instanton effective action in - background and D3/D(-1)-brane system in R-R background Instanton effective action in - background and D3/D(-1)-brane system in R-R background Speaker : Takuya Saka (Tokyo Tech.) Collaboration with Katsushi Ito, Shin Sasaki (Tokyo Tech.) And Hiroaki Nakajima

More information

Progress in understanding quantum spectrum of AdS 5 S 5 superstring

Progress in understanding quantum spectrum of AdS 5 S 5 superstring Progress in understanding quantum spectrum of AdS 5 S 5 superstring Arkady Tseytlin R. Roiban, AT, arxiv:0906.494, arxiv:0.09 M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arxiv:03.570 M. Beccaria,

More information

A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon

A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon Georgios Papathanasiou Laboratoire d Annecy-le-Vieux de Physique Théorique & CERN Humboldt-Universität zu Berlin March 6, 2015

More information

On the Scattering Amplitude of Super-Chern-Simons Theory

On the Scattering Amplitude of Super-Chern-Simons Theory On the Scattering Amplitude of Super-Chern-Simons Theory Sangmin Lee University of Seoul [SL, 1007.4772, Phys.Rev.Lett.105,151603(2010)] + work in collaboration with Yoon Pyo Hong, Eunkyung Koh (KIAS),

More information

A supermatrix model for ABJM theory

A supermatrix model for ABJM theory A supermatrix model for ABJM theory Nadav Drukker Humboldt Universität zu Berlin Based on arxiv:0912.3006: and arxiv:0909.4559: arxiv:0912.3974: N.D and D. Trancanelli A. Kapustin, B. Willett, I. Yaakov

More information

Anomalous Strong Coupling

Anomalous Strong Coupling Simons Center for Geometry and Physics, Stony Brook based on [Brenno Carlini Vallilo, LM, arxiv:1102.1219 [hep-th] ] for a pedagogical review, [LM, arxiv:1104.2604][hep-th] ] XI Workshop on Nonperturbative

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Gauge/gravity duality: an overview. Z. Bajnok

Gauge/gravity duality: an overview. Z. Bajnok Conference of the Middle European Cooperation in Statistical Physics, MECO37, March 18-22, 2012, Tatranské Matliare, Slovak Republik Gauge/gravity duality: an overview Z. Bajnok Theoretical Physics Research

More information

Short spinning strings and AdS 5 S 5 spectrum

Short spinning strings and AdS 5 S 5 spectrum Short spinning strings and AdS 5 S 5 spectrum Arkady Tseytlin R. Roiban, AT, arxiv:0906.4294, arxiv:02.209 M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arxiv:203.570 70-s: origin of string theory

More information

SUPERCONFORMAL FIELD THEORIES. John H. Schwarz. Abdus Salam ICTP 10 November 2010

SUPERCONFORMAL FIELD THEORIES. John H. Schwarz. Abdus Salam ICTP 10 November 2010 SUPERCONFORMAL FIELD THEORIES John H. Schwarz Abdus Salam ICTP 10 November 2010 Introduction One reason that superconformal field theories are particularly interesting is their role in AdS/CFT duality.

More information

On Elliptic String Solutions in AdS 3 and ds 3

On Elliptic String Solutions in AdS 3 and ds 3 Prepared for submission to JHEP On Elliptic String Solutions in AdS 3 and ds 3 arxiv:1605.0390v1 [hep-th] 1 May 016 Ioannis Bakas and Georgios Pastras Department of Physics, School of Applied Mathematics

More information

Towards solution of string theory in AdS3 x S 3

Towards solution of string theory in AdS3 x S 3 Towards solution of string theory in AdS3 x S 3 Arkady Tseytlin based on work with Ben Hoare: arxiv:1303.1037, 1304.4099 Introduction / Review S-matrix for string in AdS3 x S3 x T4 with RR and NSNS flux

More information

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY JHEP 1406 (2014) 096, Phys.Rev. D90 (2014) 4, 041903 with Shouvik Datta ( IISc), Michael Ferlaino, S. Prem Kumar (Swansea U. ) JHEP 1504 (2015) 041 with

More information