Optimal Investment under Relative Performance Concerns

Size: px
Start display at page:

Download "Optimal Investment under Relative Performance Concerns"

Transcription

1 Opmal Invesmen under Relave Performance Concerns Glles-Edouard ESPINOSA and Nzar TOUZI Cenre de Mahémaques Applquées Ecole Polyechnque Pars Absrac We consder he problem of opmal nvesmen when agens ake no accoun her relave performance by comparson o her peers. Gven N neracng agens, we consder he followng opmzaon problem for agen, N: sup EU λ XT π π A + λ X π T X,π T, where U s he uly funcon of agen, π hs porfolo, X π hs wealh, X,π he average wealh of hs peers and λ s he parameer of relave neres for agen. Togeher wh some mld echncal condons, we assume ha he porfolo of each agen s resrced n some subse A. We show exsence and unqueness of a Nash equlbrum n he followng suaons: - unconsraned agens, - consraned agens wh exponenal ules and Black-Scholes fnancal marke. We also nvesgae he lm when he number of agens N goes o nfny. Fnally, when he consrans ses are vecor spaces, we sudy he mpac of he λ s on he rsk of he marke. Inroducon The semnal papers of Meron [34, 35] generaed a huge leraure exendng he opmal nvesmen problem n varous drecons and usng dfferen echnques. We refer o Plska [36], Cox and Huang [7] or Karazas, Lehoczky and Shreve [24] for he complee marke suaon, o Cvanc and Karazas [8] or Zarphopoulou [39] for consraned porfolos, o Consanndes and Magll [6], Davs and Norman [], Shreve and Soner [37], Duffe Research suppored by he Char Fnancal Rsks of he Rsk Foundaon sponsored by Socéé Générale, he Char Dervaves of he Fuure sponsored by he Fédéraon Bancare Françase, and he Char Fnance and Susanable Developmen sponsored by EDF and Calyon. We are graeful o Jérôme Lebuchoux for nang hs sudy as well as for hs helpful commens and advces. We also hank Jean-Mchel Lasry for hs suppor and for many neresng dscussons and remarks, Chrsoph Fre and Gonçalo dos Res for many helpful dscussons as well as ponng ou some msakes, and fnally, Ramon van Handel and Ronne Srcar for some neresng dscussons.

2 and Sun [3] or Akan, Menald and Sulem [2] for ransacons coss, o Consanndes [5], Joun, Koehl and Touz [22, 23], Damon, Spa and Zhang [9] or Ben Tahar, Soner and Touz [3, 4] for axes, and o He and Pearson [9, 2], Karazas, Lehoczky, Shreve and Xu [25], Kramkov and Schachermayer [28, 29] or Kramkov and Srbu [3] for general ncomplee markes. However, n all of hese works, no neracon beween agens s aken no accoun. The mos naural framework o model such neracon would be a general equlbrum model where he behavour of he nvesors are coupled hrough he marke equlbrum condons. Bu hs ypcally leads o unracable calculaons. Insead, we shall model he neracons based on some smplfed conex of comparson of he performance o ha of he compeors or o some benchmark. A reurn of 5% durng a crss s no equvalen o he same reurn durng a fnancal bubble. Moreover, human bengs end o compare hemselves o her peers. In fac, economc and socologcal sudes have emphaszed he mporance of relave concerns n human behavors, see Veblen [38] for he socologcal par, and Abel [], Gal [7], Gomez, Presley and Zapaero [8] or DeMarzo, Kanel and Kremer [] for economc works, consderng smple models n dscree-me frameworks. In hs paper, we sudy he opmal nvesmen problem under relave performance concerns, n a connuous-me framework. More precsely, here are N parcular nvesors ha compare hemselves o each oher. Agens are heerogeneous dfferen uly funcons and dfferen consrans ses and nsead of consderng only hs absolue wealh, each agen akes no accoun a convex combnaon of hs wealh wh wegh λ, λ [, ] and he dfference beween hs wealh and he average wealh of he oher nvesors wh wegh λ. Ths creaes neracons beween agens and herefore leads o a dfferenal game wh N players. We also consder ha each agen s porfolo mus say n a se of consrans. In he conex of a complee marke suaon where all agens have access o he enre fnancal marke, we prove exsence and unqueness of a Nash equlbrum for general uly funcons. The opmal performances a equlbrum are explc, and herefore allow for many neresng qualave resuls. We nex urn o he case where he agens have dfferen access o he fnancal marke,.e. her porfolo consrans ses are dfferen. Our soluon approach requres o resrc he uly funcons o he exponenal framework, Then, assumng manly ha he agens posons are consraned o le n closed convex subses, and ha he drf and volaly of he log prces are deermnsc, we show he exsence and unqueness of a Nash equlbrum, usng he BSDE echnques nroduced by El Karou and Rouge [4] and furher developed by Hu, Imkeller and Muller [2]. The Nash equlbrum opmal posons are more explc n he case of consrans defned by lnear subspaces. In hs seng, we analyze he lm when he number of players N goes o nfny where he suaon consderably smplfes n he spr of mean feld games, see Lasry and Lons [3]. Noce ha our problem does no f n he framework of [3] for he wo followng reasons. Frs, n [3] he auhors consder smlar agens, whch s no he case n he presen paper, as he uly funcons, he parameers λ s and he ses of consran can be specfc. More mporanly, n [3], he sources of randomness of wo dfferen agens are ndependen. We fnally nvesgae he mpac of he neracon coeffcen λ. Under some addonal 2

3 assumpons, whch are sasfed n many examples, we show ha he local volaly of he wealh of each agen s nondecreasng wh respec o λ. In oher words, he more nvesors are concerned abou each oher λ large, he more rsky s he equlbrum porfolo of each nvesor. However n general, hs can fal o hold. Bu n he lm N goes o nfny, he same phenomenon holds for he average porfolo of he marke, whou any addonal assumpon. Roughly speakng, hs means ha he global rsk of he marke ncreases wh λ, alhough can fal for he porfolo of some specfc agen. Fnally, le us menon ha an earler verson of hs paper conaned n he PhD hess of he frs auhor [5] movaed a very neresng work by Dos Res and Fre [2]. In parcular, [2] hghlghs he dffculy n he exsence and unqueness of he quadrac muldmensonal backward SDE of he presen paper, and esablshed he exsence of a sequenally delayed Nash equlbrum n he general case. Ths paper s organzed as follows. Secon 2 nroduces he problem. In secon 3, we solve he complee marke suaon, for general uly funcons. In secon 4, we deal wh he general case wh exponenal uly funcons and porfolos ha are consraned o reman nsde closed convex ses. In secon 5, we resrc he ses of consrans o lnear spaces whch allows us n parcular o derve some neresng economc mplcaons. Noaons H 2 R m denoes he space of all predcable processes ϕ, wh values n R m, and sasfyng E ϕ 2 d <. The correspondng localzed space s denoed by H 2 loc Rm. When here s no rsk of confuson, we smply wre H 2 and H 2 loc. 2 Problem formulaon Le W be a d-dmensonal Brownan moon on he complee probably space Ω, F, P, and denoe by F = {F, } he correspondng compleed canoncal flraon. We assume ha F s generaed by W. Le T > be he nvesmen horzon, so ha [, T ]. Gven wo F-predcable processes θ akng values n R d and σ akng values n R d d, sasfyng: σ symmerc, defne posve, σ 2 d < + a.s, 2. and θ s bounded, d dp-a.e, 2.2 we consder a marke wh a non rsky asse wh neres rae r = and a d-dmensonal rsky asse S = S,..., S d gven by he followng dynamcs: ds = dags σ θ d + dw, 2.3 where for x R d, dagx s he dagonal marx wh -h dagonal erm equal o x. A porfolo s an F-predcable process {π, [, T ]} akng values n R d. Here π j s he amoun nvesed n he j-h rsky asse a me. Under he self-fnancng condon, he assocaed wealh process X π s defned by: X π = X + π r dags r ds r, [, T ]. 3

4 Gven an neger N 2, we consder N porfolo managers whose preferences are characerzed by a uly funcon U : R R, for each =,..., N. We assume ha U s C, ncreasng, srcly concave and sasfes Inada condons: U = +, U + =. 2.4 In addon, we assume ha each nvesor s concerned abou he average performance of hs peers. Gven he porfolo sraeges π, =,..., N, of he managers, we nroduce he average performance vewed by agen as: X,πj := Xπj. 2.5 The porfolo opmzaon problem of he h agen s hen defned by: V π j := V := sup E [U λ XT π + λ XT π X,πj π A = sup π A E [U X π T λ X,π j T T ], N, ] 2.6 where λ [, ] measures he sensvy of agen o he performance of hs peers, and he se of admssble porfolos A wll be defned laer. Roughly speakng, we mpose negrably condons as well as he consrans π akes values n A, a gven closed convex subse of R d. Our man neres s o fnd a Nash equlbrum n he conex where each agen s small n he sense ha hs acons do no mpac he marke prces S. Defnon 2. A Nash equlbrum for he N porfolo managers s an N uple ˆπ,..., ˆπ N A... A N such ha, for every =,..., N, gven ˆπ j, he porfolo sraegy ˆπ s a soluon of he porfolo opmzaon problem V ˆπ j. If n addon, for each =,..., N, ˆπ s a deermnsc and connuous funcon of [, T ], we say ha ˆπ,..., ˆπ N s a deermnsc Nash equlbrum. Our man resul s he followng: Man Theorem: Assume ha θ and σ are deermnsc and connuous funcons of [, T ], and ha for each =,..., N, U x = e x η for some consan η >, he porfolo consrans ses A are closed convex, and N = λ <. Then, here exss a unque deermnsc Nash equlbrum. In order o smplfy noaons, from now on, we wll wre X := X π and X := X,πj, [, T ]. In secon 3, we shall consder he complee marke suaon n whch he porfolos wll be free of consrans n oher words, A = R d for each. Ths wll be solved for general uly funcons. In he nex secons, we wll derve resuls for more general ypes of consrans, bu we wll focus on he case of exponenal uly funcons: U x = e x η. We wll frs consder he general case n secon 4, and hen n secon 5 we wll focus on he case of lnear consrans, where he A s are vecor subspaces of R d. 4

5 3 The complee marke suaon In hs secon, we consder he case where here are no consrans on he porfolos: A = R d, for all =,..., N. In he presen suaon, he densy of he unque equvalen marngale measure s: dq dp = T e θu dwu 2 θu 2du. 3. We shall denoe by E Q he expecaon under Q. In conras wh he general resuls n he subsequen secons, he complee marke suaon can be solved for general uly funcons. In hs case, he se of admssble sraeges A = A s he se of predcable processes π such ha: σπ H 2 loc Rd and X π s a Q-marngale. 3.2 To smplfy he noaons and presenaon n hs nroducory example, we also assume ha all agens have he same relave performance coeffcen λ: λ = λ [,, for all =,..., N, 3.3 see however Remark 3.. Neverheless, we allow he nvesors o have dfferen uly funcons U and dfferen nal endowmens x R. We denoe: x := xj, =,..., N. 3. Sngle agen opmzaon The frs sep s o fnd he opmal porfolo and wealh f hey exs of each agen, whle he sraeges of oher agens are gven. In oher words, we ry o fnd he bes response of agen o he sraeges of hs peers. As n he classcal case of opmal nvesmen n complee marke, we wll use he convex dual of U x. Snce U s srcly concave and C, we can defne I := U whch s a bjecon from R + ono R because of 2.4. The man resul of hs secon requres he followng negrably condons: for all y >, E U I y dq < and E Q I y dq <. 3.4 dp dp Lemma 3. For any =,..., N, le he sraeges π j A for j be gven. Then, under 3.4, here exss a unque opmal porfolo for he opmzaon problem 2.6 of agen wh opmal fnal wealh: X T = I y dq dp + λ X T, where y s defned by E Q I y dq dp = x λ x. 3.5 Proof. Usng he convex dual of U x, we have for any y > : U XT λ X T U I y dq dq + y XT λ dp dp X T + I y dq. dp The rgh-hand sde s negrable under P by he admssbly condons 3.2 and he negrably assumpons 3.4. The res of he proof s omed as follows he classcal marngale approach n he smple complee marke framework. 5

6 3.2 Paral Nash equlbrum The second sep s o search for a Nash equlbrum beween he N agens. Le X N := XT N be he vecor of ermnal wealh of he nvesors assocaed o π,..., π N. From Lemma 3., π,..., π N s a Nash equlbrum f and only f we have: λ A N X N = J N, where A N = M N R; J N = I y dq. λ dp N Under he condon λ n 3.3, follows ha A N s nverble and we can compue explcly ha: A N = λ + 2 λn+λ λ λn+λ λ λ λn+λ + 2 λn+λ hus provdng he exsence of a unque Nash equlbrum: Theorem 3. There exss a unque Nash equlbrum, and he equlbrum ermnal wealh for each =,..., N s gven by: ˆX T = λ + 2 λn+λ I y dq λ dp + λn+λ I j y j dq dp. Remark 3. In he case of specfc λ s, he prevous argumens can be adaped. In he expresson of A N, λ appears on he -h lne nsead of λ, A N s nverble f and only f N = λ < for more deals, see he proof of Lemma 4.3 below and hen s nverse s gven by:, A N = + λ N k k λ N k +λ N k λ N k +λn +λ N k, and A N j = k λ N +λ N j λ N k +λn +λ N k for j, where we denoed λ N := λ /N. The equlbrum performances are gven by ˆX T = N j= A N ji j y j dq dp, =,..., N. Remark 3.2 In he case λ =, urns ou ha here exs eher an nfny of Nash equlbra or no Nash equlbrum. Indeed, n hs case, A N s of rank N 2. Therefore f J N belongs o he mage of A N, hen here s an affne space of dmenson one of Nash equlbra, whle f J N s no n he mage of A N, hen here s no Nash equlbrum. In parcular, n he exponenal uly conex furher developed below, we drecly compue ha J N = A N x+ 2 η θ θd+dw, where x s he vecor of nal daa x and η s he vecor of rsk olerances η of each agen. Therefore J N belongs o he mage of A N f and only f η belongs o. 6

7 3.3 The exponenal uly case In order o push furher he analyss of he complee marke suaon, we now consder he exponenal uly case: U x = e x η, x R, 3.6 where η > s he rsk olerance parameer for agen,.e. he nverse of hs absolue rsk averson coeffcen. We denoe he average rsk olerance by: η N := N N j= η j. 3.7 In he presen conex, I y = η lnη y, so ha he equlbrum wealh process s: ˆX T = a η dq λ ln dp where a = x + η λ EQ ln dq dp. We denoe by ˆπ,N,λ he correspondng equlbrum porfolo sraegy of agen, where we emphasze s dependence on he parameers N and λ. In order o have explc formulas, we assume ha he rsk premum θ s a deermnsc connuous funcon of. Then, s well-known ha he classcal porfolo opmzaon problem wh no neracon beween managers leads o he opmal porfolos ˆπ, := η σ θ, [, T ]. Proposon 3. In he above seng, he equlbrum porfolo for agen s gven by: [ ] ˆπ,N,λ = k,n λ ˆπ, where k,n λ := λ λn N+λ + λn η N N+λ η. Remark 3.3 Assume furher ha η N η > as N. Then k,n λ + λ parcular, f all agens have he same rsk averson coeffcen η = η >, hen: ˆπ,N,λ = ˆπ λ := λ ˆπ. for all. η λ η. In Remark 3.4 In he case of smlar agens,.e. for any =,..., N, η = η and λ = λ, we can fnd he equlbrum porfolo very easly. Indeed, by symmery consderaons, all he X s mus be equal, X = X, and he opmzaon problem reduces o: sup π Ee λ η X T η λ Ths s he classcal case wh η replaced by, so ha he opmal porfolo s gven by ˆπ = ησ θ/ λ, n agreemen wh our resuls. In he general case of he followng secons, we wll no always be able o conclude anyhng on he behavor of every agen, herefore we nroduce he followng defnon: Defnon 3. The marke ndex and he correspondng marke porfolo are defned by: X := N N = X and π := N N = π, [, T ]. 7

8 We recall he defnon of he Sharpe rao SR and nroduce he varance rsk rao VRR: SR = expeced excess reurn, VRR := volaly expeced excess reurn. 3.8 varance For praccal purposes, he VRR s a beer creron for he wo followng reasons: VRR s robus o he nvesmen duraon, whle SR s no: for a me perod L and a scalar k >, we have SRkL = k SRL, whle VRRkL = VRRL. VRR accouns for he llqudy rsk relaed o he sze of he poson, whle SR does no: for a porfolo X and a scalar k >, we have SRkX = SRX and VRRkX = VRRX/k. We have he followng resuls for he mpac of λ: Proposon 3.2 For any lnear form ϕ, ϕˆπ,n,λ s ncreasng w.r. λ. The dynamcs of he marke ndex and he correspondng marke porfolo are gven by: d X = η N λ θ [θd + dw ] and π = η N λ σ θ. In parcular, for any lnear form ϕ, ϕ π s ncreasng w.r. λ. Proof. s mmedae, so we only prove. By Proposon 3., ˆπ,N,λ = k,n λ ˆπ,, and we decly compue ha: [ k,n λ λ = N + λ + N λ + N λ ] η N λ 2 N+λ 2 η. By defnon of η N n 3.7 and he fac ha η j for all j, we have η N η Therefore: N N. λ 2 N + λ 2 k λ λ NN + λ λn N 2 λ N λ + λn 2 N + >. In words, Proposon 3.2 saes ha he more nvesors are concerned abou each oher, he more rsk hey wll underake. In each nvesmen drecon, he global poson of agens, descrbed by ϕ π, wll ncrease wh λ and n he lm λ, we even have a lm of nfne posons ϕ π a.s. Furhermore, he drf and volaly of he marke ndex are boh ncreasng w.r. λ. The correspondng Sharpe rao s SR = θ, ndependen of λ, whle he varance rsk rao s VRR = λ η N, a decreasng funcon of λ. Ths s a perverse aspec of he presen fnancal markes whch may provde an explanaon of he emergence of fnancal bubbles, when managers use he Sharpe rao as a relable ndcaor. 8

9 3.4 General equlbrum In he prevous secons, he prce process S was gven exogeneously. We now analyze he effec of he relave performance coeffcen λ when he prce process S s deermned a he equlbrum. For each fxed prce process S, defned as n Secon 2, here exss a unque Nash equlbrum n he sense of Defnon 2.. Smlar o Karazas and Shreve [27], our objecve s o search for a marke equlbrum prce S whch s conssen wh marke equlbrum condons: N = π,j = K j S j for all j =,..., d and [, T ], 3.9 N = x = d j= Kj S j, 3. where K j s a consan such ha K j S j s he marke capalzaon of he j-h frm. Equaon 3.9 says ha he oal amoun nvesed n he socks of he j-h frm s equal o he marke capalzaon of hs frm. Equaon 3. says ha he nal endowmen of he nvesors equals he nal marke capalzaons. Wh :=,..., T R d, we observe ha 3.9 and 3. mply ha N = X = N = x + π dags ds = N = x + d j= Kj ds j = N = x + d j= Kj S j Sj = d j= Kj S j = N = π,.e. he oal amoun nvesed n he non-rsky asse s zero a any me [, T ]. Defnon 3.2 We say ha a process S s an equlbrum marke f here exss a Nash equlbrum ˆπ = ˆπ,..., ˆπ N assocaed o he prce dynamcs S, n he sense of Defnon 2., such ha S and ˆπ sasfy 3.9 and 3.. In order o smplfy noaons, we se K j = k j N, and k := k,..., k d. Proposon 3.3 Le θ be a deermnsc and connuous funcon of [, T ]. Then here exss an equlbrum marke whose rsk premum s θ. Moreover, n hs equlbrum marke, he marke ndex s gven by: X = x + η N λ θ θd + dw, [, T ]. Proof. By Proposon 3.2, follows ha S = η N λ dagkσ θ. Noce ha he prevous equaon does no defne σ unquely for d >. Conversely, le θ be some gven connuous funcon. Then we can choose a dagonal marx σ = σ, S, wh dagonal elemens σ, S = η N θ. λk S 9

10 Noce ha σ sasfes he condons for S o be a srong soluon of 2.3. Then, follows from Proposon 3. ha: d X = N N = dx = N N = ˆπ dags ds = η N λ θ θd + dw. We nex analyze he mpac of λ on he drf and he volaly of he marke ndex. Despe he mulplcy of marke equlbra, hey all lead o he smlar conclusons. Le us for example assume ha he rsk premum s ndependen of λ. Then he drf of he marke ndex s η θ 2 / λ and he volaly s η θ / λ, hus boh are ncreasng w.r. λ, and wh he same order. We may nerpre hs equlbrum as a fnancal bubble, where he reurn and he volaly are boh ncreased by he agens neracons. An alernave nerpreaon for a fund manager s ha, for he same gven reurn, he agens neracon coeffcen ncreases he volaly of he opmal porfolo. Noce ha n he presen seng, he varance rsk rao VRR = λ/η s decreasng n λ and ends o zero as λ. Ths ndcaes ha, accordng o hs creron, he agens neracons lead o marke neffcency. 4 General consrans wh exponenal uly In he res of hs paper, we consder a general case wh consraned porfolos. We assume: A s a closed convex se of R d, for all =,..., N. 4. We denoe by P he orhogonal projecon on σ A, whch s well-defned by 4.. For x R d, we denoe dsx, σ A := x P x he Eucldean dsance from x o he closed convex subse σ A. Remark 4. Recall ha for a closed convex se A n a Eucldean space, he orhogonal projecon on A, denoed P, s well-defned, s a conracon, and sasfes for any x, y R d : P x P y 2 x y P x P y x y 2. Moreover, P x s he only pon sasfyng x P x a P x for all a A. For echncal reasons, we resrc our analyss o exponenal uly funcons 3.6. Defnon 4. The se of admssble sraeges A s he collecon of all predcable processes π wh values n A, d dp a.e., such ha σπ H 2 loc Rd and such ha he famly { } e ±Xπ τ Xν π ; ν, τ soppng mes on [, T ] wh ν τ a.s 4.2 s unformly bounded n L p P for all p >. In comparson wh he admssbly condons of secon 3, he prevous defnon requres he unform boundedness condon of he above famly, whch s needed n order o prove a dynamc programmng prncple smlar o Lm and Quenez [32].

11 4. A formal argumen In hs secon, we provde a formal argumen whch helps o undersand he consrucon of Nash equlbrum of he subsequen secon. For fxed =,..., N, we rewre 2.6 as: V := sup E [U XT π ξ ], where ξ := λ X,π T =: λ x + ξ. 4.3 π A Then, followng El Karou and Rouge [4] or Hu, Imkeller and Müller [2], we expec ha he value funcon V and he correspondng opmal soluon be gven by: V = e x λ x Ỹ /η, σ ˆπ = P ζ + η θ for all [, T ], and Ỹ, ζ s he soluon of he quadrac BSDE: Ỹ = ξ + where he generaor f s gven by: ζ u θ u η 2 θ u 2 + f u ζ u + η θ u du ζ u dw u, T, 4.4 f z := 2η dsz, σ A 2, z R d. 4.5 Ths suggess ha one can search for a Nash equlbrum by solvng he BSDEs 4.4 for all =,..., N. However, hs rases he followng dffcules: - he fnal daa ξ does no have o be bounded as s defned n 4.3 hrough he performance of he oher porfolo managers; - he suaon s even worse because he fnal daa ξ nduces a couplng of he BSDEs 4.4 for =,..., N. To express hs couplng n a more ransparen way, we subsue he expressons of ξ and rewre 4.4 for = no: Ỹ = η ξ + f uζ udu ζu λ N Puζ j u j db u where B := W +. θ rdr s he Brownan moon under he equvalen marngale measure, λ N := λ N, ζ := ζ + η θ, [, T ], 4.6 and he fnal daa s expressed n erms of he unbounded r.v. ξ := θ u db u 2 Then Ỹ = Y, where Y, ζ s defned by he BSDE Y = η ξ + f uζ udu ζ u λ N θ u 2 du. 4.7 Puζ j u j db u. 4.8 In order o skech 4.8 no he BSDEs framework, we furher nroduce he mappng ϕ : R Nd R Nd defned by he componens: ϕ ζ,..., ζ N := ζ λ N P j ζj for all ζ,..., ζ N R d. 4.9

12 I urns ou ha he mappng ϕ s nverble under farly general condons. We shall prove hs resul n Lemma 4.3 for general convex consrans and n Lemma 5. n he case of lnear consrans. We denoe ψ := ϕ and ψz he -h block componen of sze d of z. Then one can rewre 4.8 as: ϕ Y = η ξ + where he generaor f s now gven by: f uz u du Z u db u, 4. f z := f ψ z for all z = z,..., z N R Nd. 4. A Nash equlbrum should hen sasfy for each : 4.2 Auxlary resuls ˆπ = σ P ψ Z, =,..., N. 4.2 Our frs objecve s o verfy ha he map ϕ nroduced n 4.9 s nverble. The crucal condon for he res of hs secon s: N λ <. 4.3 Recall he noaon λ N from 4.6. Lemma 4. Under 4. and 4.3, for any [, T ], he map I + λ N j P j on R d and s nverse s a conracon, for all j =,..., N. s a bjecon Proof. Le [, T ] be fxed, for ease of noaon, we om all subscrps. Snce σ A j s a closed convex se, from Remark 4., x y P j x P j y P j x P j y 2, for any x, y R d. Noce ha I + λ N j P j s a bjecon f and only f, for all y R d, he map f y x := y λ N j P j x 4.4 has a unque fxed pon. Snce P j s a conracon, we compue, for any x, x n R d : f y x f y x = λ N j P j x P j x λ N j x x = λ j x x. Case : If N 3 or λ j <, hen f y s a src conracon of R d. We prove now ha he nverse of I + λ N j P j s a conracon. Indeed f x y, we have: x y + λ N j P j x P j y 2 = x y 2 + λ N j 2 P j x P j y 2 + 2λ N j x y P j x P j y x y 2 >, 4.5 where we used he fac ha x y P j x P j y, see Remark 4.. Case 2: If N = 2 and λ j =, f y fals o be a src conracon. However, 4.5 sll holds, and mples ha I + P j s one-o-one. Usng Lemma 4.2 below, we ge he bjecon propery of I + P j and he conracon propery of he nverse funcon follows from

13 Lemma 4.2 Le A be a closed convex se of R d. Then I + P A R d = R d. Proof. Le B := 2A = {y R d ; x A, y = 2x}, and le us prove ha P A y 2 P By = 2 P By for all y R d. 4.6 Ths mples ha y = I + P A y 2 P By I + P A R d for all y R d, whch gves he requred resul. To prove 4.6, defne x := 2 P By and z := y 2x. By Remark 4., P B y s he only pon n B sasfyng y P B y b P B y for all b B. In oher words, we have for any b B, z b 2x, or by defnon of B, for any a A, z 2a 2x. hence: x + z x a x for all a A, whch means ha x = P A x + z and herefore I + P A x + z = x + z + x = y. Recall he defnon of ϕ n 4.9. Lemma 4.3 Under 4. and 4.3, we have for [, T ]: ϕ s a bjecon of R Nd, and we wre ψ := ϕ. ψ s Lpschz connuous wh a consan dependng only on N and he λ s. Proof. For ease of noaon, we om all subscrps. For arbrary z = z,..., z N n R Nd, we wan o fnd a soluon ζ R Nd o he followng sysem: ϕ ζ = ζ λ N P j ζ j = z, N. 4.7 Subsracng λ j mes equaon o λ mes equaon j n 4.7, we see ha: λ I + λ N j P j ζ j = λ j I + λ N P ζ + λ z j λ j z,, j =,..., N From Lemma 4., we know ha I + λ N j P j s a bjecon, hus from 4.8, we compue: P j ζ j = λj λ P j I + λ N j P j I + λ N P ζ + λ z j λ j z, so ha, from 4.7: ζ = z + N P j I + λ N j P j λj I + λ N P ζ + λ z j λ j z =: g,z ζ We nex show ha, under Condon 4.3, g,z has a unque fxed pon. We have: I + λ N j P j x I + λ N j P j y 2 = x y 2 + 2λ N j x y P j x P j y + λ N 2 j P j x P j y 2 + 2λ N j + λ N 2 j P j x P j y 2 + λ N j 2 P j x P j y 2. 3

14 Therefore, P j I +λ N j P j s -Lpschz. Then, snce I +λ N +λ N P s +λ N -Lpschz: j g,z x g,z y λ j + λ N x y. Noce ha λ j +λ N j +λ N j + λ N maxλ, λ j, wh equaly f and only f λ = λ j. Therefore, Condon 4.3 mples ha K := λ j +λ N j + λ N <, where K depends only on N and he λ j s. Then, g,z s a src conracon and adms a unque fxed pon ha we wre {ψz}. I s hen mmedae ha ζ = ψz s he unque soluon of Fnally we prove ha ψ s Lpschz wh a consan dependng only on N and he λ j s. Le z, z 2 R Nd, from 4.9, we compue: ψz ψz 2 z z2 + K ψz ψz sup z j zj 2. j N Snce K := sup j N K j <, we ge sup j N ψz j ψz 2 j 3 K sup j N z j zj 2, whch complees he proof snce K depends only on N and he λ j s. 4.3 The man resuls Smlar o he classcal leraure on porfolo opmzaon wh exponenal uly El Karou and Rouge [4], Hu, Imkeller and Muller [2], Mana and Schwezer [33], we frs esablsh a connecon beween Nash equlbra and a quadrac mul-dmensonal BSDE. Theorem 4. Under 4. and 4.3, le π,..., π N be a Nash equlbrum. Then: π = σ P ψ Z and V = e x η λ x Y, where Y, Z H 2 R N H 2 loc RNd s a soluon of he followng N-dmensonal BSDE: and ξ s defned by 4.7. Y = η ξ + I P 2η u ψuz u 2 du Zu db u, 4.2 Proof. See Secon 4.5. Unforunaely, he wellposedness of he BSDE 4.2 s an open problem n he presen leraure, hus prevenng Theorem 4. from provdng a characerzaon of Nash equlbra, see also [2]. Our second man resul focuses on he mul-dmensonal Black-Scholes fnancal marke, where we can guess an explc soluon o he BSDE 4.2. Alhough no unqueness resul s avalable for he BSDE 4.2 n hs conex, he followng complee characerzaon s obaned by means of a PDE verfcaon argumen. In vew of Lemma 4.3, under Condon 4.3, he maps ψ x := ψ η x,..., η N x for all x R d, =,..., N, [, T ], 4.2 are well-defned and Lpschz connuous on R d. 4

15 Theorem 4.2 Under 4. and 4.3, assume ha σ and θ are deermnsc connuous funcons. Then here exss a unque deermnsc Nash equlbrum: ˆπ = σ P ψ θ for all [, T ], 4.22 Moreover, he value funcon for agen a equlbrum s gven by: V = e x η λ x Y, Y = η θ 2 d + I P 2 2η ψ θ 2 d. Proof. See Secon 4.6. We conclude hs secon by wo smple examples. More neresng suaons wll be obaned laer under he addonal condon ha he consrans ses are lnear. Example 4. Common nvesmen Le σ = I d, λ = λ, η = η, and A = Bx, r for some x R d and r >, =,..., N. Here Bx, r s he closed ball cenered a x wh radus r > for he canoncal eucldean norm of R d. Usng Theorem 4.2, we compue he followng equlbrum porfolo: ηθ ηθ f ˆπ = P ηθ λ λ Bx, r λ = r x + ηθ ηθ λ x λ x oherwse. Noce n parcular ha, as one could expec, ˆπ x s colnear o ηθ λ x and ha ˆπ s n he boundary of Bx, r whenever ηθ λ Bx, r. One can prove ha ˆπ s nondecreasng w.r. λ and η. Noce also ha hs expresson s ndependen of N. Example 4.2 Specfc ndependen nvesmens Le σ = I d, λ = λ, η = η, and A = [a, b ]e, for some a b, =,..., N. Here e j, j d s he canoncal bass of R d. Usng Theorem 4.2, we compue he followng equlbrum porfolo for agen : ˆπ = P ηθ = a ηθ b. Ths s exacly he same expresson as n he classcal case wh no neracon beween managers. Hence, The equlbrum porfolo s no affeced by λ and N. Remark 4.2 Suppose ha he porfolo consrans ses A are no convex. Then, we have o face wo major problems. Frs, he projecon operaors A are no well-defned. Second, and more mporanly, he map ϕ may fal o be one-o-one or surjecve ono R Nd. The falure of he one-o-one propery means ha here could exs more han one Nash equlbrum. However he falure of he surjecvy ono R Nd, as llusraed by Examples 6. and 6.2 n he Appendx secon, would lead o a consraned N-dmensonal BSDE wh no addonal nondecreasng penalzaon process. Such BSDEs do no have soluons even n he case of Lpschz generaors, meanng ha here s no Nash equlbrum n hs conex. 5

16 4.4 Infne managers asympocs In he spr of he heory of mean-feld games, see Lasry and Lons [3], we examne he suaon when he number of mangers N ncreases o nfny wh he hope of geng some more explc qualave resuls wh behavoral mplcaons. In hs secon, we assume ha he number of asses d s no affeced by he ncrease of he number of managers, see however he examples of secon 5.3. We also specalze he dscusson o he case where he agens have smlar preferences and only dffer by her specfc access o marke. The followng resul s smlar o Proposon 5. n [6]. Therefore he proof s omed. Proposon 4. Le λ j = λ [, and η j = η > for all j. Assume N N = P U unformly on any compac subses, for all [, T ] resp. unformly on [, T ] K, for any compac subse K of R d. Then: ˆπ,N ˆπ, := σ P I U λi η θ + U for all [, T ] resp. unformly n [, T ]. 4.5 Proof of Theorem 4. Assume ha π,..., π N s a Nash equlbrum for our problem. Frs, by Hölder s nequaly, he admssbly condons for all =,..., N mply ha e X η T λ X T belongs o L p, for any p >. Le T be he se of all soppng mes wh values n [, T ], we defne he followng famly of random varables: [ J,π τ := E e η τ σuπu dbu λ X T x Fτ ], 4.23 V τ := ess sup π A J,π τ for all τ T so ha V = e η x λ x V By Lemma 4.4 below, he famly {V τ; τ T } sasfes a supermarngale propery. Indeed, le β,π := e η σuπu dbu for all π A, we have: β,π τ V τ Eβ,π θ V θ F τ for all soppng mes τ θ. Then, we can exrac a process V whch s càdlàg and conssen wh he famly defned prevously n he sense ha V τ = V τ a.s see Karazas and Shreve [26], Proposon I.3.4 p.6, for more deals. Moreover, hs process also sasfes he dynamc programmng prncple saed n Lemma 4.4, so ha for any π A, he process β,π V s a P-supermarngale. The defnon of a Nash equlbrum mples ha π s opmal for agen,.e. V = sup E e η X T π x λ X T x = E e X η T π x λ X T x, 4.25 π A whch mples ha he process β, π V s a square negrable marngale, as he condonal expecaon of a r.v. n L We now show ha he adaped and connuous process: γ := X π x + η ln β, π V, [, T ],

17 solves he requred BSDE. 2.a. Frs, by Jensen s nequaly, and he fac ha ln x x for any x >, we have: [ E XT π x λ η X ] T x X F ln β, π V E [ e η π T x λ X ] T x F By he admssbly condons, boh sdes of 4.27 belong o H 2, as condonal expecaons of random varables n L 2. Snce X π s also n H 2, we see ha γ s n H 2. Then, for all π A, we have ha: M,π := e η X π x γ = M e η X π X π, [, T ], where M = β, π V s a square negrable marngale. By Hölder s nequaly, follows ha e X η π X π L p for all p >. Then M,π s negrable. 2.b. In hs sep, we prove ha M,π s a supermarngale for all π A. Assume o he conrary ha here exss π A, s and A F s, wh PA > and such ha: E e X η π x γ F s > e X η s π x γ s on A, and le us work owards a conradcon. Defne: ˆπ u ω := π u ω {[s,t ] A} u, ω + π u ω {[s,t ] A c }u, ω. Snce A F s, usng Hölder s nequaly, we see ha ˆπ A and we have: [ { V E e X η ˆπ T x γt = E E e X η ˆπ T x γt }] F = E e X η ˆπ x γ by he fac ha ˆπ = π on [, T ]. Snce P[A] >, hs mples ha: [ { V E E e X η ˆπ x γ }] Fs > E e X η s ˆπ x γ s γ = e η = V, whch provdes he requred conradcon. 2.c. Snce M = β, π V s a marngale, follows from he marngale represenaon heorem ha M s an Iô process. Therefore 4.26 mples ha γ s also an Iô process defned by some coeffcens b and ζ : dγ = b d + ζ dw wh γ, ζ H 2 R H 2 loc Rd Moreover, by Jensen s nequaly, ln M, π s a supermarngale, and by 4.27 s bounded n L 2. Therefore adms a Doob-Meyer decomposon ln M, π = N + A, where N s a unformly negrable marngale and A a decreasng process. The marngale represenaon heorem hen mples ha here exss a process δ H 2 loc Rd such ha N = δ u dw u. Usng 4.27 and 4.28, we ge ζ = σ π + η δ. 2.d. We nex compue he drf of M,π. From he prevous supermarngale and marngale properes of M,π and M, respecvely, ogeher wh 4.28, we ge: b 2η σ π ζ + η θ 2 η 2 θ 2 ζ θ for all π A, and b = 2η σ π ζ + η θ 2 η 2 θ 2 ζ θ. 7

18 Ths mples ha: π = σ P ζ + η θ b = f, ζ = 2η dζ + η θ, σ A 2 η 2 θ 2 ζ θ, 4.29 and herefore γ, ζ H 2 R H 2 loc Rd s a soluon of he BSDE: dγ = ζ θ + η θ 2 I P ζ + η θ 2 d + ζ dw 2 2η γt = λ X T x = λ N π u j σ u dw u + θ u du. Recallng ha db = dw + θ d, we can wre : dγ = η θ 2 2 η I 2 P ζ + η θ 2 d + ζ db γt = λ X T x = λ N πj u σ u db u We fnally pu ogeher he N BSDEs obaned n Sep 2. Snce π,..., π N s a Nash equlbrum, equaon 4.3 holds for each =,..., N. Replacng he value of π j by 4.29 n he expresson of γ and wrng Γ := ζ + η θ, we see ha γ, Γ mus sasfy for each [, T ]: γ = λ N P j uγ j u db u η 2 θ u 2 du+ I P 2η uγ u 2 du so ha he adaped process Y := γ η 2 θ u 2 du+ η 2 θ u db u λ N [, T ], sasfes: Y = η ξ + I P 2η uγ u 2 du Γ u λ N wh Y, Γ H 2 R H 2 loc Rd. We fnally defne: Z := ϕ Γ = Γ λ N P j Γj. Γ u η θ u db u, P uγ j j u db u, PuΓ j j u db u. Under 4.3, usng Lemma 4.3, we know ha ϕ s nverble. As a consequence, Y, Z H 2 R N H 2 loc RNd s a soluon of he followng sysem of BSDEs: Y = η ξ + I P ψ 2η Z 2 d Z db. Moreover, for each, he equlbrum porfolo s gven by: σ π = P [ ψ Z ], [, T ]. The followng dynamc programmng prncple was used n Sep of he prevous proof. 8

19 Lemma 4.4 Dynamc Programmng For any soppng mes τ ν n T, we have: [ V τ = ess sup E e ν η τ σuπu,dbu V ν F τ ], =,..., N. π A Proof. Le τ ν T a.s. We frs oban by he ower propery ha: [ [ V τ = ess sup E E e η ν σuπu dbu λ X T x ] Fν e ν ] η τ σuπu dbu Fτ π A ess sup π A E [ e ν η τ σuπu dbu V ν F τ ]. To prove he converse nequaly, we fx π A and we observe ha J,π ν defned by 4.23 depends on π only hrough s values on ν, T. Therefore we have he deny: V ν = ess sup π A ν J,π ν, where A ν := {π A ; π = π on, ν, d dp-a.e}. We nex observe ha he famly {J,π ν, π A ν} s closed under parwse maxmzaon. Indeed, le π, π 2 n A ν, A := {ω Ω; J,π νω J,π 2 νω} and defne he process π := A π + Ω\A π 2. Snce π = π 2 = π on, ν, and A F ν, s mmedae ha π T. We compue Ee ± p η X π τ X π ν = Ee ± p η τ ϑ σπ db A + Ee ± p η τ ϑ σπ2 db Ω\A, so ha snce π, π 2 A ν, he famly {e ± η X π τ X π ϑ ; ϑ τ T } s unformly bounded n any L p, p >. Therefore, π A ν and s mmedae ha J,π ν = maxj,π ν, J,π 2 ν. Then follows from Theorem A.3, p.324 n Karazas and Shreve [27], ha here exss a sequence ˆπ n sasfyng: n, ˆπ n = π on, ν J,ˆπn ν s non-decreasng and converges o V ν. Then we have: J,ˆπn τ = E [J,ˆπn νe ν ] η τ σuπ u db u Fτ. Snce J,ˆπn ν s non-decreasng and converges o V ν, follows from he monoone convergence heorem ha: V τ E [e ν ] η τ σuπ u db u V ν F τ, and he requred nequaly follows from he arbrarness of π. 4.6 Proof of Theorem 4.2. We frs prove ha he porfolo 4.22 s ndeed a Nash equlbrum. The dea s o show ha we can make he formal compuaons of Secon 4. n he reverse sense..a. Le ξ := θu.db u 2 9 θu 2 du, [, T ], 4.3

20 Snce θ and σ are deermnsc and connuous funcons, he funcons P s are also deermnsc and connuous w.r.., z [, T ] R d. Le us prove ha he same holds for ψ, and herefore for ha ˆπ := σ P ψz s deermnsc and connuous w.r.. [, T ]. Indeed, s mmedae ha ϕ s deermnsc and connuous w.r.., ζ, so ha ψ s a deermnsc funcon of, z. Then, from Lemma 4.3, under Condon 4.3, ψ s Lpschz n z, unformly n, so ha here exss a consan K > such ha for all [, T ], and all z, z R d, ψ z ψ z z z. Le n, z R Nd, and ζ := ϕ z. We defne z n := ϕ n ζ for each n. Snce ϕ s connuous w.r., z n z, and we have, for all n, ψ n z n = ζ, so ha ψ n z ζ = ψ n z ψ n z n K z z n. Therefore ψ s connuous w.r... Then f z n z and n, we compue ψ n z n ψ z ψ n z n ψ n z + ψ n z ψ z, snce ψ s connuous w.r.. and Lpschz n z unformly n. As a consequence, we can defne he followng adaped and connuous processes: Z := η θ and Y := η ξ + 2η I P u ψ uz u 2 du, [, T ]. Then, we drecly verfy ha Y, Z sasfes he followng N-dmensonal BSDE: Y = η ξ + I P 2η u ψuz u 2 du Zu db u. Se: γ = Y + η 2 θu 2 du η θu db u + λ N ζ = ψ Z η θ = ψ η I θ. P j uψ j uz u db u By he same compuaons as n Secon 4., we see ha for all =,..., N, γ, ζ s a soluon of he -dmensonal BSDE: dγ = ζ θ + η θ 2 I P ζ + η θ 2 d + ζ dw 2 2η γt = λ N ˆπ u j σudw u + θudu. Then usng he defnon of ϕ and ψ we can rewre γ as: γ = η 2 = η 2 = η 2 θu 2 du + 2η θu 2 du + 2η θu 2 du + 2η I P u ψ uθu 2 du + λ N I P u ψ uθu 2 du + I P u ψ uθu 2 du + ζ u db u P j u[ψ u Z u ] j db u ψ u η I θu db u..b. Throughou hs sep, we fx an neger {,..., N}, and we defne: M π := e η X,π x γ for all π A. 2

21 By Iô s formula, follows ha M π s a local supermarngale for each π A, and M ˆπ s a local marngale. Then, here exs ncreasng sequences of soppng mes τ π n n T, such ha for each π, τ π n T a.s and for each n and any s : E[M π τ π n F s] M π s τ π n for all π A and E[M ˆπ τ ˆπ n F s] = M ˆπ s τ ˆπ n We nex nroduce he measure Q, equvalen o P, defned by s Radon-Nkodym densy: L = dq ψ η u I = e θu dw u 2 ψ η u I θu 2 du dp F We denoe by E he expecaon operaor under Q. Snce θ s a deermnsc and connuous funcon on [, T ], η 2 θu 2 du+ 2η I Pu ψ uθu 2 du s bounded. Then, for any π A : EM τ π n = [ L E e X η τn π x τn 2 θu 2 du+ 2η 2 τn I P u f u θu 2 du s ] e τn η ψ u I θu θudu+ 2 τn η ψ u I θu 2 du, 4.34 where we smply denoed τ n := τ π n. In 4.34, all he erms nsde he expecaon oher han e X η π τn are bounded. We shall prove n Sep.c below ha he famly {e X η π τ ; τ T } s unformly negrable under Q. Hence, he sequence of processes nsde he expecaon n 4.34 s unformly negrable under Q, and we may apply he domnaed convergence heorem o pass o he lm n, and we oban lm n EM τ π n = EM π. Togeher wh 4.32, hs mples ha: E e η X π x γ e η γ for all π A and E e η X ˆπ x γ = e η γ. Mulplyng by e x η λ x, we fnally ge V = e x η λ x Y, snce Y = γ, and ˆπ s opmal for agen. Hence ˆπ,..., ˆπ N s a Nash equlbrum..c. In hs sep, we prove ha he famly {Y τ := e X η τ,π : τ T } s Q unformly negrable for all π A. Fx some p >. Then by he admssbly condon, he famly {Y τ : τ T } s unformly bounded n L p P. Wh r := + p/2, follows ha he famly {Y r : τ T } s unformly negrable. Then for all c > and τ T, follows from Hölder s nequaly: E Q [Y τ Yτ c] = E [ L ] T Y τ Yτ c L T L q P Yτ r Yτ c L r P. where q s defned by /q + /r =. Snce {Y r : τ T } s unformly negrable, he las erm unformly goes o as c. 2. We now prove unqueness by usng a verfcaon argumen. 2.a. Le π,..., π N be a deermnsc Nash equlbrum, and defne for all =,..., N: u, x, y := e η x λ y 2 θu 2 du+ 2η 2 I Pu η θu+λ σu π N u 2 du

22 where π N u := πj u. Snce π j s a connuous funcon for all j =,..., N, he funcons u are C n he varable. Drec calculaon reveals ha u s a classcal soluon of he equaon: u sup p A L p u = and u T, x, y = e x λ y/η where for all p A, L p s he lnear second order dfferenal operaor: L p := σ π N θ y + σ π 2 N 2 yy 2 +σp.θ x + σp σ π N 2 xy + 2 σp 2 2 xx, and he supremum s aaned a a unque pon π := σ P η θ + λ σ π N b. In hs sep, we prove ha u, X, X = V. Frs, by Iô s formula we have for all π A : u, x, y = u τ n, Xτ π n, X τn τ n L π u r, Xr π, X τn rdr π π N r σrdwr, 4.37 where τ n := nf{r, X π r x n or X r x n}. Takng condonal expecaons n 4.37, and usng he fac ha L π u for any π A, we ge: u, x, y E,x,y u τ n, X π τ n, X τ n for all π A Snce he π j s, σ and θ are connuous deermnsc funcons and π A, follows from Hölder s nequaly ha {e η X τ λ X τ, τ T } s unformly bounded n any L p. By he defnon of U, hs propery s mmedaely nhered by he famly {u τ, X π τ, X τ, τ T }. Therefore, akng he lm n n 4.38, we ge u, x, y E,x,y e X η π T λ X T. By he arbrarness of π A, hs mples ha u, X, X V. We nex observe ha π A and he nequaly n 4.38 s urned no an equaly f π s subsued o π. By he domnaed convergence heorem, hs provdes: u, x, y = E,x,y e η X π T λ X T, whch, n vew of 4.38, shows ha u, X, X = V. 2.c. To see ha he connuous deermnsc Nash equlbrum s unque, consder anoher connuous deermnsc Nash equlbrum ˆπ,..., ˆπ N, and denoe by û he correspondng value funcons as n I suffces o observe ha L π û < on any non-empy open subse B of [, T ] such ha π π on B, and he nequaly 4.38 s src. Therefore, any Nash equlbrum mus sasfy 4.36 for every =,..., N. 22

23 Se ˆγ := σˆπ, and le ˆγ be he marx whose -h lne s ˆγ. From he prevous argumen, ˆπ,..., ˆπ N s a Nash equlbrum f and only: Γ ˆγ := P η θ + λ N = ˆγ, =,..., N, [, T ], 4.39 ˆγ j.e. ˆγ s a fxed pon of Γ for all [, T ]. Usng Lemma 4.5 below, we have he unqueness of a Nash equlbrum. Fnally, he expresson for V a equlbrum follows from he las saemen of Lemma 4.5 ogeher wh Recall he funcon ψ defned n 4.2. Lemma 4.5 Under 4.3, he funcon Γ defned n 4.39 has a unque fxed pon ˆγ for all [, T ], gven by: ˆγ = P ψ θ and sasfyng ψ θ = η θ + λ N ˆγj. Proof.. Snce P s a conracon, we compue: Γ x Γ x 2 := N = Γ x Γ x 2 N = xj xj 2 = x x 2, provng ha Γ s a conracon. 2. We nex show ha Γ 2 := Γ Γ s a src conracon. Indeed, under 4.3, we may assume whou loss of generaly ha λ <. Then: Γ Γ x Γ Γ x 2 λ N so ha: Γ 2 x Γ 2 x 2 N Γj x Γ j x 2 λ N λn j k j λn λn j xk xk 2 k j xk xk 2, = λ N 2 k= N 2 xk xk 2 + k xk xk 2 + N 2 x x 2 + +N 22 k 2 xk xk 2 λ N 2 + N 22 + x 2 2 x 2. Observe ha N 2 + N + N 2 2 = N 2. Then λ < mples ha Γ 2 s a src conracon. 3. Therefore Γ n s a src conracon as well for any n 2. As a consequence, Γ 2, Γ 3 and Γ 6 respecvely adm a unque fxed pon x 2, x 3 and x 6 resp. I s mmedae ha x 2 and x 3 are also fxed pons for Γ 6, herefore x 2 = x 3 = x 6, and fnally x 2 = Γ 3 x 2 = Γ Γ 2 x 2 = Γ x 2, so ha x 2 s a fxed pon of Γ. The unqueness s mmedae snce a fxed pon of Γ s also a fxed pon of Γ Le Θ R Nd be defned by Θ = η θ. By defnon of ψ n Lemma 4.3, ϕ ψ Θ = η θ for all =,..., N. Usng he defnon of ϕ n 4.9, hs mples ha: ψθ = η θ + λ N P j ψj Θ. 4.4 Applyng P and seng ˆγ = P ψθ, hs provdes ˆγ = Γ ˆγ, for each =,..., N. By he defnon of ψ ogeher wh he expresson of ψ, we have ψ θ = ψθ, so ha ˆγ = P ψ θ. Pluggng no 4.4 provdes he las saemen of he Lemma. 23

24 5 Lnear porfolo consrans We now focus on he case where he ses of consrans are such ha: A s a vecor subspace of R d, for all =,..., N. 5. Our man objecve n hs secon s o explo he lneary of he projecon operaors P n order o derve more explc resuls. 5. Nash equlbrum under lnear porfolo consrans In he presen conex, we show ha Condon 4.3 n Theorem 4.2 can be weakened o N = λ < or N = A = {}. 5.2 In vew of Lemma 4. whch s obvous n he presen lnear case, he map R := λ jp j I + λ N j P j I + λ N P 5.3 s well-defned. Moreover, for any j =,..., N, snce P j I + λ N j P j λ = I N j P j +λ N, so ha: j s a projecon, we compue ha R = λ N j +λ N j P j I + λ N P. The followng saemen s more precse han Lemma 4.3. Lemma 5. Le A N be vecor subspaces of R d. Then for all [, T ]: he lnear operaor ϕ s nverble f and only f 5.2 s sasfed, hs condon s equvalen o he nverbly of he lnear operaors I R, =,..., N, under 5.2, he -h componen of ψ = ϕ s gven by: ψ z = I R z + +λ N j P j λn zj λ N j z. The proof of hs lemma s repored n Secon 5.4. We now proceed o he characerzaon of Nash equlbra n he conex of he mulvarae Black-Scholes fnancal marke. From Lemma 5., f Condon 5.2 s sasfed, ψ defned by 4.2 s well-defned, s a lnear operaor and has he followng expresson: ψ = M := I λ N j +λ N j P j I + λ N P η I + λ N η j λ N j η P j +λ N j. 5.4 Theorem 5. Assume ha σ and θ are deermnsc, and ha 5.2 s sasfed. Then here exss a unque deermnsc Nash equlbrum gven by: ˆπ = σ P M θ for =,..., N, [, T ]. Moreover, he value funcon for agen a equlbrum s gven by: V = e η x λ x Y where Y = η 2 θ 2 d + 2η I P M θ 2 d. 24

25 Proof. Follow he lnes of he proof of Theorem 4.2, replacng Lemma 4.3 by Lemma 5. and Lemma 4.5 by he followng Lemma 5.2. Lemma 5.2 Le θ R d be arbrary and Γ : R Nd R Nd be defned for any γ R Nd by: Γ γ = P η θ + λ N γj. Then under 5.2, Γ adms a unque fxed pon ˆγ gven by ˆγ = P ψ θ. The proof of hs lemma s repored n Secon 5.4. We llusrae he prevous Nash equlbrum n he conex of symmerc managers wh dfferen access o he fnancal marke. Example 5. Smlar agens wh dfferen nvesmen consrans Assume ha σ and θ are deermnsc, and le λ j = λ [, and η j = η >, j =,..., N. Then here exss a unque deermnsc Nash equlbrum gven by: ˆπ = ησ P I λn +λ N P j I + λ N P θ, =,..., N. We conclude hs secon wh he followng qualave resu whch shows n parcular ha he managers neracons nduce an over-nvesmen on he rsky asses, and mply ha he marke porfolo π of Defnon 3. s nondecreasng n he neracon coeffcens λ, n agreemen wh Proposon 3.2. Ths resul requres a que resrcve condon whch however covers many examples, see also Remark 5. below. Proposon 5. Assume ha he projecon operaors P commue,.e. P P j = P j P for all, j =,..., N. Then, under he condons of Theorem 5., Agen s equlbrum porfolo s such ha σˆπ s nondecreasng w.r. λ j and η j, for all, j =,..., N and [, T ]. Proof. We fx an agen =,..., N, and we om all dependence. The assumpon ha he P s commue s equvalen o he exsence of an orhonormal bass {u k, k =,..., d} such ha, for all, u k s an egenvecor of P for all k. We wre P u k = ε,k u k, and we observe ha ε,k {, } by he fac ha P s a projecon. Then, by he explc expresson of ˆπ n Theorem 5., wrng θ = d k= θk u k, we drecly compue ha σˆπ 2 = d k= θk 2 l,k 2 where: l,k = ε,k m λ N mε m,k + λ N + λ N ε,k η + m m λ N η m λ N mη + λ N ε m,k. 5.5 m We now verfy ha l,k s nondecreasng w.r. λ j and η j, for all j =,..., N and k =,..., d, whch mples he requred resul by he orhogonaly of he bass {u k, k =,..., d}. - Tha l,k s nondecreasng n η j s obvous from Tha l,k s nondecreasng n λ s also obvous from

26 - Fnally, for j, we drecly dfferenae 5.5, and see ha he sgn of l,k / λ N j s gven by he sgn of: ε,k ε j,k + λ N ε,k η + m = ε,k ε j,k λ N η + λ N + λ N m λ N η m λ N mη + λ N m η m + λ N ε m,k. m ε m,k η m λ N mε m,k + λ N + λ N ε,k m Remark 5. The saemen of Proposon 5. s no vald for general porfolo consrans, as llusraed by he followng example. Le N = d = 2, A = Re, A 2 = Re + e 2 and σ = I. Then he projecon operaors P and P 2 are defned by he followng marces n he bass e, e 2 : P = and P 2 = /2 /2 /2 /2 respecvely. By drec calculaon, ˆπ = 2 λ λ 2 2η + λ η 2 θ + λ η 2 θ 2, whch can be nceasng or decreasng n η and λ, =, 2 for approprae choces of he rsk premum θ. 5.2 Infne managers asympocs We now nvesgae he lmng behavor when he number of agens N goes o nfny wh fxed number of asses d. Recall ha. denoes he canoncal Eucldean norm on R d, and LR d s he space of lnear mappngs on R d endowed wh operaor norm U = sup x = Ux for all U LR d. Proposon 5.2 Le d be fxed and he sequence η N bounded n R. Assume ha N N = λ P U λ n LR d and N N = η P U η n LR d, 5.6 for all resp. unformly n [, T ]. Assume furher ha U λ <, [, ]. Then:, ˆπ,N ˆπ, := σ P I U λ η I U λ + λ U η θ for all resp. unformly n [, T ]. Proof. By Theorem 5., we have ˆπ,N = σ P A Bθ, where: A := I λ N j P j I + λn P and B := η I + +λ N j Snce P j, we have: λ j P j +λ N N N j= λ jp j j λ j P j +λ N λ jp j + j λ 2 j + N λ P + P j 2 +λ N j 26 λ N η j λ N j η +λ N j λ jp j N N j= λ jp j N λ jp j 3 N. P j.

27 Smlarly, by he boundedness of he sequence η : η j P j N N j= η jp j +λ N j 3 η N. Then as N, we have n LR d : I + λ N P I, λ j +λ N j P j U λ, η j +λ N j P j U η, and A I U λ, B η I + λ U η η U λ. Under he condon U λ <, he lm s fne. Moreover he convergence s unform n whenever he convergence 5.6 holds unformly n. Example 5.2 Symmerc agens wh dfferen access o he fnancal marke Le λ = λ [, and η = η >,. Then he lmng Nash equlbrum porfolo reduces o ˆπ, = ησ P I λu θ, [, T ],. Example 5.3 Symmerc agens wh fne marke access possbles In he conex of he prevous example, suppose furher ha {A, } = {A j, j =,..., p} for some neger p >. We denoe by kj N he number of agens wh porfolo consran A j, and we assume ha kj N/N κ j [, ] for all j =,..., p. Then, an mmedae applcaon of Proposon 5.2 provdes he lm Nash equlbrum porfolo: ˆπ, = ησ P I λ p θ. κ j P j Remark 5.2 We may also adop he followng probablsc pon of vew o reformulae Proposon 5.2. Assume ha here s a connuum of ndependen players modeled hrough a probably space, D, µ ndependen from he space Ω, F, P descrbng he fnancal marke uncerany. In such a seng, he marke neracons, he rsk olerance, and he projecon operaors are defned by he random varables λ, η and he process P = {P, [, T ]} akng values respecvely n [, ],, + and LR d. The lmng Nash equlbrum porfolo s hen gven by: ˆπ, := σ P I µλp η I µλp + λµ ηp θ, j= provded ha µλ P + µη P <, and µλp <. Our nex commen concerns he asympocs of he marke ndex X N and he marke porfolo π N of Defnon 3.. Remark 5.3 In he conex of Remark 5.2, we furher assume ha he random varables λ, η, and P are ndependen, and we denoe P := µp, λ := µλ, η := µη. Then, under he condon λ P <, he lm marke porfolo and marke ndex are gven by π = σ v, X = x + v dw + θd where v := ηū I λū θ. 27

28 In parcular, we have he followng observaons whch are conssen wh Proposon 3.2: - he drf of he marke ndex s non-negave, - he drf and he volaly of he marke ndex are nondecreasng n η and λ, - he VRR ndex of he marke porfolo s gven by VRR = θ P I λ P θ 2θ, θ PI λ P and s nonncreasng n η and λ. 5.3 Examples wh lnear consrans For smplcy, excep for Example 5.8, we assume ha he agens are symmerc λ = λ and η = η for =,..., N and only dffer by her access o he fnancal marke. Excep for he las Example 5.9, we shall consder a dagonal mul-dmensonal Black- Scholes model wh volaly marx σ = I d,.e. he rsky asses prce processes are ndependen. Under he condons of Theorem 5., he opmal Nash equlbrum s gven by: ˆπ = ηp I λ θ + I P j + λ λ P for =,..., N, 5.7 see Example 5.. Le e,..., e d be he canoncal bass of R d. Example 5.4 Le d = N and A = Re, =,..., N. Noce ha n = A = {}. Then Theorem 5. apples for all λ [, ]. The projecon marces P are all dagonal wh unque nonzero dagonal enry P, =. The calculaon of he Nash equlbrum s hen easy and provdes ˆπ = ησ θ e, =,..., N. Hence, n agreemen wh he economc nuon, he neracon has no mpac n hs example, and he opmal Nash equlbrum porfolo concdes wh he classcal case wh no neracons λ =. Example 5.5 Le d = 3, N = 2 and A = Re +Re 2, A 2 = Re 2 +Re 3. Snce A A 2 {}, Theorem 5. requres ha λ [,. In he presen conex, he projecon marces are dagonal wh P, = P 2,2 =, P 3,3 =, and P, 2 =, P 2,2 2 = P 3,3 2 =. An easy calculaon provdes he opmal Nash equlbrum: ˆπ = ηθ e + η λ θ2 e 2 and ˆπ 2 = η λ θ2 e 2 + ηθ 3 e 3. Noce ha he opmal nvesmen n he frs and he hrd sock for Agen and Agen 2, respecvely, s he same as n he classcal case λ =. However, he nvesmen n Sock 2, whch boh agens can rade, s dlaed by he facor λ [, +. 28

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Modern Dynamic Asset Pricing Models

Modern Dynamic Asset Pricing Models Modern Dynamc Asse Prcng Models Lecure Noes 2. Equlbrum wh Complee Markes 1 Pero Verones The Unversy of Chcago Booh School of Busness CEPR, NBER 1 These eachng noes draw heavly on Duffe (1996, Chapers

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Teaching Notes #2 Equilibrium with Complete Markets 1

Teaching Notes #2 Equilibrium with Complete Markets 1 Teachng Noes #2 Equlbrum wh Complee Markes 1 Pero Verones Graduae School of Busness Unversy of Chcago Busness 35909 Sprng 2005 c by Pero Verones Ths Verson: November 17, 2005 1 These eachng noes draw heavly

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Advanced Macroeconomics II: Exchange economy

Advanced Macroeconomics II: Exchange economy Advanced Macroeconomcs II: Exchange economy Krzyszof Makarsk 1 Smple deermnsc dynamc model. 1.1 Inroducon Inroducon Smple deermnsc dynamc model. Defnons of equlbrum: Arrow-Debreu Sequenal Recursve Equvalence

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

A financial market with interacting investors: does an equilibrium exist?

A financial market with interacting investors: does an equilibrium exist? A fnancal marke wh neracng nvesors: does an equlbrum exs? Chrsoph Fre Dep. of Mah. and Sa. Scences Unversy of Albera Edmonon AB 6G G Canada cfre@ualbera.ca Gonçalo dos Res echnsche Unversä Berln Insu für

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS ON THE WEA LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS FENGBO HANG Absrac. We denfy all he weak sequenal lms of smooh maps n W (M N). In parcular, hs mples a necessary su cen opologcal

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

2 Aggregate demand in partial equilibrium static framework

2 Aggregate demand in partial equilibrium static framework Unversy of Mnnesoa 8107 Macroeconomc Theory, Sprng 2009, Mn 1 Fabrzo Perr Lecure 1. Aggregaon 1 Inroducon Probably so far n he macro sequence you have deal drecly wh represenave consumers and represenave

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Lecture Notes 4. Univariate Forecasting and the Time Series Properties of Dynamic Economic Models

Lecture Notes 4. Univariate Forecasting and the Time Series Properties of Dynamic Economic Models Tme Seres Seven N. Durlauf Unversy of Wsconsn Lecure Noes 4. Unvarae Forecasng and he Tme Seres Properes of Dynamc Economc Models Ths se of noes presens does hree hngs. Frs, formulas are developed o descrbe

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Aggregation of Heterogeneous Beliefs

Aggregation of Heterogeneous Beliefs Aggregaon of Heerogeneous Belefs Clolde Napp, Elyès Joun To ce hs verson: Clolde Napp, Elyès Joun. Aggregaon of Heerogeneous Belefs. Journal of Mahemacal Economcs, Elsever, 2006, 42 (6), pp.752-770.

More information

Discrete Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations

Discrete Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations Dscree Tme Approxmaon and Mone-Carlo Smulaon of Backward Sochasc Dfferenal Equaons Bruno Bouchard Unversé Pars VI, PMA, and CREST Pars, France bouchard@ccrjusseufr Nzar Touz CREST Pars, France ouz@ensaefr

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

2 Aggregate demand in partial equilibrium static framework

2 Aggregate demand in partial equilibrium static framework Unversy of Mnnesoa 8107 Macroeconomc Theory, Sprng 2012, Mn 1 Fabrzo Perr Lecure 1. Aggregaon 1 Inroducon Probably so far n he macro sequence you have deal drecly wh represenave consumers and represenave

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria IOSR Journal of Mahemacs (IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume 0, Issue 4 Ver. IV (Jul-Aug. 04, PP 40-44 Mulple SolonSoluons for a (+-dmensonalhroa-sasuma shallow waer wave equaon UsngPanlevé-Bӓclund

More information

EXECUTION COSTS IN FINANCIAL MARKETS WITH SEVERAL INSTITUTIONAL INVESTORS

EXECUTION COSTS IN FINANCIAL MARKETS WITH SEVERAL INSTITUTIONAL INVESTORS EXECUION COSS IN FINANCIAL MARKES WIH SEVERAL INSIUIONAL INVESORS Somayeh Moazen, Yuyng L, Kae Larson Cheron School of Compuer Scence Unversy of Waerloo, Waerloo, ON, Canada emal: {smoazen, yuyng, klarson}@uwaerlooca

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov June 7 e-ournal Relably: Theory& Applcaons No (Vol. CONFIDENCE INTERVALS ASSOCIATED WITH PERFORMANCE ANALYSIS OF SYMMETRIC LARGE CLOSED CLIENT/SERVER COMPUTER NETWORKS Absrac Vyacheslav Abramov School

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

A NUMERICAL SCHEME FOR BSDES. BY JIANFENG ZHANG University of Southern California, Los Angeles

A NUMERICAL SCHEME FOR BSDES. BY JIANFENG ZHANG University of Southern California, Los Angeles The Annals of Appled Probably 24, Vol. 14, No. 1, 459 488 Insue of Mahemacal Sascs, 24 A NUMERICAL SCHEME FOR BSDES BY JIANFENG ZHANG Unversy of Souhern Calforna, Los Angeles In hs paper we propose a numercal

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

P R = P 0. The system is shown on the next figure:

P R = P 0. The system is shown on the next figure: TPG460 Reservor Smulaon 08 page of INTRODUCTION TO RESERVOIR SIMULATION Analycal and numercal soluons of smple one-dmensonal, one-phase flow equaons As an nroducon o reservor smulaon, we wll revew he smples

More information

VALUATION AND HEDGING OF OTC CONTRACTS WITH FUNDING COSTS, COLLATERALIZATION AND COUNTERPARTY CREDIT RISK: PART 1

VALUATION AND HEDGING OF OTC CONTRACTS WITH FUNDING COSTS, COLLATERALIZATION AND COUNTERPARTY CREDIT RISK: PART 1 VALUATION AND HEDGING OF OTC CONTRACTS WITH FUNDING COSTS, COLLATERALIZATION AND COUNTERPARTY CREDIT RISK: PART 1 Tomasz R. Beleck Deparmen of Appled Mahemacs Illnos Insue of Technology Chcago, IL 60616,

More information

DECISION SCIENCES INSTITUTE Portfolio Management Determined by Initial Endowment or Terminal Wealth in A Consumer Finance Market With Jumps

DECISION SCIENCES INSTITUTE Portfolio Management Determined by Initial Endowment or Terminal Wealth in A Consumer Finance Market With Jumps Porfolo Managemen n A Marke Wh Jumps DECISION SCIENCES INSIUE Porfolo Managemen Deermned by Inal Endowmen or ermnal Wealh n A Consumer Fnance Marke Wh Jumps (Full Paper Submsson) Gan Jn Lngnan (Unversy)

More information

Internet Appendix for Political Cycles and Stock Returns

Internet Appendix for Political Cycles and Stock Returns Inerne Appendx for Polcal Cycles and Sock Reurns ĽUBOŠ PÁSTOR and PIETRO VERONESI November 6, 07 Ths Inerne Appendx provdes he proofs of all proposons n Pásor and Verones 07 Proof of Proposon a Governmen

More information

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys Dual Approxmae Dynamc Programmng for Large Scale Hydro Valleys Perre Carpener and Jean-Phlppe Chanceler 1 ENSTA ParsTech and ENPC ParsTech CMM Workshop, January 2016 1 Jon work wh J.-C. Alas, suppored

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

arxiv: v1 [cs.sy] 2 Sep 2014

arxiv: v1 [cs.sy] 2 Sep 2014 Noname manuscrp No. wll be nsered by he edor Sgnalng for Decenralzed Roung n a Queueng Nework Y Ouyang Demoshens Tenekezs Receved: dae / Acceped: dae arxv:409.0887v [cs.sy] Sep 04 Absrac A dscree-me decenralzed

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

A-posteriori estimates for backward SDEs

A-posteriori estimates for backward SDEs A-poseror esmaes for backward SDEs Chrsan Bender 1, Jessca Sener 1 Aprl 4, 01 Suppose an approxmaon o he soluon of a backward SDE s pre-compued by some numercal algorhm. In hs paper we provde a-poseror

More information

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

Method of upper lower solutions for nonlinear system of fractional differential equations and applications Malaya Journal of Maemak, Vol. 6, No. 3, 467-472, 218 hps://do.org/1.26637/mjm63/1 Mehod of upper lower soluons for nonlnear sysem of fraconal dfferenal equaons and applcaons D.B. Dhagude1 *, N.B. Jadhav2

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

On elements with index of the form 2 a 3 b in a parametric family of biquadratic elds

On elements with index of the form 2 a 3 b in a parametric family of biquadratic elds On elemens wh ndex of he form a 3 b n a paramerc famly of bquadrac elds Bora JadrevĆ Absrac In hs paper we gve some resuls abou prmve negral elemens p(c p n he famly of bcyclc bquadrac elds L c = Q ) c;

More information

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019.

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019. Polcal Economy of Insuons and Developmen: 14.773 Problem Se 2 Due Dae: Thursday, March 15, 2019. Please answer Quesons 1, 2 and 3. Queson 1 Consder an nfne-horzon dynamc game beween wo groups, an ele and

More information

The Pricing of Basket Options: A Weak Convergence Approach

The Pricing of Basket Options: A Weak Convergence Approach The Prcng of Baske Opons: A Weak Convergence Approach Ljun Bo Yongjn Wang Absrac We consder a lm prce of baske opons n a large porfolo where he dynamcs of baske asses s descrbed as a CEV jump dffuson sysem.

More information

@FMI c Kyung Moon Sa Co.

@FMI c Kyung Moon Sa Co. Annals of Fuzzy Mahemacs and Informacs Volume 8, No. 2, (Augus 2014), pp. 245 257 ISSN: 2093 9310 (prn verson) ISSN: 2287 6235 (elecronc verson) hp://www.afm.or.kr @FMI c Kyung Moon Sa Co. hp://www.kyungmoon.com

More information

Technical Appendix to The Equivalence of Wage and Price Staggering in Monetary Business Cycle Models

Technical Appendix to The Equivalence of Wage and Price Staggering in Monetary Business Cycle Models Techncal Appendx o The Equvalence of Wage and Prce Saggerng n Moneary Busness Cycle Models Rochelle M. Edge Dvson of Research and Sascs Federal Reserve Board Sepember 24, 2 Absrac Ths appendx deals he

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

To an Axiomatic Model of Rate of Growth

To an Axiomatic Model of Rate of Growth Appled Mahemacs, 3, 4, 36-33 hp://dxdoorg/436/am34979 Publshed Onlne Sepember 3 (hp://wwwscrporg/journal/am To an Axomac Model of Rae of Growh Václav Sudený, Ivan Mezník Deparmen of Appled Mahemacs, Faculy

More information

LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY

LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY MARCIN PĘSKI Absrac. We analyze a large roommae problem.e., marrage machng n whch he marrage s no resrced solely o machngs beween men and women)

More information

ABSTRACT KEYWORDS. Bonus-malus systems, frequency component, severity component. 1. INTRODUCTION

ABSTRACT KEYWORDS. Bonus-malus systems, frequency component, severity component. 1. INTRODUCTION EERAIED BU-MAU YTEM ITH A FREQUECY AD A EVERITY CMET A IDIVIDUA BAI I AUTMBIE IURACE* BY RAHIM MAHMUDVAD AD HEI HAAI ABTRACT Frangos and Vronos (2001) proposed an opmal bonus-malus sysems wh a frequency

More information

arxiv: v1 [math.pr] 6 Mar 2019

arxiv: v1 [math.pr] 6 Mar 2019 Local law and Tracy Wdom lm for sparse sochasc block models Jong Yun Hwang J Oon Lee Wooseok Yang arxv:1903.02179v1 mah.pr 6 Mar 2019 March 7, 2019 Absrac We consder he specral properes of sparse sochasc

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS POBABILITY AD MATEMATICAL STATISTICS Vol., Fasc., pp. SELFSIMILA POCESSES WIT STATIOAY ICEMETS I TE SECOD WIEE CAOS BY M. M A E J I M A YOKOAMA AD C. A. T U D O LILLE Absrac. We sudy selfsmlar processes

More information

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times Reacve Mehods o Solve he Berh AllocaonProblem wh Sochasc Arrval and Handlng Tmes Nsh Umang* Mchel Berlare* * TRANSP-OR, Ecole Polyechnque Fédérale de Lausanne Frs Workshop on Large Scale Opmzaon November

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Lecture Notes 4: Consumption 1

Lecture Notes 4: Consumption 1 Leure Noes 4: Consumpon Zhwe Xu (xuzhwe@sju.edu.n) hs noe dsusses households onsumpon hoe. In he nex leure, we wll dsuss rm s nvesmen deson. I s safe o say ha any propagaon mehansm of maroeonom model s

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information