Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls

Size: px
Start display at page:

Download "Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls"

Transcription

1 Chapter 5 Section 5.1 First Derivative and Graphs Objectives: The student will be able to identify increasing and decreasing functions and local extrema The student will be able to apply the first derivative test The student will be able to apply the theory to applications in economics Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls If a function rises from left to right on an interval then that function increases on that interval (x-axis) If a function falls from left to right on an interval then that function decreases on that interval (x-axis) If the graph of a function is horizontal on an interval then we say that function is constant on that interval. Ex: Test for Increasing and decreasing: f(x) is increasing where ever f (x) is positive, f (x) > 0 f(x) is decreasing where ever f (x) is negative, f (x) < 0 f(x) is constant where ever f (x) is zero, f (x) = 0 When a function changes from increasing to decreasing this creates a high point on the graph hill When a function changes from decreasing to increasing this creates a low point on the graph valley 1 P a g e

2 Such hills or valleys can occur in two ways 1. If the hill or valley is smooth and rounded, then the graph has a horizontal tangent line at the high or low point (zero derivative) 2. If the hill or valley is sharp and peaked, then the graph represents a function that is not differentiable at the high or low point. (derivative undefined or DNE). From Ex. #2 find the following: f (a) = f (b) = f (c) = f (d) = Ex: Find the intervals where f(x) = x 2 + 6x + 7 rising and falling. 2 P a g e

3 A partition number for the sign chart is a place where the derivative could change sign. Assuming that f is continuous wherever it is defined, this can only happen where f itself is not defined, where f is not defined or where f is zero Definition: The values of x in the domain of f where f (x) = 0 or does not exist are called the critical values (CV) of f. Let x be defined at x=c. If f (c) = 0 or if f (c) is undefined, then c is called a critical value of f. Insight: All critical values are also partition numbers, but there may be partition numbers that are not critical values (where f itself is not defined) If f is a polynomial, critical values and partition numbers are both the same, namely the solutions of f (x) = 0. 3 P a g e

4 4 P a g e

5 When a function changes from increasing to decreasing, this creates a high point on the graph. High points on a graph are called relative maxima. When a function changes from decreasing to increasing, this creates a low point on the graph. Low points on a graph are called relative minima. High points (relative maxima) and low points (relative minima) only occur at x-values for which f (x) = 0 or f (x) is undefined. These are x-values are called critical values. **Caution** High points (relative maxima) and low points (relative minima) can only occur at critical values (CV), but the existence of a CV does not guarantee a relative maxima or minima there. Theorem: If f is continuous on a op[en interval (a,b), and c is a number in (a,b), and f(c) is a local extrema, then either f (c) = 0 or f (c) = DNE. That is, c is a critical point. Ex: 1. Find the intervals where ( ) rising and falling. Identify the relative extrema (max and min). Find the CV and discontinuities. 5 P a g e

6 2. Find the intervals where ( ) rising and falling. Identify the relative extrema (max and min). Find the CV and discontinuities. 3. Find the intervals where ( ) rising and falling. Identify the relative extrema (max and min). Find the CV and discontinuities. 6 P a g e

7 4. Find the intervals where ( ) rising and falling. Identify the relative extrema (max and min). Find the CV and discontinuities. First Derivative Test for relative extrema: Let c be a critical value of f. Construct a sign chart for f (x) close to and on either side of c. a. The function has a relative maxima at (c, f(c)) if the derivative is positive just left of x=c and negative just right of x=c. Ex. f(x) = -x 2 +2 b. The function has a relative minima at (c, f(c)) if the derivative is negative just left of x=c and positive just right of x=c. Ex. f(x) = 2x 2-4x+4 c. If the derivative does not change sign just left of x=c and just right of x=c, then (c, f(c)) is not a relative extrema. Ex. f(x) = (x-2) 1/3 f(x) left of c f(x) right of c f(c) Decreasing Increasing Local minima at c Increasing Decreasing Local maxima at c Decreasing Decreasing Not an extrema Increasing Increasing Not an extrema Polynomial Functions Theorem 3. If f (x) = a n x n + a n-1 x n a 1 x + a 0, a n 0, is an n th -degree polynomial, then f has at most n x-intercepts and at most (n 1) local extrema. In addition to providing information for hand-sketching graphs, the derivative is also an important tool for analyzing graphs and discussing the interplay between a function and its rate of change. 7 P a g e

8 First Derivative Test Graphing Calculators Local extrema are easy to recognize on a graphing calculator. Method 1. Graph the derivative and use built-in root approximations routines to find the critical values of the first derivative. Use the zeros command under 2nd calc. Method 2. Graph the function and use built-in routines that approximate local maxima and minima. Use the MAX or MIN subroutine. Example: Preform Method 1 and 2 for f (x) = x 3 12x P a g e

9 Section Second Derivative and Graphs Objectives: The student will be able to use concavity as a graphing tool. The student will be able to find inflection points. The student will be able to analyze graphs and do curve sketching. The student will be able to find the point of diminishing returns. Concavity The term concave upward (or simply concave up) is used to describe a portion of a graph that opens upward. Concave down(ward) is used to describe a portion of a graph that opens downward. Definition of Concavity A graph is concave up on the interval (a,b) if any secant connecting two points on the graph in that interval lies above the graph. It is concave down on (a,b) if all secants lie below the graph. 9 P a g e

10 Ex. Graph: A B C D The graph is concave up at (-, A)U(B,C)U(D, ) The graph is concave down at (A,B)U(C,D) Concavity Tests: The graph of a function f is concave upward on the interval (a,b) if f (x) is increasing on (a, b), and is concave downward on the interval (a, b) if f (x) is decreasing on (a, b). For y = f (x), the second derivative of f, provided it exists, is the derivative of the first derivative: The graph of a function f is concave upward on the interval (a, b) if f (x) is positive on (a, b), and is concave downward on the interval (a, b) if f (x) is negative on (a,b). Concavity: f(x) is concave up whenever f (x) is positive f(x) is concave down whenever f (x) is negative Procedure for deciding where a function is concave up or down 1. find potential points of inflection. That is find x-values where f (x) = 0 or f (x) = undefined (Note: not every PI will really be a point of inflection) 2. Use these values to split the x-axis into intervals 3. Choose a test value in each interval 4. Use the test value to decide if f (x) = + or for that interval 5. Decide on concavity 10 P a g e

11 Second Derivative Test Concavity Second derivative test is also a test for local min or max. This test can be applied on the critical values of the type where f (x) = 0, not to f (x) = undefined. Let c be a critical value of the function f(x), such that f (x) = 0, then. 1. if f (x) < 0, then f has a local max at x=c Concave down 2. if f (x) > 0, then f has a local min at x=c Concave up 3. if f (x) = 0, then the 2 nd derivative test is inconclusive. Ex. Find the intervals where the graph of f(x) = x x x 12 is concave up or concave down. 11 P a g e

12 Ex. Ex. Find the intervals where the graph of f(x) = 8x 2 2x 4 is concave up or concave down. Points of Inflection: Are those points where f(x) changes concavity. Points of inflection only occur at those x-values that make f (x) = 0 or f (x) = undefined An inflection point is a point on the graph where the concavity changes from upward to downward or downward to upward. This means that if f (x) exists in a neighborhood of an inflection point, then it must change sign at that point. Theorem 1. If y = f (x) is continuous on (a, b) and has an inflection point at x = c, then either f (c) = 0 or f (c) does not exist. The theorem means that an inflection point can occur only at critical value of f. However, not every critical value produces an inflection point. A critical value c for f produces an inflection point for the graph of f only if f changes sign at c, and c is in the domain of f. 12 P a g e

13 Summary Assume that f satisfies one of the conditions in the table below, for all x in some interval (a,b). Then the other condition(s) to the right of it also hold. Ex. Find the inflection points of f (x) = x x x 12 Solution: In example 1, we saw that f (x) was negative to the left of 8 and positive to the right of 8. At x = 8, f (x) = 0. This is an inflection point because f changes from concave down to concave up at this point. Inflection points can be difficult to recognize on a graphing calculator, but they are easily located using root approximation routines. For instance, the above example when f is graphed shows an inflection point somewhere between 6 and 10. Graphing the second derivative and using the zeros command on the calc menu shows the inflection point at 8 quite easily, because inflection points occur where the second derivative is zero. 13 P a g e

14 Curve Sketching Graphing calculators and computers produce the graph of a function by plotting many points. Although quite accurate, important points on a plot may be difficult to identify. Using information gained from the function and its dervative, we can sketch by hand a very good representation of the graph of f (x). This process is called curve sketching and is summarized on the example. Graphing Strategy Step 1. Analyze f (x). Find the domain and the intercepts. The x intercepts are the solutions to f (x) = 0, and the y intercept is f (0). Step 2. Analyze f (x). Find the partition points and critical values of f (x). Construct a sign chart for f (x), determine the intervals where f is increasing and decreasing, and find local maxima and minima. Step 3. Analyze f (x). Find the partition numbers of f (x). Construct a sign chart for f (x), determine the intervals where the graph of f is concave upward and concave downward, and find inflection points. Step 4. Sketch the graph of f. Locate intercepts, local maxima and minima, and inflection points. Sketch in what you know from steps 1-3. Plot additional points as needed and complete the sketch. Ex. Sketch the graph of y = x 3 /3 x 2 3x 14 P a g e

15 Analyzing Graphs - Applications A company estimates that it will sell N(x) units of a product after spending $x thousand on advertising, as given by N(x) = 2x x 2 750x for 5 x 25 (a) When is the rate of change of sales, N (x), increasing? Decreasing? 15 P a g e

16 Point of Diminishing Returns If a company decides to increase spending on advertising, they would expect sales to increase. At first, sales will increase at an increasing rate and then increase at a decreasing rate. The value of x where the rate of change of sales changes from increasing to decreasing is called the point of diminishing returns. This is also the point where the rate of change has a maximum value. Money spent after this point may increase sales, but at a lower rate. The next example illustrates this concept. 16 P a g e

17 Section Absolute Maxima and Minima Objectives: The student will be able to identify absolute maxima and minima. The student will be able to use the second derivative test to classify extrema. Definition: f (c) is an absolute maximum of f if f (c) > f (x) for all x in the domain of f. f (c) is an absolute minimum of f if f (c) < f (x) for all x in the domain of f. If f is continuous on a closed interval [a,b] then f has both an absolute maxima and minima on the interval. Ex. Picture given in class Theorem 1. (Extreme Value Theorem) A function f that is continuous on a closed interval [a, b] has both an absolute maximum value and an absolute minimum value on that interval. Finding Absolute Maximum and Minimum Values Theorem 2. Absolute extrema (if they exist) must always occur at critical values of the derivative, or at end points. a. Check to make sure f is continuous over [a, b]. b. Find the critical values in the interval (a, b). c. Evaluate f at the end points a and b and at the critical values found in step b. d. The absolute maximum on [a, b] is the largest of the values found in step c. e. The absolute minimum on [a, b] is the smallest of the values found in step c. To find an absolute extrema on a closed interval [a,b] use the following steps: 1. Find the critical values of f in [a,b] Remember critical values (CV) are the values of x in the domain of f where f (x) = 0 or does not exist are called the critical values (CV) of f. 2. Evaluate f at each CV in [a,b] and at the ean points a and b. 3. Compare the values in step2 The largest value = absolute maxima of f in [a,b] The smallest value = absolute minima of f in [a,b] 17 P a g e

18 Ex. Find the absolute extrema of ( ) on the interval [-1, 2] Ex. Find the absolute extrema of ( ) on the interval [-1, 7] 18 P a g e

19 Second Derivative Test Theorem 3. Let f be continuous on interval (a,b) with only one critical value c in (a,b) If f (c) = 0 and f (c) > 0, then f (c) is the absolute minimum of f on I. If f (c) = 0 and f (c) < 0, then f (c) is the absolute maximum of f on I. Second Derivative and Extrema Ex: Find the local maximum and minimum values of ( ) on [ 1, 7]. Absolute Extrema in an Open Interval: Read text 19 P a g e

20 Section Optimization Objectives: The student will be able to calculate: Area and perimeter Revenue and profit Inventory control. Many practical problems require determining the maximum or minimum values. For example, business people wish to maximize profit and minimize cost. Builders wish to maximize the strength of their structures. The government has to be concerned about maximizing tax revenue, and the retailer wants to minimize inventory cost. Such problems are called optimization problems. They require the determination of absolute maxima or absolute minima. Steps: 1. Identify all given quantities and quantities to be determined. Draw a figure if possible. 2. Write a preliminary equation for the quantity that is to be maximized (or minimized) 3. Reduce the primary equation to one having a single independent variable. This may involve the use of secondary equations relating the independent variables of the primary equation. 4. Find critical values and locate absolute maxima and minima. (using second derivative test will often be faster that using the first derivative test) Ex: Using 120 feet of fencing, a farmer wishes to contain a cow in a rectangular plot of land that has one side along the bank of a river. (See the figure). If no fencing is needed along the river, what should be the dimensions of the rectangular field to provide the cox with the maximum grazing area? What is the maximum grazing area? 20 P a g e

21 Ex. Design a box with a square base and maximum volume using 216 square inches of cardboard. The box will have a top and a bottom. (See the figure). Your answer will give the length of the sides of the square base and the height of the box. 21 P a g e

22 Find the dimensions of a rectangular area of 225 square meters that has the least perimeter. 22 P a g e

23 Optimization Strategies 1. Introduce variables, look for relationships among these variables, and construct a math model of the form: Maximize (minimize) f (x) on the interval I. 2. Find the critical values of f (x). 3. Find the maximum (minimum) value of f (x) on the interval I. 4. Use the solution to the mathematical model to answer all the questions asked in the problem. Ex. A company manufactures and sells x television sets per month. The monthly cost and price-demand equations are: C(x) = 60, x p(x) = 200 x/50 for 0 x 6,000 a. Find the production level that will maximize the revenue, the maximum revenue, and the price that the company needs to charge at that level. b. Find the production level that will maximize the profit, the maximum profit, and the price that the company needs to charge at that level. 23 P a g e

24 Ex: A 300 room hotel in Las Vegas is filled to capacity every night at $80 per room. For each additional $1 increase in rent, 3 fewer rooms are rented. If each rented room cost $10 to service per day, how much should the management charge for each room to maximize gross profit? What is the maximum gross profit? 24 P a g e

25 Inventory Control A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It costs $10 per year for a storage place for one bottle, and $40 to place an order. How many times during the year should the pharmacy order the antibiotic in order to minimize total cost? Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to order. Further Hint: Use $5 per storage place instead of $10. The reasoning is that some bottles will get used right away, and some need to be stored the full time. 25 P a g e

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

e) Find the average revenue when 100 units are made and sold.

e) Find the average revenue when 100 units are made and sold. Math 142 Week in Review Set of Problems Week 7 1) Find the derivative, y ', if a) y=x 5 x 3/2 e 4 b) y= 1 5 x 4 c) y=7x 2 0.5 5 x 2 d) y=x 2 1.5 x 10 x e) y= x7 5x 5 2 x 4 2) The price-demand function

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Ex 1: Identify the open intervals for which each function is increasing or decreasing.

Ex 1: Identify the open intervals for which each function is increasing or decreasing. MATH 2040 Notes: Unit 4 Page 1 5.1/5.2 Increasing and Decreasing Functions Part a Relative Extrema Ex 1: Identify the open intervals for which each In algebra we defined increasing and decreasing behavior

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Section 12.2 The Second Derivative

Section 12.2 The Second Derivative Section 12.2 The Second Derivative Higher derivatives If f is a differentiable function, then f is also a function. So, f may have a derivative of its own, denoted by (f ) = f. This new function f is called

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

Chapter 6 Notes, Applied Calculus, Tan

Chapter 6 Notes, Applied Calculus, Tan Contents 4.1 Applications of the First Derivative........................... 2 4.1.1 Determining the Intervals Where a Function is Increasing or Decreasing... 2 4.1.2 Local Extrema (Relative Extrema).......................

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Online Math 1314 Final Exam Review

Online Math 1314 Final Exam Review Online Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004

More information

Math 1314 Final Exam Review. Year Profits (in millions of dollars)

Math 1314 Final Exam Review. Year Profits (in millions of dollars) Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004 2005 2006

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

P (x) = 0 6(x+2)(x 3) = 0

P (x) = 0 6(x+2)(x 3) = 0 Math 160 - Assignment 6 Solutions - Spring 011 - Jaimos F Skriletz 1 1. Polynomial Functions Consider the polynomial function P(x) = x 3 6x 18x+16. First Derivative - Increasing, Decreasing, Local Extrema

More information

Math 265 Test 3 Review

Math 265 Test 3 Review Name: Class: Date: ID: A Math 265 Test 3 Review. Find the critical number(s), if any, of the function f (x) = e x 2 x. 2. Find the absolute maximum and absolute minimum values, if any, of the function

More information

3.Applications of Differentiation

3.Applications of Differentiation 3.Applications of Differentiation 3.1. Maximum and Minimum values Absolute Maximum and Absolute Minimum Values Absolute Maximum Values( Global maximum values ): Largest y-value for the given function Absolute

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 1. Consider the function f (x) = x - 8x + 3, on the interval 0 x 8. The global (absolute) maximum of f (x) (on the given interval)

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

Higher-Degree Polynomial Functions. Polynomials. Polynomials

Higher-Degree Polynomial Functions. Polynomials. Polynomials Higher-Degree Polynomial Functions 1 Polynomials A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, multiplication,

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Related Rates General steps 1. Draw a picture!! (This may not be possible for every problem, but there s usually something you can draw.) 2. Label everything. If a quantity

More information

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema.

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema. MATH 1071Q Exam #2 Review Fall 2011 1. Find the elasticity at the given points and determine whether demand is inelastic, elastic, or unit elastic. Explain the significance of your answer. (a) x = 10 2p

More information

Math 1314 Test 3 Review Material covered is from Lessons The total weekly cost of manufacturing x cameras is given by the cost function: 3 2

Math 1314 Test 3 Review Material covered is from Lessons The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 Math 1314 Test 3 Review Material covered is from Lessons 9 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 C( x) = 0.0001x + 0.4x + 800x + 3, 000. A. Find the

More information

Math 1120 Calculus Test 3

Math 1120 Calculus Test 3 March 27, 2002 Your name The first 7 problems count 5 points each Problems 8 through 11 are multiple choice and count 7 points each and the final ones counts as marked In the multiple choice section, circle

More information

Math 1325 Final Exam Review

Math 1325 Final Exam Review Math 1325 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004 2005 2006

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

3. (1.2.13, 19, 31) Find the given limit. If necessary, state that the limit does not exist.

3. (1.2.13, 19, 31) Find the given limit. If necessary, state that the limit does not exist. Departmental Review for Survey of Calculus Revised Fall 2013 Directions: All work should be shown and all answers should be exact and simplified (unless stated otherwise) to receive full credit on the

More information

Applications of differential calculus Relative maxima/minima, points of inflection

Applications of differential calculus Relative maxima/minima, points of inflection Exercises 15 Applications of differential calculus Relative maxima/minima, points of inflection Objectives - be able to determine the relative maxima/minima of a function. - be able to determine the points

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models L6-1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form f(x) = a n x n + a n 1 x n 1 +... + a 1

More information

Section 3.3 Maximum and Minimum Values

Section 3.3 Maximum and Minimum Values Section 3.3 Maximum and Minimum Values Definition For a function f defined on a set S of real numbers and a number c in S. A) f(c) is called the absolute maximum of f on S if f(c) f(x) for all x in S.

More information

Sample Mathematics 106 Questions

Sample Mathematics 106 Questions Sample Mathematics 106 Questions x 2 + 8x 65 (1) Calculate lim x 5. x 5 (2) Consider an object moving in a straight line for which the distance s (measured in feet) it s travelled from its starting point

More information

College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić. Name: Simplify and write the answer so all exponents are positive:

College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić. Name: Simplify and write the answer so all exponents are positive: College Algebra Joysheet 1 MAT 140, Fall 2015 D. Ivanšić Name: Covers: R.1 R.4 Show all your work! Simplify and write the answer so all exponents are positive: 1. (5pts) (3x 4 y 2 ) 2 (5x 2 y 6 ) 3 = 2.

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Chapter 2 Notes: Polynomials and Polynomial Functions

Chapter 2 Notes: Polynomials and Polynomial Functions 39 Algebra 2 Honors Chapter 2 Notes: Polynomials and Polynomial Functions Section 2.1: Use Properties of Exponents Evaluate each expression (3 4 ) 2 ( 5 8 ) 3 ( 2) 3 ( 2) 9 ( a2 3 ( y 2 ) 5 y 2 y 12 rs

More information

Review Assignment II

Review Assignment II MATH 11012 Intuitive Calculus KSU Name:. Review Assignment II 1. Let C(x) be the cost, in dollars, of manufacturing x widgets. Fill in the table with a mathematical expression and appropriate units corresponding

More information

Math 1314 Test 3 Review Material covered is from Lessons 9 15

Math 1314 Test 3 Review Material covered is from Lessons 9 15 Math 1314 Test 3 Review Material covered is from Lessons 9 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: =.03 +80+3000 and the revenue function is =.02 +600. Use

More information

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work.

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work. MATH 11012 Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri Dr. Kracht Name:. 1. Consider the function f depicted below. Final Exam Review Show all your work. y 1 1 x (a) Find each of the following

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

Lecture 26: Section 5.3 Higher Derivatives and Concavity

Lecture 26: Section 5.3 Higher Derivatives and Concavity L26-1 Lecture 26: Section 5.3 Higher Derivatives and Concavity ex. Let f(x) = ln(e 2x + 1) 1) Find f (x). 2) Find d dx [f (x)]. L26-2 We define f (x) = Higher Order Derivatives For y = f(x), we can write

More information

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra. Math 1323 Lesson 12 Analyzing functions This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAMINATION Solutions Mathematics 1000 FALL 2010 Marks [12] 1. Evaluate the following limits, showing your work. Assign

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

Summary. MATH 1003 Calculus and Linear Algebra (Lecture 24) First Derivative Test. Second Derivative Test

Summary. MATH 1003 Calculus and Linear Algebra (Lecture 24) First Derivative Test. Second Derivative Test Summary MATH 1003 Calculus and Linear Algebra (Lecture 24) Maosheng Xiong Department of Mathematics, HKUST Question For a function y = f (x) in a domain, how do we find the absolute maximum or minimum?

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1325 Ch.12 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative extremum for the function. 1)

More information

CHAPTER 4: APPLICATIONS OF DERIVATIVES

CHAPTER 4: APPLICATIONS OF DERIVATIVES (Exercises for Section 4.1: Extrema) E.4.1 CHAPTER 4: APPLICATIONS OF DERIVATIVES SECTION 4.1: EXTREMA 1) For each part below, find the absolute maximum and minimum values of f on the given interval. Also

More information

The plot shows the graph of the function f (x). Determine the quantities.

The plot shows the graph of the function f (x). Determine the quantities. MATH 211 SAMPLE EXAM 1 SOLUTIONS 6 4 2-2 2 4-2 1. The plot shows the graph of the function f (x). Determine the quantities. lim f (x) (a) x 3 + Solution: Look at the graph. Let x approach 3 from the right.

More information

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary.

32. Use a graphing utility to find the equation of the line of best fit. Write the equation of the line rounded to two decimal places, if necessary. Pre-Calculus A Final Review Part 2 Calculator Name 31. The price p and the quantity x sold of a certain product obey the demand equation: p = x + 80 where r = xp. What is the revenue to the nearest dollar

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook MA 15910 Lesson 1 Notes Section 3.4 of Calculus part of textbook Tangent Line to a curve: To understand the tangent line, we must first discuss a secant line. A secant line will intersect a curve at more

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Sections Practice AP Calculus AB Name

Sections Practice AP Calculus AB Name Sections 4.1-4.5 Practice AP Calculus AB Name Be sure to show work, giving written explanations when requested. Answers should be written exactly or rounded to the nearest thousandth. When the calculator

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION. MATH 110 FINAL EXAM SPRING 2008 FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil on your scantron.

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7)

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Note: This review is intended to highlight the topics covered on the Final Exam (with emphasis on

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

1. Find the domain of the function f(x) = (A) D = (-, 2) (2, ) (B) D = (-, -2) (-2, ) (C) D = (2, ) (D) D = (-2, ) (E) none of the above

1. Find the domain of the function f(x) = (A) D = (-, 2) (2, ) (B) D = (-, -2) (-2, ) (C) D = (2, ) (D) D = (-2, ) (E) none of the above 1. Find the domain of the function f(x) = (A) D = (-, ) (, ) (B) D = (-, -) (-, ) (C) D = (, ) (D) D = (-, ) x. x + 1). A cell phone company offers a plan of $39 per month for 400 minutes. Each additional

More information

Extrema and the Extreme Value Theorem

Extrema and the Extreme Value Theorem Extrema and the Extreme Value Theorem Local and Absolute Extrema. Extrema are the points where we will find a maximum or minimum on the curve. If they are local or relative extrema, then they will be the

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions SECTION.1 Linear and Quadratic Functions Chapter Polynomial and Rational Functions Section.1: Linear and Quadratic Functions Linear Functions Quadratic Functions Linear Functions Definition of a Linear

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Maxima and minima 1 1.1 Applications.................................... 1 2 What derivatives tell us 2 2.1 Increasing and decreasing functions.......................

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.5) Rates of Change: Velocity and Marginals MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives Previously we learned two primary applications of derivatives.

More information

Math 1314 ONLINE Lesson 12

Math 1314 ONLINE Lesson 12 Math 1314 ONLINE Lesson 12 This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based on it. The graph

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have The questions listed below are drawn from midterm and final eams from the last few years at OSU. As the tet book and structure of the class have recently changed, it made more sense to list the questions

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

3. Go over old quizzes (there are blank copies on my website try timing yourself!)

3. Go over old quizzes (there are blank copies on my website try timing yourself!) final exam review General Information The time and location of the final exam are as follows: Date: Tuesday, June 12th Time: 10:15am-12:15pm Location: Straub 254 The exam will be cumulative; that is, it

More information

Math 110 Final Exam General Review. Edward Yu

Math 110 Final Exam General Review. Edward Yu Math 110 Final Exam General Review Edward Yu Da Game Plan Solving Limits Regular limits Indeterminate Form Approach Infinities One sided limits/discontinuity Derivatives Power Rule Product/Quotient Rule

More information

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name.

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name. The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours LAST Name First Name Signature Student Number MATH 104 or MATH 184 (Circle one) Section Number:

More information

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. MATH 121: EXTRA PRACTICE FOR TEST 2 Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. 1 Linear Functions 1. Consider the functions f(x) = 3x + 5 and g(x)

More information

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a Recitation Worksheet 6C f x = x 1 x 4 x 9 = x 14x + 49x 36. Find the intervals on which 1. Suppose ( ) ( )( )( ) 3 f ( x ) is increasing and the intervals on which f ( ). Suppose ( ) ( )( )( ) 3 x is decreasing.

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part.

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part. BARUCH COLLEGE MATH 07 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final eamination for Math 07 will consist of two parts. Part I: Part II: This part will consist of 5 questions. No calculator

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Curve Sketching. Warm up

Curve Sketching. Warm up Curve Sketching Warm up Below are pictured six functions: f,f 0,f 00,g,g 0, and g 00. Pick out the two functions that could be f and g, andmatchthemtotheir first and second derivatives, respectively. (a)

More information

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

Secondary Math 3 Honors Unit 10: Functions Name:

Secondary Math 3 Honors Unit 10: Functions Name: Secondary Math 3 Honors Unit 10: Functions Name: Parent Functions As you continue to study mathematics, you will find that the following functions will come up again and again. Please use the following

More information

Exam 3 Practice Problems

Exam 3 Practice Problems MATH1214 Exam 3 Practice Problems 1. Find the absolute maximum and absolute minimum values of f(x) = x 3 + 3x 2 9x 7 on each of the following intervals (a) [ 6, 4] (b) [ 4, 2] (c) [ 2, 2] 2. Find the absolute

More information

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives Big Picture I MATH 1003 Review: Part 3. The Derivatives of Functions Maosheng Xiong Department of Mathematics, HKUST What would the following questions remind you? 1. Concepts: limit, one-sided limit,

More information

Chapter 14: Basics of Functions

Chapter 14: Basics of Functions Math 91 Final Exam Study Guide Name Chapter 14: Basics of Functions Find the domain and range. 1) {(5,1), (5,-4), (6,7), (3,4), (-9,-6)} Find the indicated function value. 2) Find f(3) when f(x) = x2 +

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

FLC Ch 1-3 (except 1.4, 3.1, 3.2) Sec 1.2: Graphs of Equations in Two Variables; Intercepts, Symmetry

FLC Ch 1-3 (except 1.4, 3.1, 3.2) Sec 1.2: Graphs of Equations in Two Variables; Intercepts, Symmetry Math 370 Precalculus [Note to Student: Read/Review Sec 1.1: The Distance and Midpoint Formulas] Sec 1.2: Graphs of Equations in Two Variables; Intercepts, Symmetry Defns A graph is said to be symmetric

More information