Ex 1: Identify the open intervals for which each function is increasing or decreasing.

Size: px
Start display at page:

Download "Ex 1: Identify the open intervals for which each function is increasing or decreasing."

Transcription

1 MATH 2040 Notes: Unit 4 Page 1 5.1/5.2 Increasing and Decreasing Functions Part a Relative Extrema Ex 1: Identify the open intervals for which each In algebra we defined increasing and decreasing behavior of functions: Definition: A function f is said to be increasing over an open interval (a, b) if for all x 1 < x 2 in the interval, f(x 1 ) < f(x 2 ). A function f is said to be decreasing over an open interval (a, b) if for all x 1 < x 2 in the interval, f(x 1 ) > f(x 2 ). Notice what happens at each x-value where the function changes from increasing to decreasing or vice versa. If the function has a point at one of these x-values, that point is called a turning point. The function value at each turning point is either the greatest or the least value in the neighborhood around that x-value. This leads to the concept of relative extrema. Definition: Let c be a number in the domain of f. f(c) is a relative maximum (or local maximum) for f if an open interval (a, b) containing c exists such that fx ( ) fc ( ) for all x in (a, b). f(c) is a relative minimum (or local minimum) for f if an open interval (a, b) containing c exists such that fx ( ) fc ( ) for all x in (a, b). The collective term for either being a relative maximum or relative minimum is relative extremum (and analogously, local extremum).

2 MATH 2040 Notes: Unit 2 Page 2 Now that we have defined derivatives in calculus, we can begin to connect the definitions of increasing and decreasing functions as well as relative extrema to the slope of a function. Observe that when a function is increasing, any tangent line within the open interval will have a positive slope. Similarly, when a function is decreasing, any tangent line within the open interval will have a negative slope. Behavior of f Nature of f Positive (+) Test for where f(x) is Increasing/Decreasing Test: Suppose a function is differentiable everywhere on an open interval; then 1. where f x) is positive for each x in the interval, f is increasing on the interval; 2. where f x) is negative for each x in the interval, f is decreasing on the interval 3. where f x) is zero for each x in the interval, f is constant on the interval Critical Numbers and Critical Points The open intervals where a function is increasing or decreasing can be established based on the limited number of possibilities where either a turning point exists or the function has a discontinuity. Focusing on where turning points occur, notice that either the derivative is zero or the derivative does not exist. Irrespective of whether a function actually has a turning point at a particular x-value, we explicitly define the x-values where one of those two possibilities occur. Definition: Critical numbers of a function f are those values c in the domain of f for which f c) = 0 or f c) does not exist. A critical point is a point (c, f(c)) if c is a critical number. Recognize that it is possible for a point to be a critical point without being a turning point.

3 MATH 2040 Notes: Unit 2 Page 3 The process for applying the test for where a function is increasing or decreasing will also lead us to the relative extrema, if they exist. 1. Locate the critical numbers for f on a number line as well as any values where f is undefined. Open intervals can then defined between these marks on the number line. 2. Choose a test value of x in each open interval. Evaluate f 3. For each test value whose value of f x) is positive, identify the open interval as increasing. Where f x) is negative, identify the open interval as decreasing. To establish where a function has a relative extrema, apply the First Derivative Test: The First Derivative Test Let c be a critical number for a function f. Assuming that f is continuous & differentiable over open intervals on either side of c, then: 1. f(c) is a relative maximum of f whenever is positive over the open interval less than c and f greater than c. 2. f(c) is a relative minimum of f whenever is negative over the open interval less than c and f interval greater than c. 3. No relative extremum of f exists whenever the signs of are the same on each side. Ex 2: Find the critical numbers of the function. 3 2 f x 2x 3x 12x 18

4 Ex 3: Find the critical numbers of the function f x x 4x 20x 10 MATH 2040 Notes: Unit 2 Page 4 Ex 4: Find the critical numbers of the function. 2 3 f x 6x 4x

5 Ex 5: Find the critical numbers of the function. f x x 3 x 4 MATH 2040 Notes: Unit 2 Page 5 Ex 6: Find the critical numbers of the function. f x 2xe 2 x

6 Ex 7: Find the critical numbers of the function. f x 2x lnx MATH 2040 Notes: Unit 2 Page 6 Ex 8: Find the critical numbers of the function f x x x

7 5.1/5.2 Part b Applications of Increasing/Decreasing Functions and Relative Extrema Ex 1: A manufacturer of CD players has determined that the profit P(x) (in thousands of dollars) is related to the quantity x of CD players produced (in hundreds) per month by x P x x 4 e 4, 0 x 3.9. Find the production levels where profit is increasing and where it is decreasing. MATH 2040 Notes: Unit 2 Page 7 Ex 2: A realty group estimates that the number of housing starts per year over the next three years can be projected by 500r H r, where r is the r mortgage rate (in percent). Find the interest rates where the number of housing starts is increasing and where it is decreasing.

8 Ex 3: A high-end sports apparel manufacturer produces hockey jerseys for sale in college bookstores. Its cost function, in 2 dollars, is Cx ( ) x 0.2x where x is the number of jersey manufactured. Find the production level that will produce the minimum average cost per unit Cx ( ). MATH 2040 Notes: Unit 2 Page 8 Ex 4: Find the profit function given demand function and cost function. Then determine the number, q, of units that produces the maximum profit, the price, p, per unit that produces the maximum profit, and the maximum profit, P. Cq ( ) 30q 5000, p q

9 MATH 2040 Notes: Unit 2 Page 9 Ex 5: In planning a restaurant it is estimated that revenues of $8 per seat can be made when the number of seats is limited to 50. If more than 50 seats are created, the revenue on each seat will decrease by 10 for each seat above 50. b. Find the number of seats that will maximize revenues and what the maximum revenue will be. a. Find an expression for the revenues earned if more than 50 seats are permitted. Ex 6: A used bicycle store estimates that on average it costs them $70 to acquire and recondition ten-speed bicycles. The store s weekly fixed expenses are $500. Based on experience they believe they can sell 7 bicycles per week if they price the reconditioned ten-speeds at $200. Raising the price by $10 will result in one fewer bicycle being sold each week. b. Find the price and number of bicycles sold that will maximize profits and what the maximum profit will be. a. Find an expression for the profits earned where x represents the number of times they raise the price from $200.

10 MATH 2040 Notes: Unit 2 Page Concavity & The Second Derivative Test Whereas the first derivative is used to show where the function is increasing or decreasing, the second derivative which is a rate of change of the first derivative indicates how fast the derivative is increasing or decreasing. Another perspective is to contrast the first derivative as describing how the function is behaving now and the second derivative as describing how the function will behave in the future. It indicates the trend beyond the current increasing or decreasing nature. For each graph below, we focus our attention on x > In this graph f' > 0, f 2. In this graph f' > 0, f 3. In this graph f' < 0, f < 0 4. In this graph f' < 0, f Visually the second derivative corresponds to concavity, what we informally describe as the curl of the function. No concavity Concave Up Concave Down Ex: Identify the intervals of the function which are concave up and concave down and find any inflection points. A point of a function where concavity changes is called an inflection point.

11 MATH 2040 Notes: Unit 2 Page 11 Test for Concavity Test: Suppose a function is twice differentiable everywhere on an open interval; then 1. where f x) is positive for each x in the interval, f is concave up on the interval; 2. where f x) is negative for each x in the interval, f is concave down on the interval Ex 1: Find the open intervals for which f is concave up or concave down. Then find any inflection points of f. f x x 9x 3 2 Inflection points occur where f not exist. Ex 2: Find the open intervals for which f is concave up or concave down. Then find any inflection points of f. f x xe 2x

12 Ex 3: Find the open intervals for which f is concave up or concave down. Then find any inflection points of f f x x 4x 48x 24 MATH 2040 Notes: Unit 2 Page 12 The Law of Diminishing Returns in economics is related to the idea of concavity. At first the rate at which revenues increase grows faster over the time than the rate of expenses. This coincides with having upward concavity. Eventually the increases in revenue slow down relative to those of expenses and the function behavior switches to downward concavity. The change must occur (by definition at an inflection point) and that inflection point is considered the point of diminishing returns. Ex: Revenues as a function of x thousands of dollars spent on advertising can be expressed by the function 3 2 Rx ( ) x 42x 800 x, 0 x 20, in thousands of dollars. Find the point of diminishing returns.

13 MATH 2040 Notes: Unit 2 Page 13 While values of the second derivative can be used to establish the type of concavity a function has over an interval, it can also be used with the critical numbers found by the first derivative to establish relative extrema. Where a function is concave up, the function can possible have a relative minimum. Where a function is concave down, the function can possibly have a relative maximum. The Second Derivative Test Let c be a critical number for a function f. Assuming that f is continuous and twice differentiable over open intervals on either side of c, then: 1. If f c) > 0, then f(c) is a relative minimum. 2. If f c) < 0, then f(c) is a relative maximum. 3. If f c) = 0 or f c) does not exist, then the test gives no information as to whether there is a relative extremum at c. The First Derivative Test must be applied. Ex: Find the critical numbers of f. Then apply the Second Derivative Test to determine whether a relative maximum or relative minimum exists at each critical number. 3 2 f x 2x 4x 2

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Section 12.2 The Second Derivative

Section 12.2 The Second Derivative Section 12.2 The Second Derivative Higher derivatives If f is a differentiable function, then f is also a function. So, f may have a derivative of its own, denoted by (f ) = f. This new function f is called

More information

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls Chapter 5 Section 5.1 First Derivative and Graphs Objectives: The student will be able to identify increasing and decreasing functions and local extrema The student will be able to apply the first derivative

More information

e) Find the average revenue when 100 units are made and sold.

e) Find the average revenue when 100 units are made and sold. Math 142 Week in Review Set of Problems Week 7 1) Find the derivative, y ', if a) y=x 5 x 3/2 e 4 b) y= 1 5 x 4 c) y=7x 2 0.5 5 x 2 d) y=x 2 1.5 x 10 x e) y= x7 5x 5 2 x 4 2) The price-demand function

More information

Lecture 26: Section 5.3 Higher Derivatives and Concavity

Lecture 26: Section 5.3 Higher Derivatives and Concavity L26-1 Lecture 26: Section 5.3 Higher Derivatives and Concavity ex. Let f(x) = ln(e 2x + 1) 1) Find f (x). 2) Find d dx [f (x)]. L26-2 We define f (x) = Higher Order Derivatives For y = f(x), we can write

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

Math 110 Final Exam General Review. Edward Yu

Math 110 Final Exam General Review. Edward Yu Math 110 Final Exam General Review Edward Yu Da Game Plan Solving Limits Regular limits Indeterminate Form Approach Infinities One sided limits/discontinuity Derivatives Power Rule Product/Quotient Rule

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Study Guide - Part 2

Study Guide - Part 2 Math 116 Spring 2015 Study Guide - Part 2 1. Which of the following describes the derivative function f (x) of a quadratic function f(x)? (A) Cubic (B) Quadratic (C) Linear (D) Constant 2. Find the derivative

More information

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim . Given f( ), find Math 5 Final Eam Review f h f. h0 h a. If f ( ) 5 (Set it up, but do not simplify) If c. If f ( ) 5 f (Simplify) ( ) 7 f (Set it up, but do not simplify) ( ) 7 (Simplify) d. If f. Given

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Math 1314 ONLINE Lesson 12

Math 1314 ONLINE Lesson 12 Math 1314 ONLINE Lesson 12 This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based on it. The graph

More information

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models L6-1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form f(x) = a n x n + a n 1 x n 1 +... + a 1

More information

Math Final Solutions - Spring Jaimos F Skriletz 1

Math Final Solutions - Spring Jaimos F Skriletz 1 Math 160 - Final Solutions - Spring 2011 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra. Math 1323 Lesson 12 Analyzing functions This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based

More information

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7)

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Note: This review is intended to highlight the topics covered on the Final Exam (with emphasis on

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

MA Lesson 23 Notes 2 nd half of textbook, Section 5.1 Increasing and Decreasing Functions

MA Lesson 23 Notes 2 nd half of textbook, Section 5.1 Increasing and Decreasing Functions MA 000 Lesson 3 Notes nd half of textbook, Section 5.1 Increasing and Decreasing Functions A function is increasing if its graph goes up (positive slope) from left to right and decreasing if its graph

More information

Math 234 March 6 I. Determine if the demand is elastic, inelastic, or of unit elasticity at the indicated price p.

Math 234 March 6 I. Determine if the demand is elastic, inelastic, or of unit elasticity at the indicated price p. Math 234 March 6 I. Determine if the demand is elastic, inelastic, or of unit elasticity at the indicated price p. 1. D(p) = 1.3p + 10; p = 4 2. D(p) = 1.5p + 25; p = 12 3. D(p) = 2p + 40; p = 10 4. D(p)

More information

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test 9.1 Increasing and Decreasing Functions One of our goals is to be able to solve max/min problems, especially economics

More information

Math 1314 Test 3 Review Material covered is from Lessons The total weekly cost of manufacturing x cameras is given by the cost function: 3 2

Math 1314 Test 3 Review Material covered is from Lessons The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 Math 1314 Test 3 Review Material covered is from Lessons 9 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 C( x) = 0.0001x + 0.4x + 800x + 3, 000. A. Find the

More information

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Maxima and minima 1 1.1 Applications.................................... 1 2 What derivatives tell us 2 2.1 Increasing and decreasing functions.......................

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Math 1314 Test 3 Review Material covered is from Lessons 9 15

Math 1314 Test 3 Review Material covered is from Lessons 9 15 Math 1314 Test 3 Review Material covered is from Lessons 9 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: =.03 +80+3000 and the revenue function is =.02 +600. Use

More information

Review Assignment II

Review Assignment II MATH 11012 Intuitive Calculus KSU Name:. Review Assignment II 1. Let C(x) be the cost, in dollars, of manufacturing x widgets. Fill in the table with a mathematical expression and appropriate units corresponding

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Applications of differential calculus Relative maxima/minima, points of inflection

Applications of differential calculus Relative maxima/minima, points of inflection Exercises 15 Applications of differential calculus Relative maxima/minima, points of inflection Objectives - be able to determine the relative maxima/minima of a function. - be able to determine the points

More information

Marginal Propensity to Consume/Save

Marginal Propensity to Consume/Save Marginal Propensity to Consume/Save The marginal propensity to consume is the increase (or decrease) in consumption that an economy experiences when income increases (or decreases). The marginal propensity

More information

MA Lesson 23 Notes 2 nd half of textbook, Section 5.1 Increasing and Decreasing Functions

MA Lesson 23 Notes 2 nd half of textbook, Section 5.1 Increasing and Decreasing Functions MA 15910 Lesson 3 Notes nd half of textbook, Section 5.1 Increasing and Decreasing Functions A function is increasing if its graph goes up (positive slope) from left to right and decreasing if its graph

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

MA Lesson 29 Notes

MA Lesson 29 Notes MA 15910 Lesson 9 Notes Absolute Maximums or Absolute Minimums (Absolute Extrema) in a Closed Interval: Let f be a continuous function on a closed interval [a, b].. Let c be a number in that interval.

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

Extrema and the First-Derivative Test

Extrema and the First-Derivative Test Extrema and the First-Derivative Test MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics 2018 Why Maximize or Minimize? In almost all quantitative fields there are objective

More information

Final Exam Review (Section 8.3 and Review of Other Sections)

Final Exam Review (Section 8.3 and Review of Other Sections) c Kathryn Bollinger, April 29, 2014 1 Final Exam Review (Section 8.3 and Review of Other Sections) Note: This collection of questions is intended to be a brief overview of the material covered throughout

More information

7.1 Functions of Two or More Variables

7.1 Functions of Two or More Variables 7.1 Functions of Two or More Variables Hartfield MATH 2040 Unit 5 Page 1 Definition: A function f of two variables is a rule such that each ordered pair (x, y) in the domain of f corresponds to exactly

More information

3.Applications of Differentiation

3.Applications of Differentiation 3.Applications of Differentiation 3.1. Maximum and Minimum values Absolute Maximum and Absolute Minimum Values Absolute Maximum Values( Global maximum values ): Largest y-value for the given function Absolute

More information

3. Go over old quizzes (there are blank copies on my website try timing yourself!)

3. Go over old quizzes (there are blank copies on my website try timing yourself!) final exam review General Information The time and location of the final exam are as follows: Date: Tuesday, June 12th Time: 10:15am-12:15pm Location: Straub 254 The exam will be cumulative; that is, it

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

1 Reminders. In-class exam in two weeks (Sept 28/29) Assignments are posted after every class. Lecture is for big picture

1 Reminders. In-class exam in two weeks (Sept 28/29) Assignments are posted after every class. Lecture is for big picture 1 Reminders In-class exam in two weeks (Sept 28/29) pen and paper; no calculator; no notes practice problems are already posted online MLP test on same topics: take before 10/4 Assignments are posted after

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Review Example 3: Suppose that we know the revenues of a company each year since This information is given in the table below:

Review Example 3: Suppose that we know the revenues of a company each year since This information is given in the table below: Math 1314 ONLINE Final Exam Review Review Example 1: Suppose 3 g( x) = x x 9x + 18. Find the zeros of the function. Review Example : Find any points where intersect. f ( x) = 1.45x 7.x 1.6 and g( x) =.84x

More information

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Math 1314 Applications of the First Derivative Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Definition: A function is increasing on an interval (a, b) if,

More information

Online Math 1314 Final Exam Review

Online Math 1314 Final Exam Review Online Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004

More information

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary.

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary. Pre-Calculus A Final Review Part 2 Calculator Name 31. The price p and the quantity x sold of a certain product obey the demand equation: p = x + 80 where r = xp. What is the revenue to the nearest dollar

More information

3. (1.2.13, 19, 31) Find the given limit. If necessary, state that the limit does not exist.

3. (1.2.13, 19, 31) Find the given limit. If necessary, state that the limit does not exist. Departmental Review for Survey of Calculus Revised Fall 2013 Directions: All work should be shown and all answers should be exact and simplified (unless stated otherwise) to receive full credit on the

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

Review for Final Review

Review for Final Review Topics Review for Final Review 1. Functions and equations and graphing: linear, absolute value, quadratic, polynomials, rational (first 1/3 of semester) 2. Simple Interest, compounded interest, and continuously

More information

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook MA 15910 Lesson 1 Notes Section 3.4 of Calculus part of textbook Tangent Line to a curve: To understand the tangent line, we must first discuss a secant line. A secant line will intersect a curve at more

More information

MATH 115 SECOND MIDTERM EXAM

MATH 115 SECOND MIDTERM EXAM MATH 115 SECOND MIDTERM EXAM November 22, 2005 NAME: SOLUTION KEY INSTRUCTOR: SECTION NO: 1. Do not open this exam until you are told to begin. 2. This exam has 10 pages including this cover. There are

More information

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work.

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work. MATH 11012 Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri Dr. Kracht Name:. 1. Consider the function f depicted below. Final Exam Review Show all your work. y 1 1 x (a) Find each of the following

More information

AB Calc Sect Notes Monday, November 28, 2011

AB Calc Sect Notes Monday, November 28, 2011 Assignments & Opportunities: I will TRY to have Sketchpad projects back to you next Monday or Tuesday. Tomorrow: p268; 5,22,27,45 & p280; 9 AB Calc Sect 4.3 - Notes Monday, November 28, 2011 Today's Topics

More information

Math 1325 Final Exam Review

Math 1325 Final Exam Review Math 1325 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004 2005 2006

More information

P (x) = 0 6(x+2)(x 3) = 0

P (x) = 0 6(x+2)(x 3) = 0 Math 160 - Assignment 6 Solutions - Spring 011 - Jaimos F Skriletz 1 1. Polynomial Functions Consider the polynomial function P(x) = x 3 6x 18x+16. First Derivative - Increasing, Decreasing, Local Extrema

More information

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 611b Assignment #6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find a formula for the function graphed. 1) 1) A) f(x) = 5 + x, x < -

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Increasing or Decreasing Nature of a Function

Increasing or Decreasing Nature of a Function Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 46 Increasing or Decreasing Nature of a Function Examining the graphical behavior of functions is a basic part of mathematics and has applications to many areas

More information

Describe in words how the graph of each function below would differ from the graph of f (x).

Describe in words how the graph of each function below would differ from the graph of f (x). MATH 111 Exam # Review (4.1-4.4, 6.1, 6.) Describe in words how the graph of each function below would differ from the graph of f (. 1. f ( x 7). f (. f ( 5 4. f ( 5. 7 f ( 6. f ( x ) 9 7. f ( 8. f ( 9.

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Practice A Exam 3. November 14, 2018

Practice A Exam 3. November 14, 2018 Department of Mathematics University of Notre Dame Math 10250 Elem. of Calc. I Name: Instructor: Practice A Exam November 14, 2018 This exam is in 2 parts on 11 pages and contains 15 problems worth a total

More information

Chapter 6 Notes, Applied Calculus, Tan

Chapter 6 Notes, Applied Calculus, Tan Contents 4.1 Applications of the First Derivative........................... 2 4.1.1 Determining the Intervals Where a Function is Increasing or Decreasing... 2 4.1.2 Local Extrema (Relative Extrema).......................

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

Exam A. Exam 3. (e) Two critical points; one is a local maximum, the other a local minimum.

Exam A. Exam 3. (e) Two critical points; one is a local maximum, the other a local minimum. 1.(6 pts) The function f(x) = x 3 2x 2 has: Exam A Exam 3 (a) Two critical points; one is a local minimum, the other is neither a local maximum nor a local minimum. (b) Two critical points; one is a local

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

Total 100

Total 100 Math 112 Final Exam June 3, 2017 Name Student ID # Section HONOR STATEMENT I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that

More information

Chapter 4 Analyzing Change: Applications of Derivatives

Chapter 4 Analyzing Change: Applications of Derivatives Chapter 4 Analyzing Change: Applications of Derivatives Section 4.1 Approximating Change 1. 3% (4 percentage points per hour) 1 ( ) = 1 1 hour 30 % 3 3. 300 mph + (00 mph per hour) ( hour ) 316 3. f (3.5)

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

Sample Mathematics 106 Questions

Sample Mathematics 106 Questions Sample Mathematics 106 Questions x 2 + 8x 65 (1) Calculate lim x 5. x 5 (2) Consider an object moving in a straight line for which the distance s (measured in feet) it s travelled from its starting point

More information

MTH 241: Business and Social Sciences Calculus

MTH 241: Business and Social Sciences Calculus MTH 241: Business and Social Sciences Calculus F. Patricia Medina Department of Mathematics. Oregon State University January 28, 2015 Section 2.1 Increasing and decreasing Definition 1 A function is increasing

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2019, WEEK 10 JoungDong Kim Week 10 Section 4.2, 4.3, 4.4 Mean Value Theorem, How Derivatives Affect the Shape of a Graph, Indeterminate Forms and L Hospital s

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science College Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 111 George Voutsadakis (LSSU) College Algebra December 2014 1 / 74 Outline 1 Additional

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

Math 116: Business Calculus Chapter 4 - Calculating Derivatives

Math 116: Business Calculus Chapter 4 - Calculating Derivatives Math 116: Business Calculus Chapter 4 - Calculating Derivatives Instructor: Colin Clark Spring 2017 Exam 2 - Thursday March 9. 4.1 Techniques for Finding Derivatives. 4.2 Derivatives of Products and Quotients.

More information

Math 1314 Lesson 13: Analyzing Other Types of Functions

Math 1314 Lesson 13: Analyzing Other Types of Functions Math 1314 Lesson 13: Analyzing Other Types of Functions If the function you need to analyze is something other than a polynomial function, you will have some other types of information to find and some

More information

Math 1314 Final Exam Review. Year Profits (in millions of dollars)

Math 1314 Final Exam Review. Year Profits (in millions of dollars) Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004 2005 2006

More information

Section 4.2 Polynomial Functions of Higher Degree

Section 4.2 Polynomial Functions of Higher Degree Section 4.2 Polynomial Functions of Higher Degree Polynomial Function P(x) P(x) = a degree 0 P(x) = ax +b (degree 1) Graph Horizontal line through (0,a) line with y intercept (0,b) and slope a P(x) = ax

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

ANSWERS, Homework Problems, Spring 2014 Now You Try It, Supplemental problems in written homework, Even Answers R.6 8) 27, 30) 25

ANSWERS, Homework Problems, Spring 2014 Now You Try It, Supplemental problems in written homework, Even Answers R.6 8) 27, 30) 25 ANSWERS, Homework Problems, Spring 2014, Supplemental problems in written homework, Even Answers Review Assignment: Precalculus Even Answers to Sections R1 R7 R.1 24) 4a 2 16ab + 16b 2 R.2 24) Prime 5x

More information

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion Name: Date: 8-1 Rate of Change and Motion Today s Goals: How can I calculate and interpret constant rate of change? How can I calculate and interpret instantaneous rate of change? How can we use derivatives

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b).

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b). Definition of Increasing and Decreasing A function f(x) is increasing on an interval if for any two numbers x 1 and x in the interval with x 1 < x, then f(x 1 ) < f(x ). As x gets larger, y = f(x) gets

More information

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function?

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function? MA 000, Lessons a and b Introduction to Functions Algebra: Sections 3.5 and 7.4 Calculus: Sections 1. and.1 Definition: A relation is any set of ordered pairs. The set of first components in the ordered

More information

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.5) Rates of Change: Velocity and Marginals MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives Previously we learned two primary applications of derivatives.

More information

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 1. Consider the function f (x) = x - 8x + 3, on the interval 0 x 8. The global (absolute) maximum of f (x) (on the given interval)

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems.

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information