Maximum Likelihood Estimation for Factor Analysis. Yuan Liao

Size: px
Start display at page:

Download "Maximum Likelihood Estimation for Factor Analysis. Yuan Liao"

Transcription

1 Maximum Likelihood Estimation for Factor Analysis Yuan Liao University of Maryland Joint worth Jushan Bai June 15, 2013

2 High Dim. Factor Model y it = λ i f t + u it i N,t f t : common factor λ i : loading u it : idiosyncratic component, correlated across i y it : is the only observable. Approx. factor model: Σ u = cov(u t ) is high-dimensional, non-diagonal

3 his talk 1 Estimate factors and loadings efficiently PC= argmin λi,f t i,t (y it λ i f t) 2 ignores cross-sec. hetero, corr. of u it 2 Estimate large covariance Σ u Key assumption: Sparsity 3 Understand the impact of large covariance estimation on statistical inference Improve efficiency, but technically challenging when N >

4 Maximum likelihood Estimation cov(y t ) = Λcov(f t )Λ + Σ u Suppose y t N (0,cov(y t )), Suppose cov(f t ) = I: identification, reduce # parameters log-likelihood: Bai and Li 2012 L(Λ,Σ u ) = 1 N log det(λλ + Σ u ) 1 N tr(s y(λλ + Σ u ) 1 ) Highly non-trivial: (1) highly nonlinear for Λ, (2) too many para. in Σ u

5 Estimating Σ u 1 Run SVD: S y = p j=1ˆλ jˆξj ˆξj = K j=1ˆλjˆξj ˆξj + p j=k +1ˆλ jˆξj ˆξj. 2 Compute p j=k +1ˆλ jˆξj ˆξj = (ˆrij ). 3 Apply (adaptive) thresholding (Cai and Liu, 11): Σ u = (s ij (ˆr ij )). s ij ( ): hard, soft, SCAD, adaptive Lasso,... Assume Σ u to be sparse, Fan, L, Mincheva (2013) showed: logn Σ u Σ u = O p (m N + m 1 logn N ) O p ( N ) finite-sample positive definite

6 Impact of large covariance estimation on inference Likelihood: 1 N log det(λλ + Σ u ) + 1 N tr(s y(λλ + Σ u ) 1 ) Incorporating covariance matrices often improves efficiency ˆθ = f(d,σ 1 u ), ˆθ 1 = f(d, Σ u ) (ˆθ θ 0 ) Gaussian Effect of estimating Σ u is negligible: (ˆθ ˆθ ) = A 1 (Σ 1 1 u Σ u )A 2 + o p (1) = o p (1)

7 Goal: to show A1 (Σ 1 1 u Σ u )A 2 = o p (1) Classical low dim. problems, consistency suffices Σ 1 1 u Σ u = o p (1), e.g., efficient GMM However, in high dimensions (N > ), Highly NON-trivial, even if Σ 1 1 u Σ u achieves the optimal rate, nearly root-. Optimal absolute converge is restrictive for inference when N > For efficient factor analysis, we need N Λ ( Σ 1 u Σ 1 u )Λ = o p (1) However, N Λ 2 Σ 1 u Σ 1 u O p ( N N 1 ) o p (1)

8 For inference in high-dimensional models, need to directly evaluate weighted convergence A1 ( Σ 1 u Σ 1 u )A 2 Intuition: averaged error converges faster weighted convergence A 1 (Σ 1 1 u Σ u )A 2 is faster than absolute convergence A 1 A 2 Σ 1 1 u Σ u. need sparsistency: with probability approaching one, If σ u,ij 0, ˆσ ij 0; If σ u,ij 0, ˆσ ij = 0

9 ˆΛ = argmin Λ log det(λλ + Σ u ) + tr(s y (ΛΛ + Σ u ) 1 ) heorem: j N, t, ˆft = argmin(y t ˆΛf t ) Σ 1 u (y t ˆΛf t ) ft (ˆλj λ j ) = 1 t=1f t u jt + o p (1) N(ˆft f t ) = 1 N N j=1ξ j u jt + o p (1) max j N λ j λ j = O p (m N max t ˆft f t = O p (m N logn logn + m N ) N + m N )(log) r N

10 Alternative: Penalized maximum likelihood Estimate Λ,Σ u simultaneously, max: 1 N log det(λλ +Σ u ) 1 N tr(s y(λλ +Σ u ) 1 ) w ij σ u,ij i j weight w ij : Lasso, adaptive lasso, SCAD, MCP... Still, technically highly non-trivial 1 N Λ ˆΛ 2 = o p (1), 1 N Σ u Σ u 2 = o p (1) Jushan and I spent months to prove this.

11 Numerical Examples

12 4 estimators are compared: PC: min i,t (y it λ i f t) 2 diag ML (Bai and Li 12): log det(λλ + diag(σ u )) tr(s y (ΛΛ + diag(σ u )) 1 ) two-step log det(λλ + Σ u ) tr(s y (ΛΛ + Σ u ) 1 ) penalized ML log det(λλ + Σ u ) tr(s y (ΛΛ + Σ u ) 1 ) i j w ij σ u,ij Algorithm: either EM (Bai and Li) or EM+Majorize minimize (Bien and ibshirani 11)

13 Penalized ML PCA DML γ = 1 γ = 5 N µ = 0.08 µ = 0.3 µ = 0.08 µ =

14 esting CAPM y it = α i + λ i f t + u it, H 0 : α i = 0, i Wald test c ˆα Σ 1 u ˆα, under H 0: Replacing with c ˆα Σ 1 u ˆα N d N (0,1). 2N Σ 1 u is difficult: ˆα (Σ 1 1 u Σ u )ˆα ˆα 2 Σ 1 1 u Σ u o p (1) 2N 2N N 1 1 N N =

15 Summary Factor analysis aking into account cross-sectional hetero. and corr. via Σ 1 u. Covariance estimation Estimating large error covariance is important for factor analysis and panel data models Effect of estimating covariance on inference is negligible, but tech. non-trivial

Theory and Applications of High Dimensional Covariance Matrix Estimation

Theory and Applications of High Dimensional Covariance Matrix Estimation 1 / 44 Theory and Applications of High Dimensional Covariance Matrix Estimation Yuan Liao Princeton University Joint work with Jianqing Fan and Martina Mincheva December 14, 2011 2 / 44 Outline 1 Applications

More information

High Dimensional Covariance and Precision Matrix Estimation

High Dimensional Covariance and Precision Matrix Estimation High Dimensional Covariance and Precision Matrix Estimation Wei Wang Washington University in St. Louis Thursday 23 rd February, 2017 Wei Wang (Washington University in St. Louis) High Dimensional Covariance

More information

Sparse inverse covariance estimation with the lasso

Sparse inverse covariance estimation with the lasso Sparse inverse covariance estimation with the lasso Jerome Friedman Trevor Hastie and Robert Tibshirani November 8, 2007 Abstract We consider the problem of estimating sparse graphs by a lasso penalty

More information

Ultra High Dimensional Variable Selection with Endogenous Variables

Ultra High Dimensional Variable Selection with Endogenous Variables 1 / 39 Ultra High Dimensional Variable Selection with Endogenous Variables Yuan Liao Princeton University Joint work with Jianqing Fan Job Market Talk January, 2012 2 / 39 Outline 1 Examples of Ultra High

More information

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

High-dimensional Covariance Estimation Based On Gaussian Graphical Models High-dimensional Covariance Estimation Based On Gaussian Graphical Models Shuheng Zhou, Philipp Rutimann, Min Xu and Peter Buhlmann February 3, 2012 Problem definition Want to estimate the covariance matrix

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Approaches to High-Dimensional Covariance and Precision Matrix Estimation

Approaches to High-Dimensional Covariance and Precision Matrix Estimation Approaches to High-Dimensional Covariance and Precision Matrix Estimation Jianqing Fan 1, Yuan Liao and Han Liu Department of Operations Research and Financial Engineering, Princeton University Bendheim

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Factor Analysis (10/2/13)

Factor Analysis (10/2/13) STA561: Probabilistic machine learning Factor Analysis (10/2/13) Lecturer: Barbara Engelhardt Scribes: Li Zhu, Fan Li, Ni Guan Factor Analysis Factor analysis is related to the mixture models we have studied.

More information

Large Covariance Estimation by Thresholding Principal Orthogonal Complements

Large Covariance Estimation by Thresholding Principal Orthogonal Complements Large Covariance Estimation by hresholding Principal Orthogonal Complements Jianqing Fan Yuan Liao Martina Mincheva Department of Operations Research and Financial Engineering, Princeton University Abstract

More information

Tuning Parameter Selection in Regularized Estimations of Large Covariance Matrices

Tuning Parameter Selection in Regularized Estimations of Large Covariance Matrices Tuning Parameter Selection in Regularized Estimations of Large Covariance Matrices arxiv:1308.3416v1 [stat.me] 15 Aug 2013 Yixin Fang 1, Binhuan Wang 1, and Yang Feng 2 1 New York University and 2 Columbia

More information

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan Lecture 3: Latent Variables Models and Learning with the EM Algorithm Sam Roweis Tuesday July25, 2006 Machine Learning Summer School, Taiwan Latent Variable Models What to do when a variable z is always

More information

Sparse Covariance Matrix Estimation with Eigenvalue Constraints

Sparse Covariance Matrix Estimation with Eigenvalue Constraints Sparse Covariance Matrix Estimation with Eigenvalue Constraints Han Liu and Lie Wang 2 and Tuo Zhao 3 Department of Operations Research and Financial Engineering, Princeton University 2 Department of Mathematics,

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

High Dimensional Inverse Covariate Matrix Estimation via Linear Programming

High Dimensional Inverse Covariate Matrix Estimation via Linear Programming High Dimensional Inverse Covariate Matrix Estimation via Linear Programming Ming Yuan October 24, 2011 Gaussian Graphical Model X = (X 1,..., X p ) indep. N(µ, Σ) Inverse covariance matrix Σ 1 = Ω = (ω

More information

Estimation of Graphical Models with Shape Restriction

Estimation of Graphical Models with Shape Restriction Estimation of Graphical Models with Shape Restriction BY KHAI X. CHIONG USC Dornsife INE, Department of Economics, University of Southern California, Los Angeles, California 989, U.S.A. kchiong@usc.edu

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 6 Jakub Mućk Econometrics of Panel Data Meeting # 6 1 / 36 Outline 1 The First-Difference (FD) estimator 2 Dynamic panel data models 3 The Anderson and Hsiao

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Sparse Permutation Invariant Covariance Estimation: Final Talk

Sparse Permutation Invariant Covariance Estimation: Final Talk Sparse Permutation Invariant Covariance Estimation: Final Talk David Prince Biostat 572 dprince3@uw.edu May 31, 2012 David Prince (UW) SPICE May 31, 2012 1 / 19 Electronic Journal of Statistics Vol. 2

More information

Sparse PCA in High Dimensions

Sparse PCA in High Dimensions Sparse PCA in High Dimensions Jing Lei, Department of Statistics, Carnegie Mellon Workshop on Big Data and Differential Privacy Simons Institute, Dec, 2013 (Based on joint work with V. Q. Vu, J. Cho, and

More information

Factor Analysis. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Factor Analysis. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Factor Analysis Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 1 Factor Models The multivariate regression model Y = XB +U expresses each row Y i R p as a linear combination

More information

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001)

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Presented by Yang Zhao March 5, 2010 1 / 36 Outlines 2 / 36 Motivation

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

CS281A/Stat241A Lecture 17

CS281A/Stat241A Lecture 17 CS281A/Stat241A Lecture 17 p. 1/4 CS281A/Stat241A Lecture 17 Factor Analysis and State Space Models Peter Bartlett CS281A/Stat241A Lecture 17 p. 2/4 Key ideas of this lecture Factor Analysis. Recall: Gaussian

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 3. Factor Models and Their Estimation Steve Yang Stevens Institute of Technology 09/12/2012 Outline 1 The Notion of Factors 2 Factor Analysis via Maximum Likelihood

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects

Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects un Lu andliangjunsu Department of Economics, HKUST School of Economics, Singapore Management University February, 5 Abstract

More information

arxiv: v2 [econ.em] 1 Oct 2017

arxiv: v2 [econ.em] 1 Oct 2017 Estimation of Graphical Models using the L, Norm Khai X. Chiong and Hyungsik Roger Moon arxiv:79.8v [econ.em] Oct 7 Naveen Jindal School of Management, University of exas at Dallas E-mail: khai.chiong@utdallas.edu

More information

The Informativeness of k-means for Learning Mixture Models

The Informativeness of k-means for Learning Mixture Models The Informativeness of k-means for Learning Mixture Models Vincent Y. F. Tan (Joint work with Zhaoqiang Liu) National University of Singapore June 18, 2018 1/35 Gaussian distribution For F dimensions,

More information

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation T. Tony Cai 1, Zhao Ren 2 and Harrison H. Zhou 3 University of Pennsylvania, University of

More information

Notes on empirical methods

Notes on empirical methods Notes on empirical methods Statistics of time series and cross sectional regressions 1. Time Series Regression (Fama-French). (a) Method: Run and interpret (b) Estimates: 1. ˆα, ˆβ : OLS TS regression.

More information

arxiv: v1 [math.st] 13 Feb 2012

arxiv: v1 [math.st] 13 Feb 2012 Sparse Matrix Inversion with Scaled Lasso Tingni Sun and Cun-Hui Zhang Rutgers University arxiv:1202.2723v1 [math.st] 13 Feb 2012 Address: Department of Statistics and Biostatistics, Hill Center, Busch

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas

Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas Department of Mathematics Department of Statistical Science Cornell University London, January 7, 2016 Joint work

More information

Sta$s$cal Op$miza$on for Big Data. Zhaoran Wang and Han Liu (Joint work with Tong Zhang)

Sta$s$cal Op$miza$on for Big Data. Zhaoran Wang and Han Liu (Joint work with Tong Zhang) Sta$s$cal Op$miza$on for Big Data Zhaoran Wang and Han Liu (Joint work with Tong Zhang) Big Data Movement Big Data = Massive Data- size + High Dimensional + Complex Structural + Highly Noisy Big Data give

More information

Bootstrapping factor models with cross sectional dependence

Bootstrapping factor models with cross sectional dependence Bootstrapping factor models with cross sectional dependence Sílvia Gonçalves and Benoit Perron University of Western Ontario and Université de Montréal, CIREQ, CIRAO ovember, 06 Abstract We consider bootstrap

More information

A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices

A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices Natalia Bailey 1 M. Hashem Pesaran 2 L. Vanessa Smith 3 1 Department of Econometrics & Business Statistics, Monash

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Journal of Multivariate Analysis. Consistency of sparse PCA in High Dimension, Low Sample Size contexts

Journal of Multivariate Analysis. Consistency of sparse PCA in High Dimension, Low Sample Size contexts Journal of Multivariate Analysis 5 (03) 37 333 Contents lists available at SciVerse ScienceDirect Journal of Multivariate Analysis journal homepage: www.elsevier.com/locate/jmva Consistency of sparse PCA

More information

Composite likelihood estimation of sparse Gaussian graphical models with symmetry

Composite likelihood estimation of sparse Gaussian graphical models with symmetry Composite likelihood estimation of sparse Gaussian graphical models with symmetry BY XIN GAO Department of Mathematics and Statistics, York University, Toronto, Onatrio Canada M3J 1P3 arxiv:1208.4275v1

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Heriot-Watt University. Two-Step Lasso Estimation of the Spatial Weights Matrix Ahrens, Achim; Bhattacharjee, Arnab. Heriot-Watt University

Heriot-Watt University. Two-Step Lasso Estimation of the Spatial Weights Matrix Ahrens, Achim; Bhattacharjee, Arnab. Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway wo-step Lasso Estimation of the Spatial Weights Matrix Ahrens, Achim; Bhattacharjee, Arnab Published in: Econometrics DOI: 0.3390/econometrics3008

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Single Equation Linear GMM with Serially Correlated Moment Conditions

Single Equation Linear GMM with Serially Correlated Moment Conditions Single Equation Linear GMM with Serially Correlated Moment Conditions Eric Zivot November 2, 2011 Univariate Time Series Let {y t } be an ergodic-stationary time series with E[y t ]=μ and var(y t )

More information

Chapter 10. Semi-Supervised Learning

Chapter 10. Semi-Supervised Learning Chapter 10. Semi-Supervised Learning Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Outline

More information

Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures

Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures T. Tony Cai 1 1 Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, USA, 19104;

More information

Bayesian learning of sparse factor loadings

Bayesian learning of sparse factor loadings Magnus Rattray School of Computer Science, University of Manchester Bayesian Research Kitchen, Ambleside, September 6th 2008 Talk Outline Brief overview of popular sparsity priors Example application:

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Generalized Concomitant Multi-Task Lasso for sparse multimodal regression Mathurin Massias https://mathurinm.github.io INRIA Saclay Joint work with: Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Sparse orthogonal factor analysis

Sparse orthogonal factor analysis Sparse orthogonal factor analysis Kohei Adachi and Nickolay T. Trendafilov Abstract A sparse orthogonal factor analysis procedure is proposed for estimating the optimal solution with sparse loadings. In

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Daniel F. Schmidt Enes Makalic Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Sparse Graph Learning via Markov Random Fields

Sparse Graph Learning via Markov Random Fields Sparse Graph Learning via Markov Random Fields Xin Sui, Shao Tang Sep 23, 2016 Xin Sui, Shao Tang Sparse Graph Learning via Markov Random Fields Sep 23, 2016 1 / 36 Outline 1 Introduction to graph learning

More information

Bootstrapping factor models with cross sectional dependence

Bootstrapping factor models with cross sectional dependence Bootstrapping factor models with cross sectional dependence Sílvia Gonçalves and Benoit Perron McGill University, CIREQ, CIRAO and Université de Montréal, CIREQ, CIRAO ovember 4, 07 Abstract We consider

More information

Approximating the Covariance Matrix with Low-rank Perturbations

Approximating the Covariance Matrix with Low-rank Perturbations Approximating the Covariance Matrix with Low-rank Perturbations Malik Magdon-Ismail and Jonathan T. Purnell Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180 {magdon,purnej}@cs.rpi.edu

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

Learning discrete graphical models via generalized inverse covariance matrices

Learning discrete graphical models via generalized inverse covariance matrices Learning discrete graphical models via generalized inverse covariance matrices Duzhe Wang, Yiming Lv, Yongjoon Kim, Young Lee Department of Statistics University of Wisconsin-Madison {dwang282, lv23, ykim676,

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid High Dimensional Discriminant Analysis - Lear seminar p.1/43 Introduction High

More information

Single Equation Linear GMM with Serially Correlated Moment Conditions

Single Equation Linear GMM with Serially Correlated Moment Conditions Single Equation Linear GMM with Serially Correlated Moment Conditions Eric Zivot October 28, 2009 Univariate Time Series Let {y t } be an ergodic-stationary time series with E[y t ]=μ and var(y t )

More information

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ )

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ ) Setting RHS to be zero, 0= (θ )+ 2 L(θ ) (θ θ ), θ θ = 2 L(θ ) 1 (θ )= H θθ (θ ) 1 d θ (θ ) O =0 θ 1 θ 3 θ 2 θ Figure 1: The Newton-Raphson Algorithm where H is the Hessian matrix, d θ is the derivative

More information

A Factor Analytical Method to Interactive Effects Dynamic Panel Models with or without Unit Root

A Factor Analytical Method to Interactive Effects Dynamic Panel Models with or without Unit Root A Factor Analytical Method to Interactive Effects Dynamic Panel Models with or without Unit Root Joakim Westerlund Deakin University Australia March 19, 2014 Westerlund (Deakin) Factor Analytical Method

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

An Introduction to Graphical Lasso

An Introduction to Graphical Lasso An Introduction to Graphical Lasso Bo Chang Graphical Models Reading Group May 15, 2015 Bo Chang (UBC) Graphical Lasso May 15, 2015 1 / 16 Undirected Graphical Models An undirected graph, each vertex represents

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

arxiv: v2 [math.st] 2 Jul 2017

arxiv: v2 [math.st] 2 Jul 2017 A Relaxed Approach to Estimating Large Portfolios Mehmet Caner Esra Ulasan Laurent Callot A.Özlem Önder July 4, 2017 arxiv:1611.07347v2 [math.st] 2 Jul 2017 Abstract This paper considers three aspects

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Estimating Latent Asset-Pricing Factors

Estimating Latent Asset-Pricing Factors Estimating Latent Asset-Pricing Factors Martin Lettau and Markus Pelger April 9, 8 Abstract We develop an estimator for latent factors in a large-dimensional panel of financial data that can explain expected

More information

Cross-Validation with Confidence

Cross-Validation with Confidence Cross-Validation with Confidence Jing Lei Department of Statistics, Carnegie Mellon University UMN Statistics Seminar, Mar 30, 2017 Overview Parameter est. Model selection Point est. MLE, M-est.,... Cross-validation

More information

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36 Last week Nuisance parameters f (y; ψ, λ), l(ψ, λ) posterior marginal density π m (ψ) =. c (2π) q el P(ψ) l P ( ˆψ) j P ( ˆψ) 1/2 π(ψ, ˆλ ψ ) j λλ ( ˆψ, ˆλ) 1/2 π( ˆψ, ˆλ) j λλ (ψ, ˆλ ψ ) 1/2 l p (ψ) =

More information

Theoretical results for lasso, MCP, and SCAD

Theoretical results for lasso, MCP, and SCAD Theoretical results for lasso, MCP, and SCAD Patrick Breheny March 2 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/23 Introduction There is an enormous body of literature concerning theoretical

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models

Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models LETTER Communicated by Clifford Lam Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models Lingyan Ruan lruan@gatech.edu Ming Yuan ming.yuan@isye.gatech.edu School of Industrial and

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

Robust and sparse Gaussian graphical modelling under cell-wise contamination

Robust and sparse Gaussian graphical modelling under cell-wise contamination Robust and sparse Gaussian graphical modelling under cell-wise contamination Shota Katayama 1, Hironori Fujisawa 2 and Mathias Drton 3 1 Tokyo Institute of Technology, Japan 2 The Institute of Statistical

More information

A multiple testing approach to the regularisation of large sample correlation matrices

A multiple testing approach to the regularisation of large sample correlation matrices A multiple testing approach to the regularisation of large sample correlation matrices Natalia Bailey Department of Econometrics and Business Statistics, Monash University M. Hashem Pesaran University

More information

Machine Learning for Signal Processing Bayes Classification

Machine Learning for Signal Processing Bayes Classification Machine Learning for Signal Processing Bayes Classification Class 16. 24 Oct 2017 Instructor: Bhiksha Raj - Abelino Jimenez 11755/18797 1 Recap: KNN A very effective and simple way of performing classification

More information

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley Panel Data Models James L. Powell Department of Economics University of California, Berkeley Overview Like Zellner s seemingly unrelated regression models, the dependent and explanatory variables for panel

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Cambridge Working Papers in Economics

Cambridge Working Papers in Economics UNIVERSIY OF CAMBRIDGE Cambridge Working Papers in Economics A multiple testing approach to the regularisation of large sample correlation matrice Natalia Bailey, Hashem Peseran and Vanessa Smith CWPE

More information

Regularization Methods for Prediction in Dynamic Graphs and e-marketing Applications

Regularization Methods for Prediction in Dynamic Graphs and e-marketing Applications Regularization Methods for Prediction in Dynamic Graphs and e-marketing Applications Emile Richard CMLA-ENS Cachan 1000mercis PhD defense Advisors: Th. Evgeniou (INSEAD), N. Vayatis (CMLA-ENS Cachan) November

More information

FACTOR ANALYSIS FOR HIGH-DIMENSIONAL DATA

FACTOR ANALYSIS FOR HIGH-DIMENSIONAL DATA FACTOR ANALYSIS FOR HIGH-DIMENSIONAL DATA A DISSERTATION SUBMITTED TO THE DEPARTMENT OF STATISTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information