Lecture #3. Math tools covered today

Size: px
Start display at page:

Download "Lecture #3. Math tools covered today"

Transcription

1 Toay s Program:. Review of previous lecture. QM free particle a particle i a bo. 3. Priciple of spectral ecompositio. 4. Fourth Postulate Math tools covere toay Lecture #3. Lear how to solve separable ifferetial equatios.. A basis of fuctios, how to epa a fuctio i terms of a set of basis fuctios 3. Ier proucts (ot prouct i vectors) i fuctio space. 4. A basis of fuctios, how to epa a fuctio i terms of a set of basis fuctios 5. The coectio betwee symmetries i the physical system, ivariace of the Hamiltoia a coserve physical quatities (this is oe of the uerlyig themes i this course to be epae o i future lectures) Questios you will by able to aswer by the e of toay s lecture. How to fi statevectors (wavefuctios) for two simple yet importat cases.. Lear how to verify that a give statevector is a eigevector (eigefuctio) of a operator. 3. Fi the spatial a temporal solutios of Schroeiger s equatio for a system which is escribe by a time iepeet Hamiltoia (o eplicit time epeece of the Hamiltoia). 4. Show that the spatial solutio is i fact a eigefuctio of the Hamiltoia. 5. Show how spatial cofiemet of the system leas to eergy iscretizatio. 6. Kow the qualitative iffereces betwee the free particle case a the particle i a bo. 7. What is the coitio that leas to eergy iscretizatio? 8. How to fi the projectio of a fuctio (vector) oto a eigefuctio (elemet of the basis) 9. How to epa a arbitrary wavefuctio i terms of eigefuctios? 0. How to preict the probability of obtaiig a particular measuremet result.

2 First ample: The Hamiltoia of a free particle: p ˆ P Hclassical = H = m m ˆ P P H = = = ˆ + yˆ + zˆ ˆ + yˆ + zˆ m i i y z y z focus o a D problem for simplicity: To fi the eigefuctios u( t, ) of a particular operator oe ees to solve the followig equatio: = λu( t) Au ˆ t,, The eigevalues of the Hamiltoia operator are calle the eergy let us ow fi a eigefuctio for the operator which we have calle the Hamiltoia. Note: we will use the symbol u for a eigefuctio. = u( t) Hu ˆ t,, m m i i u u m = u ( ) + u ( ) = 0 m u = ae + be So we have ow the eergy eigefuctios a eergy eigevalues for the free particle case. Please ote that these fuctios are oscillatig a sprea over all space a that ca assume ay value positive or equal to zero. The sith postulate allows us to fi the time evolutio of a state usig the Schroiger equatio. ( t, ) ψ ( t, ) ψ = i m t This equatio is a partial ifferetial equatio, which ca be solve usig a separatio of variables metho: substitutig i the above equatio gives, ( t, ) = ( ) ( t) ψ φ ξ t φ ξ i = = mφ ξ t t

3 The time epeet part becomes: The spatial part becomes, ξ t i ( t ) 0 ( t ) e + ξ = ξ = t i t φ + m φ = = ae + be = u + ik ik 0 φ m k = ach istict correspos to a ifferet vali solutio which has the form: + ik ik (, ) i t ψ t = ae + be e so the complete solutio ca be writte as a superpositio of the iiviual solutios: ψ i i t i= N + iki iki (, ) = ( i + i ) t ae be e

4 Seco eample: particle i a ifiite potetial well: I] The system: A particle of mass m i a potetial well: II] The classical eergy fuctio of the system: p m (, ) = + V ( ) H p where the potetial eergy is efie as follows V 0 < < = < or > III] Obtaiig the QM Hamiltoia operator: where, Pˆ H p H X P V X V m m (, ) ˆ ( ˆ, ˆ) = + ˆ( ˆ) = + V 0 < < =. < or >

5 For the momet let us restrict our attetio to the regio of space which has a fiite potetial a cosier the possible eigefuctios a eigevalues of the operator: (, ) Hˆ Xˆ Pˆ = m IV] What are the eergy eigefuctios a eigevalues? (, ) = = H ˆ X ˆ P ˆ u u m u u m m i i u u m = u ( ) + u ( ) = 0 m u = ae + be Note: The uetermie a a b coefficiets imply that there are a iifiite umber of allowe eigefuctios correspoig to every eigevalue (i.e. etermiig oes ot etermie a a b). We will arrow ow this set by usig bouary coitios erive from physical isights ito our problem. Specifically, we will require that our eigefuctios will be equal to 0 at the bouary of the well. At the momet we o ot have a soli justificatio for this other tha the efiitio of the problem which is such that the wavefuctios ee to be equal to zero at the bouaries a therefore we wat to choose a basis set which ca be covietly use to epress the wavefuctios. The problem of fiig the eigefuctios a eigevalues of a liear quatum mechaical operator basically is ietical to solvig a liear ifferetial equatio. As such we ca apply the techiques a theories which have bee evelope to solve ifferetial equatios to our problems. A ifferetial equatio of the type we are cosierig will have a uique solutio provie that the values of the solutio are kow at the bouaries (bouary coitios).

6 The bouary coitios i this problem are: u =± = 0 + ik ik k k k k u 0 cos si cos si 0 = ae + be = a + i b i + = k k ( a+ b) cos + ( a b) si = 0 a= b k π = =,3,5... or a = b k π = =,4,6... The form of the solutio is, π o ccosk = ccos u( ) u( ) = π eve sik = si k m π = = k (, ) ψ = cos = cos = cos = ψ m m (, ) = Hˆ Xˆ Pˆ a k a k a k Hˆ Xˆ Pˆ u u Because H is a liear operator ay superpositio of solutios is also a solutio. The bouary coitios have lea to a quatizatio of the eergy levels:

7 k π = =,,3,4,5... = π h = m 8 m V] Fiig Schroiger s equatio a the wave fuctio: (, ) ψ (, ) = ψ (, ) ψ (, ) = ψ (, ) Hˆ Xˆ Pˆ t i t t i t t m t We have alreay solve this equatio a the solutios are: Let us focus o the spatial compoet: ψ + ik ik (, ) i t t = ae + be e ψ k = m + ( ik ik = ae + be ) ote: ψ ( ) is ot the complete wave fuctio! Where c, are some ormalizatio costat. How o we ormalize a vector basis The costat therefore is v cv i? i c = ( v, v ) ( v, v ) ( u( ), u( ) ) i i i i = = (, ) c c u u / = cos π = c= / c

8 usig: = ( ) cos = + cos ( ) si cos / / / / / / c π cos + = c c π + cos = c c = = Discussio: Compariso betwee the eigevalues a eigevectors of the free particle a particle i a bo. Oe has cotiuous spectrum the other is iscrete. The iscrete character was a result of the bouary coitios the fact the particle was cofie to a particular regio i space. = 0 Free particle Particle i a bo Hamiltoia eigefuctios Hamiltoia eigevalues k ik = u ( ) u e k m = k π o ccosk = ccos = π eve sik = si k π =, k = m

9 Poits to emphasize:. iscrete vs. cotiuous spectrum. epeece of eergy level separatio o size of well. 3. umber of oes vs. eergy of eigefuctio 4. solutios are either o or eve 5. lowest eergy solutio is eve

10 Pricipal of spectral ecompositio Cosier a system whose state is characterize at a give time by the wavefuctio ψ rt,. We wat to preict the result of a measuremet at this time of a physical quatity a associate with the observable A. The preictio of a possible outcome will be i terms of probabilities. We will ow give a set of rules which allow us to preict the probability of obtaiig i a measuremet ay eigevalue of A. Let us first assume that the spectrum of A is etirely iscrete. If all the eigevalues a of A are o-egeerate there is associate with each of them a uique eigevector u ( ) : Sice A is Hermitia the set of u = ˆ Au au is a basis i the wavefuctio space. That meas that ay wave fuctio, ψ ( rt, ) cu ( t, ) = Defie a ier prouct betwee two fuctios ϕ ψ = ϕ ψ Remi ourselves of the geometrical iterpretatio (i D for simplicity) Look at two vectors ψ, ϕ (psi a phi), the ier prouct results i a umber (coul be comple scalar) tells us what the projectio of oe o the other is. Now the projectio is iepeet of the basis which you ecie to represet your vector i. ϕψ = c how o we represet a vector ψ i a particular basis: we choose a particular set of vectors which spa the vector space ϕ, ϕ usually we choose basis set to be orthoormal. the we fi the projectio of ψ i the irectio of each basis vector. ϕ ψ = c ϕ ψ = c

11 Write the origial fuctio as a liear combiatio of the basis vectors. I geeral ψ ψ = cϕ + c ϕ N = ciϕ Fiig the eigevectors a eigevalues of operators, iscuss the geometrical iterpretatio of eigevectors a eigevalues scalig. i= i ample: Particle of mass m i a ifiite potetial well We saw that the eigefuctios are of the form: u k ( ) π o cosk = cos = π eve sik = si m π = = Suppose you ha ow a wave fuctio ψ ( ) = Coul you epress it i terms of your eigefuctios?

12 ψ π π = cos si 7 + = a + b 8 4 Fourth Postulate (iscrete o-egeerate): Whe the physical quatity a is measure o a system i the ormalize state ψ ( t) the probability P( a ) of obtaiig the oegeerate eigevalue a of the correspoig observable is where u = ψ =, ψ P a u u is the ormalize eigevector of A associate with the eigevalue a.

Lecture #5. Questions you will by able to answer by the end of today s lecture

Lecture #5. Questions you will by able to answer by the end of today s lecture Today s Program: Lecture #5 1. Review: Fourth postulate discrete spectrum. Fourth postulate cotiuous spectrum 3. Fifth postulate ad discussio of implicatios to time evolutio 4. Average quatities 5. Positio

More information

d dx where k is a spring constant

d dx where k is a spring constant Vorlesug IX Harmoic Oscillator 1 Basic efiitios a properties a classical mechaics Oscillator is efie as a particle subject to a liear force fiel The force F ca be epresse i terms of potetial fuctio V F

More information

! " * (x,t) " (x,t) dx =! #(x,t) dx = 1 all space

!  * (x,t)  (x,t) dx =! #(x,t) dx = 1 all space Chapter-4 Formalism 4- Schroiger Equatio Durig the early ays of i evelopmet of QM Schroiger a Heiseberg le the charge. Schroiger evelope a QM theory Schroiger Picture base o his famous equato. Heiseberg

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum 0. L Hôpital s rule You alreay kow from Lecture 0 that ay sequece {s k } iuces a sequece of fiite sums {S } through S = s k, a that if s k 0 as k the {S } may coverge to the it k= S = s s s 3 s 4 = s k.

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 013 Lecture #5 page 1 Last time: Lecture #5: Begi Quatum Mechaics: Free Particle ad Particle i a 1D Box u 1 u 1-D Wave equatio = x v t * u(x,t): displacemets as fuctio of x,t * d -order: solutio

More information

Chapter 2 Transformations and Expectations

Chapter 2 Transformations and Expectations Chapter Trasformatios a Epectatios Chapter Distributios of Fuctios of a Raom Variable Problem: Let be a raom variable with cf F ( ) If we efie ay fuctio of, say g( ) g( ) is also a raom variable whose

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Classical Electrodynamics

Classical Electrodynamics A First Look at Quatum Physics Classical Electroyamics Chapter Itrouctio a Survey Classical Electroyamics Prof. Y. F. Che Cotets A First Look at Quatum Physics. Coulomb s law a electric fiel. Electric

More information

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples:

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples: 5.6 4 Lecture #3-4 page HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT Do t restrict the wavefuctio to a sigle term! Could be a liear combiatio of several wavefuctios e.g. two terms:

More information

3. Calculus with distributions

3. Calculus with distributions 6 RODICA D. COSTIN 3.1. Limits of istributios. 3. Calculus with istributios Defiitio 4. A sequece of istributios {u } coverges to the istributio u (all efie o the same space of test fuctios) if (φ, u )

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Aalytic Number Theory Solutios Sea Li Corell Uiversity sl6@corell.eu Ja. 03 Itrouctio This ocumet is a work-i-progress solutio maual for Tom Apostol s Itrouctio to Aalytic Number Theory. The solutios were

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Quatum Mechaics JEST- Q. The grou state (apart from ormaliatio) of a particle of uit mass movig i a oe- imesioal potetial V() is ep / cosh uits so that h =, is (up to a aiative costat.) π / (b) / tah (c)

More information

RIEMANN ZEROS AND AN EXPONENTIAL POTENTIAL

RIEMANN ZEROS AND AN EXPONENTIAL POTENTIAL RIEMANN ZEROS AND AN EXPONENTIAL POTENTIAL Jose Javier Garcia Moreta Grauate stuet of Physics at the UPV/EHU (Uiversity of Basque coutry) I Soli State Physics Ares: Practicates Aa y Grijalba 5 G P.O 644

More information

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m "2 + V ( r,t) (1.

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m 2 + V ( r,t) (1. Adrei Tokmakoff, MIT Departmet of Chemistry, 2/13/2007 1-1 574 TIME-DEPENDENT QUANTUM MECHANICS 1 INTRODUCTION 11 Time-evolutio for time-idepedet Hamiltoias The time evolutio of the state of a quatum system

More information

2.3 Warmup. Graph the derivative of the following functions. Where necessary, approximate the derivative.

2.3 Warmup. Graph the derivative of the following functions. Where necessary, approximate the derivative. . Warmup Grap te erivative of te followig fuctios. Were ecessar, approimate te erivative. Differetiabilit Must a fuctio ave a erivative at eac poit were te fuctio is efie? Or If f a is efie, must f ( a)

More information

Orthogonal Function Solution of Differential Equations

Orthogonal Function Solution of Differential Equations Royal Holloway Uiversity of Loo Departet of Physics Orthogoal Fuctio Solutio of Differetial Equatios trouctio A give oriary ifferetial equatio will have solutios i ters of its ow fuctios Thus, for eaple,

More information

Hilbert Space Methods Used in a First Course in Quantum Mechanics

Hilbert Space Methods Used in a First Course in Quantum Mechanics Hilbert Space Methods Used i a First Course i Quatum Mechaics Victor Poliger Physics/Mathematics Bellevue College 03/07/3-04//3 Outlie The Ifiite Square Well: A Follow-Up Timelie of basic evets Statistical

More information

1. Quantum Mechanics, Cohen Tannoudji, Chapters Linear Algebra, Schaum Series 3. Quantum Chemistry Ch. 6

1. Quantum Mechanics, Cohen Tannoudji, Chapters Linear Algebra, Schaum Series 3. Quantum Chemistry Ch. 6 Lecture # Today s Program 1. Recap: Classical States, Hamiltonians and time evolution. First postulate The description of a state of a system. 3. Second postulate physical quantities. 4. Linear operators.

More information

Inhomogeneous Poisson process

Inhomogeneous Poisson process Chapter 22 Ihomogeeous Poisso process We coclue our stuy of Poisso processes with the case of o-statioary rates. Let us cosier a arrival rate, λ(t), that with time, but oe that is still Markovia. That

More information

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions 6.51 Priciples of Digital Commuicatio II Weesay, March 9, 2005 MIT, Sprig 2005 Haout #12 Problem Set 5 Solutios Problem 5.1 (Eucliea ivisio algorithm). (a) For the set F[x] of polyomials over ay fiel F,

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

C191 - Lecture 2 - Quantum states and observables

C191 - Lecture 2 - Quantum states and observables C191 - Lecture - Quatum states ad observables I ENTANGLED STATES We saw last time that quatum mechaics allows for systems to be i superpositios of basis states May of these superpositios possess a uiquely

More information

Physics 2D Lecture Slides Lecture 25: Mar 2 nd

Physics 2D Lecture Slides Lecture 25: Mar 2 nd Cofirmed: D Fial Eam: Thursday 8 th March :3-:3 PM WH 5 Course Review 4 th March am WH 5 (TBC) Physics D ecture Slides ecture 5: Mar d Vivek Sharma UCSD Physics Simple Harmoic Oscillator: Quatum ad Classical

More information

Composite Hermite and Anti-Hermite Polynomials

Composite Hermite and Anti-Hermite Polynomials Avaces i Pure Mathematics 5 5 87-87 Publishe Olie December 5 i SciRes. http://www.scirp.org/joural/apm http://.oi.org/.436/apm.5.5476 Composite Hermite a Ati-Hermite Polyomials Joseph Akeyo Omolo Departmet

More information

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6)

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6) AP Calculus BC Review Chapter (Sequeces a Series), Part Two Thigs to Kow a Be Able to Do Uersta the meaig of a power series cetere at either or a arbitrary a Uersta raii a itervals of covergece, a kow

More information

RIEMANN ZEROS AND A EXPONENTIAL POTENTIAL

RIEMANN ZEROS AND A EXPONENTIAL POTENTIAL RIEMANN ZEROS AND A EXPONENTIAL POTENTIAL Jose Javier Garcia Moreta Grauate stuet of Physics at the UPV/EHU (Uiversity of Basque coutry) I Soli State Physics Ares: Practicates Aa y Grijalba 5 G P.O 644

More information

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revision S

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revision S BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revisio S By Tom Irvie Email: tom@vibratioata.com November, Itrouctio The fuametal frequecies for typical beam cofiguratios are give i Table. Higher frequecies

More information

Chapter 10 Partial Differential Equations and Fourier Series

Chapter 10 Partial Differential Equations and Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7 Chapter Partial Differetial Equatios ad Fourier Series Math-33 Chapter Partial Differetial Equatios November 6, 7. Boudary Value Problems for

More information

Information entropy of isospectral Pöschl-Teller potential

Information entropy of isospectral Pöschl-Teller potential Iia Joural of Pure & Applie Physics Vol. 43 December 5 pp. 958-963 Iformatio etropy of isospectral Pöschl-Teller potetial Ail Kumar Departmet of Physics Pajab Uiversity Chaigarh 6 4 Receive April 5; accepte

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

The structure of Fourier series

The structure of Fourier series The structure of Fourier series Valery P Dmitriyev Lomoosov Uiversity, Russia Date: February 3, 2011) Fourier series is costructe basig o the iea to moel the elemetary oscillatio 1, +1) by the expoetial

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Chapter 5 Vibrational Motion

Chapter 5 Vibrational Motion Fall 4 Chapter 5 Vibratioal Motio... 65 Potetial Eergy Surfaces, Rotatios ad Vibratios... 65 Harmoic Oscillator... 67 Geeral Solutio for H.O.: Operator Techique... 68 Vibratioal Selectio Rules... 7 Polyatomic

More information

Representing Functions as Power Series. 3 n ...

Representing Functions as Power Series. 3 n ... Math Fall 7 Lab Represetig Fuctios as Power Series I. Itrouctio I sectio.8 we leare the series c c c c c... () is calle a power series. It is a uctio o whose omai is the set o all or which it coverges.

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

New method for evaluating integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example

New method for evaluating integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example New metho for evaluatig itegrals ivolvig orthogoal polyomials: Laguerre polyomial a Bessel fuctio eample A. D. Alhaiari Shura Coucil, Riyah, Saui Arabia AND Physics Departmet, Kig Fah Uiversity of Petroleum

More information

Preliminary Examination - Day 1 Thursday, May 12, 2016

Preliminary Examination - Day 1 Thursday, May 12, 2016 UNL - Departmet of Physics ad Astroomy Prelimiary Examiatio - Day Thursday, May, 6 This test covers the topics of Quatum Mechaics (Topic ) ad Electrodyamics (Topic ). Each topic has 4 A questios ad 4 B

More information

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by Chapter DACS Lok 004/05 CHAPTER DIFFERENTIATION. THE GEOMETRICAL MEANING OF DIFFERENTIATION (page 54) Defiitio. (The Derivative) (page 54) Let f () is a fctio. The erivative of a fctio f with respect to,

More information

5.74 TIME-DEPENDENT QUANTUM MECHANICS

5.74 TIME-DEPENDENT QUANTUM MECHANICS p. 1 5.74 TIME-DEPENDENT QUANTUM MECHANICS The time evolutio of the state of a system is described by the time-depedet Schrödiger equatio (TDSE): i t ψ( r, t)= H ˆ ψ( r, t) Most of what you have previously

More information

Office: JILA A709; Phone ;

Office: JILA A709; Phone ; Office: JILA A709; Phoe 303-49-7841; email: weberjm@jila.colorado.edu Problem Set 5 To be retured before the ed of class o Wedesday, September 3, 015 (give to me i perso or slide uder office door). 1.

More information

u t + f(u) x = 0, (12.1) f(u) x dx = 0. u(x, t)dx = f(u(a)) f(u(b)).

u t + f(u) x = 0, (12.1) f(u) x dx = 0. u(x, t)dx = f(u(a)) f(u(b)). 12 Fiite Volume Methos Whe solvig a PDE umerically, how o we eal with iscotiuous iitial ata? The Fiite Volume metho has particular stregth i this area. It is commoly use for hyperbolic PDEs whose solutios

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Some Nonlinear Equations with Double Solutions: Soliton and Chaos

Some Nonlinear Equations with Double Solutions: Soliton and Chaos Some Noliear Equatios with Double Solutios: Solito a Chaos Yi-Fag Chag Departmet of Physics, Yua Uiversity, Kumig, 659, Chia (E-mail: yifagchag@hotmail.com) Abstract The fuametal characteristics of solito

More information

PROBABILITY AMPLITUDE AND INTERFERENCE

PROBABILITY AMPLITUDE AND INTERFERENCE PROILITY MPLITUDE ND INTERFERENCE I. Probability amplitude Suppose that particle is placed i the ifiite square well potetial. Let the state of the particle be give by ϕ ad let the system s eergy eigestates

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

THE LEGENDRE POLYNOMIALS AND THEIR PROPERTIES. r If one now thinks of obtaining the potential of a distributed mass, the solution becomes-

THE LEGENDRE POLYNOMIALS AND THEIR PROPERTIES. r If one now thinks of obtaining the potential of a distributed mass, the solution becomes- THE LEGENDRE OLYNOMIALS AND THEIR ROERTIES The gravitatioal potetial ψ at a poit A at istace r from a poit mass locate at B ca be represete by the solutio of the Laplace equatio i spherical cooriates.

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witer 3 Chem 356: Itroductory Quatum Mechaics Chapter 8 Approximatio Methods, Huecel Theory... 8 Approximatio Methods... 8 The Liear Variatioal Priciple... Chapter 8 Approximatio Methods, Huecel Theory

More information

(average number of points per unit length). Note that Equation (9B1) does not depend on the

(average number of points per unit length). Note that Equation (9B1) does not depend on the EE603 Class Notes 9/25/203 Joh Stesby Appeix 9-B: Raom Poisso Poits As iscusse i Chapter, let (t,t 2 ) eote the umber of Poisso raom poits i the iterval (t, t 2 ]. The quatity (t, t 2 ) is a o-egative-iteger-value

More information

Machine Learning for Data Science (CS4786) Lecture 9

Machine Learning for Data Science (CS4786) Lecture 9 Machie Learig for Data Sciece (CS4786) Lecture 9 Pricipal Compoet Aalysis Course Webpage : http://www.cs.corell.eu/courses/cs4786/207fa/ DIM REDUCTION: LINEAR TRANSFORMATION x > y > Pick a low imesioal

More information

Indefinite Integral. Lecture 21 discussed antiderivatives. In this section, we introduce new notation and vocabulary. The notation f x dx

Indefinite Integral. Lecture 21 discussed antiderivatives. In this section, we introduce new notation and vocabulary. The notation f x dx 67 Iefiite Itegral Lecture iscusse atierivatives. I this sectio, we itrouce ew otatio a vocabulary. The otatio f iicates the geeral form of the atierivative of f a is calle the iefiite itegral. From the

More information

Lecture 14 and 15: Algebraic approach to the SHO. 1 Algebraic Solution of the Oscillator 1. 2 Operator manipulation and the spectrum 4

Lecture 14 and 15: Algebraic approach to the SHO. 1 Algebraic Solution of the Oscillator 1. 2 Operator manipulation and the spectrum 4 Lecture 14 ad 15: Algebraic approach to the SHO B. Zwiebach April 5, 2016 Cotets 1 Algebraic Solutio of the Oscillator 1 2 Operator maipulatio ad the spectrum 4 1 Algebraic Solutio of the Oscillator We

More information

The Chi Squared Distribution Page 1

The Chi Squared Distribution Page 1 The Chi Square Distributio Page Cosier the istributio of the square of a score take from N(, The probability that z woul have a value less tha is give by z / g ( ( e z if > F π, if < z where ( e g e z

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify Example 1 Simplify 1.2A Radical Operatios a) 4 2 b) 16 1 2 c) 16 d) 2 e) 8 1 f) 8 What is the relatioship betwee a, b, c? What is the relatioship betwee d, e, f? If x = a, the x = = th root theorems: RADICAL

More information

Intelligent Systems I 08 SVM

Intelligent Systems I 08 SVM Itelliget Systems I 08 SVM Stefa Harmelig & Philipp Heig 12. December 2013 Max Plack Istitute for Itelliget Systems Dptmt. of Empirical Iferece 1 / 30 Your feeback Ejoye most Laplace approximatio gettig

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

PH 411/511 ECE B(k) Sin k (x) dk (1)

PH 411/511 ECE B(k) Sin k (x) dk (1) Fall-27 PH 4/5 ECE 598 A. La Rosa Homework-3 Due -7-27 The Homework is iteded to gai a uderstadig o the Heiseberg priciple, based o a compariso betwee the width of a pulse ad the width of its spectral

More information

Quantum Mechanics I. 21 April, x=0. , α = A + B = C. ik 1 A ik 1 B = αc.

Quantum Mechanics I. 21 April, x=0. , α = A + B = C. ik 1 A ik 1 B = αc. Quatum Mechaics I 1 April, 14 Assigmet 5: Solutio 1 For a particle icidet o a potetial step with E < V, show that the magitudes of the amplitudes of the icidet ad reflected waves fuctios are the same Fid

More information

9.3 constructive interference occurs when waves build each other up, producing a resultant wave of greater amplitude than the given waves

9.3 constructive interference occurs when waves build each other up, producing a resultant wave of greater amplitude than the given waves Iterferece of Waves i Two Dimesios Costructive a estructive iterferece may occur i two imesios, sometimes proucig fixe patters of iterferece. To prouce a fixe patter, the iterferig waves must have the

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

PH 411/511 ECE B(k) Sin k (x) dk (1)

PH 411/511 ECE B(k) Sin k (x) dk (1) Fall-26 PH 4/5 ECE 598 A. La Rosa Homework-2 Due -3-26 The Homework is iteded to gai a uderstadig o the Heiseberg priciple, based o a compariso betwee the width of a pulse ad the width of its spectral

More information

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if Expaer Graphs Graph Theory (Fall 011) Rutgers Uiversity Swastik Kopparty Throughout these otes G is a -regular graph 1 The Spectrum Let A G be the ajacecy matrix of G Let λ 1 λ λ be the eigevalues of A

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

10 More general formulation of quantum mechanics

10 More general formulation of quantum mechanics TFY4250/FY2045 Tillegg 10 - More geeral formulatio of quatum mechaics 1 TILLEGG 10 10 More geeral formulatio of quatum mechaics I this course we have so far bee usig the positio represetatio of quatum

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005 Physics D Lecture Slides Lecture : Feb d 005 Vivek Sharma UCSD Physics Itroducig the Schrodiger Equatio! (, t) (, t) #! " + U ( ) "(, t) = i!!" m!! t U() = characteristic Potetial of the system Differet

More information

PHY4905: Nearly-Free Electron Model (NFE)

PHY4905: Nearly-Free Electron Model (NFE) PHY4905: Nearly-Free Electro Model (NFE) D. L. Maslov Departmet of Physics, Uiversity of Florida (Dated: Jauary 12, 2011) 1 I. REMINDER: QUANTUM MECHANICAL PERTURBATION THEORY A. No-degeerate eigestates

More information

1 Adiabatic and diabatic representations

1 Adiabatic and diabatic representations 1 Adiabatic ad diabatic represetatios 1.1 Bor-Oppeheimer approximatio The time-idepedet Schrödiger equatio for both electroic ad uclear degrees of freedom is Ĥ Ψ(r, R) = E Ψ(r, R), (1) where the full molecular

More information

Lecture 25 (Dec. 6, 2017)

Lecture 25 (Dec. 6, 2017) Lecture 5 8.31 Quatum Theory I, Fall 017 106 Lecture 5 (Dec. 6, 017) 5.1 Degeerate Perturbatio Theory Previously, whe discussig perturbatio theory, we restricted ourselves to the case where the uperturbed

More information

The Born-Oppenheimer approximation

The Born-Oppenheimer approximation The Bor-Oppeheimer approximatio 1 Re-writig the Schrödiger equatio We will begi from the full time-idepedet Schrödiger equatio for the eigestates of a molecular system: [ P 2 + ( Pm 2 + e2 1 1 2m 2m m

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle Similarity betwee quatum mechaics ad thermodyamics: Etropy, temperature, ad Carot cycle Sumiyoshi Abe 1,,3 ad Shiji Okuyama 1 1 Departmet of Physical Egieerig, Mie Uiversity, Mie 514-8507, Japa Istitut

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or Topic : Sequeces ad Series A sequece is a ordered list of umbers, e.g.,,, 8, 6, or,,,.... A series is a sum of the terms of a sequece, e.g. + + + 8 + 6 + or... Sigma Notatio b The otatio f ( k) is shorthad

More information

6.867 Machine learning, lecture 11 (Jaakkola)

6.867 Machine learning, lecture 11 (Jaakkola) 6.867 Machie learig, lecture 11 (Jaakkola) 1 Lecture topics: moel selectio criteria Miimum escriptio legth (MDL) Feature (subset) selectio Moel selectio criteria: Miimum escriptio legth (MDL) The miimum

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

3/21/2017. Commuting and Non-commuting Operators Chapter 17. A a

3/21/2017. Commuting and Non-commuting Operators Chapter 17. A a Commutig ad No-commutig Operators Chapter 17 Postulate 3. I ay measuremet of the observable associated with a operator A the oly values that will ever be observed are the eige values, a, which satisfy

More information

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy Liear Differetial Equatios of Higher Order Basic Theory: Iitial-Value Problems d y d y dy Solve: a( ) + a ( )... a ( ) a0( ) y g( ) + + + = d d d ( ) Subject to: y( 0) = y0, y ( 0) = y,..., y ( 0) = y

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 5-4 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig facts,

More information

Chem 442 Review for Exam 1. Hamiltonian operator in 1 dimension: ˆ d first term is kinetic energy, second term is potential energy

Chem 442 Review for Exam 1. Hamiltonian operator in 1 dimension: ˆ d first term is kinetic energy, second term is potential energy Chem 44 Review for Eam 1 Eergies are quatized Wave/partice duaity de Brogie waveegth: h p Eergy: E h mometum operator: pˆ positio operator: ˆ d i d potetia eergy operator: V ˆ( ) pˆ d kietic eergy operator

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

8. Applications To Linear Differential Equations

8. Applications To Linear Differential Equations 8. Applicatios To Liear Differetial Equatios 8.. Itroductio 8.. Review Of Results Cocerig Liear Differetial Equatios Of First Ad Secod Orders 8.3. Eercises 8.4. Liear Differetial Equatios Of Order N 8.5.

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

1. Szabo & Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7. These problems are fairly straightforward and I will not discuss them here.

1. Szabo & Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7. These problems are fairly straightforward and I will not discuss them here. Solutio set III.. Szabo & Ostlud:.,.,.,.5,.7. These problems are fairly straightforward ad I will ot discuss them here.. N! N! i= k= N! N! N! N! p p i j pi+ pj i j i j i= j= i= j= AA ˆˆ= ( ) Pˆ ( ) Pˆ

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π 2 SECONDS AFTER IT IS TOSSED IN?

COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π 2 SECONDS AFTER IT IS TOSSED IN? COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π SECONDS AFTER IT IS TOSSED IN? DROR BAR-NATAN Follows a lecture give by the author i the trivial otios semiar i Harvard o April 9,

More information

Sparsification using Regular and Weighted. Graphs

Sparsification using Regular and Weighted. Graphs Sparsificatio usig Regular a Weighte 1 Graphs Aly El Gamal ECE Departmet a Cooriate Sciece Laboratory Uiversity of Illiois at Urbaa-Champaig Abstract We review the state of the art results o spectral approximatio

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information