Sta$s$cal Op$miza$on for Big Data. Zhaoran Wang and Han Liu (Joint work with Tong Zhang)

Size: px
Start display at page:

Download "Sta$s$cal Op$miza$on for Big Data. Zhaoran Wang and Han Liu (Joint work with Tong Zhang)"

Transcription

1 Sta$s$cal Op$miza$on for Big Data Zhaoran Wang and Han Liu (Joint work with Tong Zhang)

2 Big Data Movement Big Data = Massive Data- size + High Dimensional + Complex Structural + Highly Noisy Big Data give rise to Big Models 2

3 Challenges of Big Models Ques%on! How to effecbvely fit these Big Models? 3

4 Challenges of Big Models Nonconvex & Complicated = ( ; {,..., }) {z } EsBmator Nonconvex & Massive Data- size Infinite- dimensional 4

5 Challenges of Big Models Current Solu%on! General- purposed Finite- dimensional Convex OpBmizaBon Methods 5

6 Challenges of Big Models Our Mission! OpBmizaBon Methods Tailored to StaBsBcal Models 6

7 Challenges of Big Models In this talk! Taming Nonconvexity 7

8 Key to Taming Nonconvexity ExploraBon of Local Convex Region! Key: Good IniBalizaBon 8

9 Nonconvexity Penalized M- EsBmator R L( )+P ( ) 9

10 Nonconvexity Loss FuncBon R L( )+P ( ) Penalty : RegularizaBon Parameter 10

11 Nonconvexity Convex Loss FuncBon Least Squares L( )=! 11

12 Nonconvexity Nonconvex Loss FuncBon Semiparametric EllipBcal Design Loss L( )=(,! ) (, ) Semiparametric Covariance EsBmator 12

13 Nonconvex Loss Func$on Robustness Gaussian z x y (, ) 13

14 z Nonconvex Loss Func$on Robustness Beyond Gaussian x 2 y (, ) 14

15 z Nonconvex Loss Func$on Robustness Beyond Gaussian y x (, ) 15

16 Nonconvex Penalty Oracle Property 4 3 MCP l 1 SCAD Introduces Bias pλ(βj) 2 1 Corrects Bias Oracle Property β j 16

17 Nonconvex Penalty Oracle Property R L( )+P ( ) = ( ) ( ) L( ) As if we are solving a low- dimensional problem knowing the true support. 17

18 Challenge of Nonconvexity Global SoluBon Intractable to Compute! Ques%on! Good Local SoluBon? 18

19 Challenge of Nonconvexity Loss FuncBon R L( )+P ( ) Penalty : RegularizaBon Parameter 19

20 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Randomness L( )=L( ; {,..., }) {z }! Nonconvex in the Worst Case 20

21 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Randomness L( )=L( ; {,..., }) {z } 21

22 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind! Randomness L( )=L( ; {,..., }) {z } Provably Strongly Convex with High Probability for Sparse 22

23 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Randomness L( )=L( ; {,..., }) {z } 23

24 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Loss FuncBon R L( )+P ( ) Penalty : RegularizaBon Parameter 24

25 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Concave P ( )=Q ( )+ k k 1 Nonconvex 25

26 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind P ( )=Q ( )+ k k 1 pλ(βj) MCP l 1 SCAD β j qλ(βj) MCP SCAD β j 26

27 Revisi$ng Nonconvexity with Sta(s(cal Model in Mind Strongly Convex Concave L( )+P ( ) = L( )+Q ( )+ k k 1 {z } Strongly Convex! with High Probability for Sparse 27

28 Key to Taming Nonconvexity Local Convex Region: Sparse Set : {z } = ( ) 28

29 Key to Taming Nonconvexity Local Convex Region: Sparse Set! Key: Good IniBalizaBon and then 29

30 Key to Taming Nonconvexity Walk in the Local Convex Region : {z } = ( ) 30

31 Key to Taming Nonconvexity Walk in the Local Convex Region : {z } = ( ) 31

32 Key to Taming Nonconvexity Walk in the Local Convex Region : {z } = ( ) 32

33 Taming Nonconvexity Good IniBalizaBon! Sparse Approximate KKT CondiBon with Precision / 33

34 Approximate KKT Condi$on 3 Approx. Local SoluBon 2 Exact Local SoluBon 1 { = / O

35

36 Taming Nonconvexity Is Zero a Good IniBalizaBon?! Sparse Approximate KKT CondiBon For Large 36

37 Taming Nonconvexity Local SoluBon for Larger! Sparse Approximate KKT CondiBon For Slightly Smaller 37

38 Taming Nonconvexity Path Following! > >...> >...> = Sufficiently Large Zero is the Exact SoluBon Target RegularizaBon Parameter 38

39 Taming Nonconvexity

40 Taming Nonconvexity Path Following! > >...> >...> = {z } + / = (, ) 40

41 Taming Nonconvexity Path Following For each + R ( ; )+ 41

42 Taming Nonconvexity Path Following + R ( ; )+ QuadraBc ApproximaBon of L( )+Q ( ) 42

43 Taming Nonconvexity Strongly Convex Concave L( )+P ( )=L( )+Q ( )+ {z } Strongly Convex! with High Probability for Sparse 43

44 Taming Nonconvexity Path Following + R ( ; )+ So\- thresholding 44

45 Empirical Results True PosiBve False PosiBve 45

46 Computa$onal Results 1. IteraBon Complexity ( / ) OpBmal No Be_er First- order Method Even for Convex Problems 2. Uniqueness of the A_ained Local! SoluBon Is it Good? 46

47 Sta$s$cal Results 1. Rate of Convergence / + > < For En%re Regulariza%on Path 47

48 Sta$s$cal Results 1. Rate of Convergence / + / > / < / For = = / 48

49 Sta$s$cal Results 1. Rate of Convergence / + / Oracle Lasso Much Sharper For = = / 49

50 Sta$s$cal Results 2. Exact Support Recovery Required Signal Strength > /, ( ) Then ( )= 50

51 Sta$s$cal Results 2. Exact Support Recovery Required Signal Strength > /, ( ) Weakest Requirement Possible Empirical Results Explained 51

52 Sta$s$cal Results 2. Exact Support Recovery Required Signal Strength > /, ( ) Weakest Requirement Possible Empirical Results Explained 52

53 Take Home Message 1. Taming nonconvexity by exploring the stabsbcal model;! 2. Local convex region and smart inibalizabon are the keys;! 3. Nonconvex penalized M- esbmators: Path- following solves all problems. 53

Nonconvex penalties: Signal-to-noise ratio and algorithms

Nonconvex penalties: Signal-to-noise ratio and algorithms Nonconvex penalties: Signal-to-noise ratio and algorithms Patrick Breheny March 21 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/22 Introduction In today s lecture, we will return to nonconvex

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

A UNIFIED APPROACH TO MODEL SELECTION AND SPARS. REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009)

A UNIFIED APPROACH TO MODEL SELECTION AND SPARS. REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009) A UNIFIED APPROACH TO MODEL SELECTION AND SPARSE RECOVERY USING REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009) Mar. 19. 2010 Outline 1 2 Sideline information Notations

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo Regulatory Inferece from Gene Expression CMSC858P Spring 2012 Hector Corrada Bravo 2 Graphical Model Let y be a vector- valued random variable Suppose some condi8onal independence proper8es hold for some

More information

Estimators based on non-convex programs: Statistical and computational guarantees

Estimators based on non-convex programs: Statistical and computational guarantees Estimators based on non-convex programs: Statistical and computational guarantees Martin Wainwright UC Berkeley Statistics and EECS Based on joint work with: Po-Ling Loh (UC Berkeley) Martin Wainwright

More information

Sparse Learning and Distributed PCA. Jianqing Fan

Sparse Learning and Distributed PCA. Jianqing Fan w/ control of statistical errors and computing resources Jianqing Fan Princeton University Coauthors Han Liu Qiang Sun Tong Zhang Dong Wang Kaizheng Wang Ziwei Zhu Outline Computational Resources and Statistical

More information

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim Gene Regulatory Networks II 02-710 Computa.onal Genomics Seyoung Kim Goal: Discover Structure and Func;on of Complex systems in the Cell Identify the different regulators and their target genes that are

More information

Regression.

Regression. Regression www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts linear regression RMSE, MAE, and R-square logistic regression convex functions and sets

More information

Ultra High Dimensional Variable Selection with Endogenous Variables

Ultra High Dimensional Variable Selection with Endogenous Variables 1 / 39 Ultra High Dimensional Variable Selection with Endogenous Variables Yuan Liao Princeton University Joint work with Jianqing Fan Job Market Talk January, 2012 2 / 39 Outline 1 Examples of Ultra High

More information

Sequential Feature Explanations for Anomaly Detection

Sequential Feature Explanations for Anomaly Detection Sequential Feature Explanations for Anomaly Detection Md Amran Siddiqui, Alan Fern, Thomas G. Die8erich and Weng-Keen Wong School of EECS Oregon State University Anomaly Detection Anomalies : points that

More information

Theoretical results for lasso, MCP, and SCAD

Theoretical results for lasso, MCP, and SCAD Theoretical results for lasso, MCP, and SCAD Patrick Breheny March 2 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/23 Introduction There is an enormous body of literature concerning theoretical

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 1 EvaluaBon

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

Indiana University, Fall 2014 P309 Intermediate Physics Lab. Lecture 1: Experimental UncertainBes

Indiana University, Fall 2014 P309 Intermediate Physics Lab. Lecture 1: Experimental UncertainBes Indiana University, Fall 2014 P309 Intermediate Physics Lab Lecture 1: Experimental UncertainBes Reading: Bevington & Robinson, Chapters 1-3 Handouts from hmp://physics.indiana.edu/~courses/p309/f14/ Experimental

More information

Lecture 24 May 30, 2018

Lecture 24 May 30, 2018 Stats 3C: Theory of Statistics Spring 28 Lecture 24 May 3, 28 Prof. Emmanuel Candes Scribe: Martin J. Zhang, Jun Yan, Can Wang, and E. Candes Outline Agenda: High-dimensional Statistical Estimation. Lasso

More information

Recita,on: Loss, Regulariza,on, and Dual*

Recita,on: Loss, Regulariza,on, and Dual* 10-701 Recita,on: Loss, Regulariza,on, and Dual* Jay- Yoon Lee 02/26/2015 *Adopted figures from 10725 lecture slides and from the book Elements of Sta,s,cal Learning Loss and Regulariza,on Op,miza,on problem

More information

Maximum Likelihood Estimation for Factor Analysis. Yuan Liao

Maximum Likelihood Estimation for Factor Analysis. Yuan Liao Maximum Likelihood Estimation for Factor Analysis Yuan Liao University of Maryland Joint worth Jushan Bai June 15, 2013 High Dim. Factor Model y it = λ i f t + u it i N,t f t : common factor λ i : loading

More information

GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING. BY HONGCHENG LIU 1,TAO YAO 1 AND RUNZE LI 2 Pennsylvania State University

GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING. BY HONGCHENG LIU 1,TAO YAO 1 AND RUNZE LI 2 Pennsylvania State University The Annals of Statistics 2016, Vol. 44, No. 2, 629 659 DOI: 10.1214/15-AOS1380 Institute of Mathematical Statistics, 2016 GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING BY HONGCHENG LIU

More information

Group exponential penalties for bi-level variable selection

Group exponential penalties for bi-level variable selection for bi-level variable selection Department of Biostatistics Department of Statistics University of Kentucky July 31, 2011 Introduction In regression, variables can often be thought of as grouped: Indicator

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas

Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas Department of Mathematics Department of Statistical Science Cornell University London, January 7, 2016 Joint work

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 1 EvaluaBon

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

Lecture 3: Minimizing Large Sums. Peter Richtárik

Lecture 3: Minimizing Large Sums. Peter Richtárik Lecture 3: Minimizing Large Sums Peter Richtárik Graduate School in Systems, Op@miza@on, Control and Networks Belgium 2015 Mo@va@on: Machine Learning & Empirical Risk Minimiza@on Training Linear Predictors

More information

TDT 4173 Machine Learning and Case Based Reasoning. Helge Langseth og Agnar Aamodt. NTNU IDI Seksjon for intelligente systemer

TDT 4173 Machine Learning and Case Based Reasoning. Helge Langseth og Agnar Aamodt. NTNU IDI Seksjon for intelligente systemer TDT 4173 Machine Learning and Case Based Reasoning Lecture 6 Support Vector Machines. Ensemble Methods Helge Langseth og Agnar Aamodt NTNU IDI Seksjon for intelligente systemer Outline 1 Wrap-up from last

More information

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract Journal of Data Science,17(1). P. 145-160,2019 DOI:10.6339/JDS.201901_17(1).0007 WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION Wei Xiong *, Maozai Tian 2 1 School of Statistics, University of

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Sparse Covariance Matrix Estimation with Eigenvalue Constraints

Sparse Covariance Matrix Estimation with Eigenvalue Constraints Sparse Covariance Matrix Estimation with Eigenvalue Constraints Han Liu and Lie Wang 2 and Tuo Zhao 3 Department of Operations Research and Financial Engineering, Princeton University 2 Department of Mathematics,

More information

Robust high-dimensional linear regression: A statistical perspective

Robust high-dimensional linear regression: A statistical perspective Robust high-dimensional linear regression: A statistical perspective Po-Ling Loh University of Wisconsin - Madison Departments of ECE & Statistics STOC workshop on robustness and nonconvexity Montreal,

More information

arxiv: v1 [math.st] 24 Mar 2016

arxiv: v1 [math.st] 24 Mar 2016 The Annals of Statistics 2016, Vol. 44, No. 2, 629 659 DOI: 10.1214/15-AOS1380 c Institute of Mathematical Statistics, 2016 arxiv:1603.07531v1 [math.st] 24 Mar 2016 GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED

More information

Semi-Penalized Inference with Direct FDR Control

Semi-Penalized Inference with Direct FDR Control Jian Huang University of Iowa April 4, 2016 The problem Consider the linear regression model y = p x jβ j + ε, (1) j=1 where y IR n, x j IR n, ε IR n, and β j is the jth regression coefficient, Here p

More information

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler + Machine Learning and Data Mining Linear regression Prof. Alexander Ihler Supervised learning Notation Features x Targets y Predictions ŷ Parameters θ Learning algorithm Program ( Learner ) Change µ Improve

More information

Variable Selection for Highly Correlated Predictors

Variable Selection for Highly Correlated Predictors Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu Department of Statistics, University of Illinois at Urbana-Champaign WHOA-PSI, Aug, 2017 St. Louis, Missouri 1 / 30 Background Variable

More information

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Mathurin Massias https://mathurinm.github.io INRIA Saclay Joint work with: Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Op#mal convex op#miza#on under Tsybakov noise through connec#ons to ac#ve learning

Op#mal convex op#miza#on under Tsybakov noise through connec#ons to ac#ve learning Op#mal convex op#miza#on under Tsybakov noise through connec#ons to ac#ve learning Aar$ Singh Joint work with: Aaditya Ramdas Connec#ons between convex op#miza#on and ac#ve learning (a formal reduc#on)

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University SMAC, November 6, 2015 E. Christou, M. G. Akritas (PSU) SIQR

More information

Supplementary Material of A Novel Sparsity Measure for Tensor Recovery

Supplementary Material of A Novel Sparsity Measure for Tensor Recovery Supplementary Material of A Novel Sparsity Measure for Tensor Recovery Qian Zhao 1,2 Deyu Meng 1,2 Xu Kong 3 Qi Xie 1,2 Wenfei Cao 1,2 Yao Wang 1,2 Zongben Xu 1,2 1 School of Mathematics and Statistics,

More information

Tsybakov noise adap/ve margin- based ac/ve learning

Tsybakov noise adap/ve margin- based ac/ve learning Tsybakov noise adap/ve margin- based ac/ve learning Aar$ Singh A. Nico Habermann Associate Professor NIPS workshop on Learning Faster from Easy Data II Dec 11, 2015 Passive Learning Ac/ve Learning (X j,?)

More information

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010 Motivations Fan and Li (2001), Zou and Li (2008)

More information

Package HIMA. November 8, 2017

Package HIMA. November 8, 2017 Type Package Title High-Dimensional Mediation Analysis Version 1.0.5 Date 2017-11-05 Package HIMA November 8, 2017 Description Allows to estimate and test high-dimensional mediation effects based on sure

More information

Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation Accelerated Path-following Iterative Shrinage Thresholding Algorithm with Application to Semiparametric Graph Estimation Tuo Zhao Han Liu Abstract We propose an accelerated path-following iterative shrinage

More information

A Constructive Approach to L 0 Penalized Regression

A Constructive Approach to L 0 Penalized Regression Journal of Machine Learning Research 9 (208) -37 Submitted 4/7; Revised 6/8; Published 8/8 A Constructive Approach to L 0 Penalized Regression Jian Huang Department of Applied Mathematics The Hong Kong

More information

arxiv: v7 [stat.ml] 9 Feb 2017

arxiv: v7 [stat.ml] 9 Feb 2017 Submitted to the Annals of Applied Statistics arxiv: arxiv:141.7477 PATHWISE COORDINATE OPTIMIZATION FOR SPARSE LEARNING: ALGORITHM AND THEORY By Tuo Zhao, Han Liu and Tong Zhang Georgia Tech, Princeton

More information

Bias-free Sparse Regression with Guaranteed Consistency

Bias-free Sparse Regression with Guaranteed Consistency Bias-free Sparse Regression with Guaranteed Consistency Wotao Yin (UCLA Math) joint with: Stanley Osher, Ming Yan (UCLA) Feng Ruan, Jiechao Xiong, Yuan Yao (Peking U) UC Riverside, STATS Department March

More information

arxiv: v3 [stat.me] 8 Jun 2018

arxiv: v3 [stat.me] 8 Jun 2018 Between hard and soft thresholding: optimal iterative thresholding algorithms Haoyang Liu and Rina Foygel Barber arxiv:804.0884v3 [stat.me] 8 Jun 08 June, 08 Abstract Iterative thresholding algorithms

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

Robust estimation, efficiency, and Lasso debiasing

Robust estimation, efficiency, and Lasso debiasing Robust estimation, efficiency, and Lasso debiasing Po-Ling Loh University of Wisconsin - Madison Departments of ECE & Statistics WHOA-PSI workshop Washington University in St. Louis Aug 12, 2017 Po-Ling

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 1 Evalua:on

More information

STAD68: Machine Learning

STAD68: Machine Learning STAD68: Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 1 Evalua;on 3 Assignments worth 40%. Midterm worth 20%. Final

More information

Mul$ple Sequence Alignment Methods. Tandy Warnow Departments of Bioengineering and Computer Science h?p://tandy.cs.illinois.edu

Mul$ple Sequence Alignment Methods. Tandy Warnow Departments of Bioengineering and Computer Science h?p://tandy.cs.illinois.edu Mul$ple Sequence Alignment Methods Tandy Warnow Departments of Bioengineering and Computer Science h?p://tandy.cs.illinois.edu Species Tree Orangutan Gorilla Chimpanzee Human From the Tree of the Life

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

A General Framework for High-Dimensional Inference and Multiple Testing

A General Framework for High-Dimensional Inference and Multiple Testing A General Framework for High-Dimensional Inference and Multiple Testing Yang Ning Department of Statistical Science Joint work with Han Liu 1 Overview Goal: Control false scientific discoveries in high-dimensional

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

Simple, Efficient and Neural Algorithms for Sparse Coding

Simple, Efficient and Neural Algorithms for Sparse Coding Simple, Efficient and Neural Algorithms for Sparse Coding Ankur Moitra (MIT) joint work with Sanjeev Arora, Rong Ge and Tengyu Ma B. A. Olshausen, D. J. Field. Emergence of simple- cell recepnve field

More information

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 6: Linear Regression Model with Regulariza@ons Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sec@ons of this course

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Feature selection with high-dimensional data: criteria and Proc. Procedures

Feature selection with high-dimensional data: criteria and Proc. Procedures Feature selection with high-dimensional data: criteria and Procedures Zehua Chen Department of Statistics & Applied Probability National University of Singapore Conference in Honour of Grace Wahba, June

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #3 Machine Learning Edward Y. Chang Edward Chang Founda'ons of LSMM 1 Edward Chang Foundations of LSMM 2 Machine Learning

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Parallelizing Gaussian Process Calcula1ons in R

Parallelizing Gaussian Process Calcula1ons in R Parallelizing Gaussian Process Calcula1ons in R Christopher Paciorek UC Berkeley Sta1s1cs Joint work with: Benjamin Lipshitz Wei Zhuo Prabhat Cari Kaufman Rollin Thomas UC Berkeley EECS (formerly) IBM

More information

CONTRIBUTIONS TO PENALIZED ESTIMATION. Sunyoung Shin

CONTRIBUTIONS TO PENALIZED ESTIMATION. Sunyoung Shin CONTRIBUTIONS TO PENALIZED ESTIMATION Sunyoung Shin A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

An interior-point stochastic approximation method and an L1-regularized delta rule

An interior-point stochastic approximation method and an L1-regularized delta rule Photograph from National Geographic, Sept 2008 An interior-point stochastic approximation method and an L1-regularized delta rule Peter Carbonetto, Mark Schmidt and Nando de Freitas University of British

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 9-10 - High-dimensional regression Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Recap from

More information

Quantile Regression for Analyzing Heterogeneity. in Ultra-high Dimension

Quantile Regression for Analyzing Heterogeneity. in Ultra-high Dimension Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension Lan Wang, Yichao Wu and Runze Li Abstract Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

High dimensional thresholded regression and shrinkage effect

High dimensional thresholded regression and shrinkage effect J. R. Statist. Soc. B (014) 76, Part 3, pp. 67 649 High dimensional thresholded regression and shrinkage effect Zemin Zheng, Yingying Fan and Jinchi Lv University of Southern California, Los Angeles, USA

More information

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Optimal Linear Estimation under Unknown Nonlinear Transform

Optimal Linear Estimation under Unknown Nonlinear Transform Optimal Linear Estimation under Unknown Nonlinear Transform Xinyang Yi The University of Texas at Austin yixy@utexas.edu Constantine Caramanis The University of Texas at Austin constantine@utexas.edu Zhaoran

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)

The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso) Electronic Journal of Statistics Vol. 0 (2010) ISSN: 1935-7524 The adaptive the thresholded Lasso for potentially misspecified models ( a lower bound for the Lasso) Sara van de Geer Peter Bühlmann Seminar

More information

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 Luke ZeElemoyer Slides adapted from Carlos Guestrin Predic5on of con5nuous variables Billionaire says: Wait, that s not what

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

STK4900/ Lecture 5. Program

STK4900/ Lecture 5. Program STK4900/9900 - Lecture 5 Program 1. Checking model assumptions Linearity Equal variances Normality Influential observations Importance of model assumptions 2. Selection of predictors Forward and backward

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Comparisons of penalized least squares. methods by simulations

Comparisons of penalized least squares. methods by simulations Comparisons of penalized least squares arxiv:1405.1796v1 [stat.co] 8 May 2014 methods by simulations Ke ZHANG, Fan YIN University of Science and Technology of China, Hefei 230026, China Shifeng XIONG Academy

More information

Scalable Subspace Clustering

Scalable Subspace Clustering Scalable Subspace Clustering René Vidal Center for Imaging Science, Laboratory for Computational Sensing and Robotics, Institute for Computational Medicine, Department of Biomedical Engineering, Johns

More information

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song Presenter: Jiwei Zhao Department of Statistics University of Wisconsin Madison April

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations

Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations Tong Zhang, Member, IEEE, 1 Abstract Given a large number of basis functions that can be potentially more than the number

More information

Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors Patrick Breheny Department of Biostatistics University of Iowa Jian Huang Department of Statistics

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators Electronic Journal of Statistics ISSN: 935-7524 arxiv: arxiv:503.0388 Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators Yuchen Zhang, Martin J. Wainwright

More information