CS344: Introduction to Artificial Intelligence. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 10 Club and Circuit

Size: px
Start display at page:

Download "CS344: Introduction to Artificial Intelligence. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 10 Club and Circuit"

Transcription

1 CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 10 Club and Circuit Examples

2 Resolution - Refutation man(x mortal(x Convert to clausal form ~man(x mortal(x Clauses in the knowledge base ~man(x mortal(x man(shakespeare mortal(shakespeare

3 Resolution Refutation contd Negate the goal ~mortal(shakespeare Get a pair of resolvents ~ mortal ( shakespear e ~ man ( x mortal ( x ~ man ( shakespear e man ( shakespear e

4 Resolution Tree Resolvent 1 Resolvent 2 Resolute

5 Search in resolution Heuristics for Resolution Search Goal Supported Strategy Always start with the negated goal Set of support strategy Always one of the resolvents is the most recently produced resolute

6 Inferencing in Predicate Calculus Forward chaining Given P, P Q, to infer Q P, match LHSof L.H.S Assert Q from R.H.S Backward chaining Q, Match hrhs R.H.S of P Q assert P Check if P exists Resolution Refutation Negate goal Convert all pieces of knowledge into clausal form (disjunction of literals See if contradiction indicated by null clause can be derived

7 1. P 2. P Q converted to 3. ~ Q ~ P Q Draw the resolution tree (actually an inverted tree. Every node is a clausal form and branches are intermediate inference steps. ~ Q ~ P Q ~ P P

8 Terminology Pair of clauses being resolved is called the Resolvents. The resulting clause is called the Resolute. Choosing the correct pair of resolvents is a matter of search.

9 Himalayan Club example Introduction through an example (Zohar Manna, 1974: Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier? Given knowledge has: Facts Rules

10 Example contd. Let mc denote mountain climber and sk denotes skier. Knowledge representation in the given problem is as follows: 1. member(a 2. member(b 3. member(c 4. x[member(x (mc(x sk(x] 5. x[mc(x ~like(x,rain] 6. x[sk(x like(x, snow] 7. x[like(b, x ~like(a, x] 8. x[~like(b, x like(a, x] 9. like(a, rain 10. like(a, snow 11. Question: x[member(x mc(x ~sk(x] We have to infer the 11 th expression from the given 10. Done through Resolution Refutation.

11 Club example: Inferencing 1. member(a 2. member(b 3. member(c x[ member( x ( mc( x sk( x] Can be written as [ member ( x ( mc( x sk( x] ~ member( x mc( x sk( x x [ sk ( x lk ( x, snow ] ~ sk( x lk( x, snow x [ mc ( x ~ lk ( x, rain ] ~ mc( x ~ lk( x, rain x [ like ( A, x ~ lk ( B, x ] ~ like( A, x ~ lk( B, x

12 8. x[~ lk( A, x lk( B, x] 9. lk( A, rain lk( A, x lk( B, x lk( A, snow x [ member ( x mc ( x ~ sk ( x ] Negate x[~ member( x ~ mc( x sk( x]

13 Now standardize the variables apart which results in the following 1. member(a 2. member(b 3. member(c 4. ~ member ( x mc ( x1 sk ( x ~ 2 sk( x2 lk( x, snow mc ( x3 ~ lk ( x, rain ~ 3 ~ like( A, x ~ lk( B, x 4 4 lk ( A, x lk ( B, x 5 5 lk( A, rain lk(a (, snow ~ member( x ~ mc( x6 sk( x 6 6

14 ~ 4 7 like( A, x ~ lk( B, x 4 lk( A, snow ~ lk ( B, snow ~ sk( x2 lk( x2, snow 5 ~ ( ( 1 ( 1 13 ~ sk( B member x mc x sk x 4 1 ~ member( B mc( B member(b ~ member ( x ~ mc ( x6 sk ( x 6 6 mc(b 15 ~ member ( B sk ( B ~ sk ( B ~ member ( B member(b 17 2

15 Assignment Prove the inferencing in the Himalayan club example with different starting points, producing different resolution trees. Think of a Prolog implementation of the problem Prolog Reference (Prolog by Chockshin & Melish

16 Application of Predicate Calculus Systematic Inferencing Knowledge Representation ti Puzzles Circuit Verification Robotics Intelligent DB

17 Circuit Verification Does the circuit meet the specs? Are there faults? are they locatable?

18 Example : 2-bit full adder C1 X2 X1 Y C X 1, X 2 : inputs; C 1 : prev. carry; C 2 : next carry; Y: output t

19 K-Map c1 x2x1 0 1 Y Y = C1( X1 X 2 + C1( X1 X 2 = ( C1 ( X 1 X 2

20 K-Map (contd.. c1 x2x1 0 1 C C 2 = X 2 X 1 + C1( X 1 + X 2

21 Circuit

22 Verification First task (most difficult Building blocks : predicates Circuit observation : Assertion on terminals

23 Predicates & Functions Function 1 signal(t t is a terminal ; signal takes the value 0 or 1 Function 2 type(x x is a circuit element; type(x takes the value AND, OR, NOT, XOR Predicate 3 connected(t1,t2 t1 is an output terminal and t2 is an input terminal Function 3 In(n,x n th input of ckt element x Function 4 Out(x ( Output of ckt element x

24 Alternate Full Adder Circuit

25 Functions type(x : takes values AND, OR NOT and XOR, where X is a gate. in(n, X : the value of signal at the n th input of gate X. out(x : output of gate X. signal(t : state at terminal t = 1/0 Predicates connected(t1,t2: true, if terminal t1 and t2 are connected

26 General Properties Commutativity: t 1 1,,t 2 [connected(t 1,t 2 connected(t 2,t 1 ] By definition of connection: t 1,t 2 [connected(t 1,t 2 { signal(t 1 = signal(t 1 }]

27 Gate properties 1. OR definition: X [{type(x = OR} {(out(x = 1 y (in(y, X = 1}] 2. AND definition: iti X [{type(x = AND} {(out(x = 1 y (in(y, X = 1}]

28 Gate properties contd 1. XOR definition: X [{type(x = XOR} {(out(x = 1 (in(1, X in(2, X}] 2. NOT definition: iti X [{type(x = NOT} {out(x in(1, X} ( no_of_inpu t(x = 1]

29 Some necessary functions a. no_of_input(x, takes values from N. b. Count_ls(x, returns #ls in the input of X [{type(x = XOR} X {(out(x = 1 odd((count_ls(x}]

30 Circuit specific properties Connectivity: connected(x 1, in(1,a 1, connected(x 1,in(2,A 1, connected(out(a 1, in(1, A 2, connected(c1, in(2, A 2, connected(y, out(a 2 Circuit elements: type(a 1 = XOR, type(a 2 = XOR, type(a 3 = AND

CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 22, 23, 24 Predicate

CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 22, 23, 24 Predicate CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 22, 23, 24 Predicate calculus, Prolog, Circuit verification 29 th March, 1 st

More information

The Predicate Calculus

The Predicate Calculus The Predicate Calculus Slides from Nilufer Onder (Michigan Tech.) Most Slides are taken from the Bruce Rosen at UCLA. Reference book is: "Artificial Intelligence: A Modern Approach", by Stuart Russell

More information

Domain Modelling: An Example (LOGICAL) DOMAIN MODELLING. Modelling Steps. Example Domain: Electronic Circuits (Russell/Norvig)

Domain Modelling: An Example (LOGICAL) DOMAIN MODELLING. Modelling Steps. Example Domain: Electronic Circuits (Russell/Norvig) (LOGICAL) DOMAIN MODELLING Domain Modelling: An Example Provision of a formal, in particular logical language for knowledge representation. Application of these means to represent the formal structure

More information

Knowledge Representation using First-Order Logic (Part III)

Knowledge Representation using First-Order Logic (Part III) Knowledge Representation using First-Order Logic (Part III) This lecture: R&N Chapters 8, 9 Next lecture: Chapter 13; Chapter 14.1-14.2 (Please read lecture topic material before and after each lecture

More information

CS344: Introduction to Artificial Intelligence (associated lab: CS386)

CS344: Introduction to Artificial Intelligence (associated lab: CS386) CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2: Fuzzy Logic and Inferencing Disciplines which form the core of AI- inner circle

More information

MATH 501: Discrete Mathematics

MATH 501: Discrete Mathematics November 20, 203 MATH 50: Fall 203 Midterm exam Model Solutions Instructions. Please read carefully before proceeding. (a) The duration of this exam is 20 minutes. (b) Non-programmable calculators are

More information

Propositional Resolution

Propositional Resolution Artificial Intelligence Propositional Resolution Marco Piastra Propositional Resolution 1] Deductive systems and automation Is problem decidible? A deductive system a la Hilbert (i.e. derivation using

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 9: Logical Agents 2 2/13/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2015 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 8 Why FOL?

More information

Convert to clause form:

Convert to clause form: Convert to clause form: Convert the following statement to clause form: x[b(x) ( y [ Q(x,y) P(y) ] y [ Q(x,y) Q(y,x) ] y [ B(y) E(x,y)] ) ] 1- Eliminate the implication ( ) E1 E2 = E1 E2 x[ B(x) ( y [

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 1 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL 2 Pros and cons of propositional logic Propositional logic is declarative

More information

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logic Knowledge Representation & Reasoning Mechanisms Logic Logic as KR Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logical inferences Resolution and Theorem-proving Logic

More information

Outline. First-order logic. Atomic sentences. Intelligent Systems and HCI D7023E. Syntax of FOL: Basic elements. Pros and cons of propositional logic

Outline. First-order logic. Atomic sentences. Intelligent Systems and HCI D7023E. Syntax of FOL: Basic elements. Pros and cons of propositional logic Outline Intelligent Systems and HCI D7023E Lecture 8: First-order Logic [Ch.8] Paweł Pietrzak Why FOL? Syntax and semantics of FOL Using FOL Knowledge engineering in FOL Some inference in FOL 1 Pros and

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL Pros and cons of propositional logic Propositional logic is declarative

More information

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5 rtificial Intelligence Topic 12 Logical Inference Reading: Russell and Norvig, Chapter 7, Section 5 c Cara MacNish. Includes material c S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical

More information

Artificial Intelligence

Artificial Intelligence CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 20-21 Natural Language Parsing Parsing of Sentences Are sentences flat linear structures? Why tree? Is

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL Pros/cons of propositional logic Propositional logic is declarative (recall

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning COMP219: Artificial Intelligence Lecture 20: Propositional Reasoning 1 Overview Last time Logic for KR in general; Propositional Logic; Natural Deduction Today Entailment, satisfiability and validity Normal

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Artificial Intelligence ((ENCS434)) University of Birzeit 1 st Semester, 2011 Artificial Intelligence (ENCS434) Inference Methods In Propositional Logic Dr. Mustafa Jarrar University of

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) You will be expected to know Basic definitions Inference, derive, sound, complete Conjunctive Normal Form (CNF) Convert a Boolean formula to CNF Do a short

More information

Announcements CompSci 102 Discrete Math for Computer Science

Announcements CompSci 102 Discrete Math for Computer Science Announcements CompSci 102 Discrete Math for Computer Science Read for next time Chap. 1.4-1.6 Recitation 1 is tomorrow Homework will be posted by Friday January 19, 2012 Today more logic Prof. Rodger Most

More information

Semantically Guided Theorem Proving for Diagnosis Applications

Semantically Guided Theorem Proving for Diagnosis Applications Semantically Guided Theorem Proving for Diagnosis Applications Peter Baumgartner Peter Fröhlich Univ. Koblenz Universität Hannover Inst. f. Informatik Abstract In this paper we demonstrate how general

More information

CSE 311: Foundations of Computing. Lecture 2: More Logic, Equivalence & Digital Circuits

CSE 311: Foundations of Computing. Lecture 2: More Logic, Equivalence & Digital Circuits CSE 311: Foundations of Computing Lecture 2: More Logic, Equivalence & Digital Circuits Last class: Some Connectives & Truth Tables Negation (not) p p T F F T Disjunction (or) p q p q T T T T F T F T T

More information

Propositional Logic Resolution (6A) Young W. Lim 12/12/16

Propositional Logic Resolution (6A) Young W. Lim 12/12/16 Propositional Logic Resolution (6A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität Freiburg

More information

CogSysI Lecture 8: Automated Theorem Proving

CogSysI Lecture 8: Automated Theorem Proving CogSysI Lecture 8: Automated Theorem Proving Intelligent Agents WS 2004/2005 Part II: Inference and Learning Automated Theorem Proving CogSysI Lecture 8: Automated Theorem Proving p. 200 Remember......

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Inference Methods In Propositional Logic

More information

Simplify the following Boolean expressions and minimize the number of literals:

Simplify the following Boolean expressions and minimize the number of literals: Boolean Algebra Task 1 Simplify the following Boolean expressions and minimize the number of literals: 1.1 1.2 1.3 Task 2 Convert the following expressions into sum of products and product of sums: 2.1

More information

CS 771 Artificial Intelligence. Propositional Logic

CS 771 Artificial Intelligence. Propositional Logic CS 771 Artificial Intelligence Propositional Logic Why Do We Need Logic? Problem-solving agents were very inflexible hard code every possible state E.g., in the transition of 8-puzzle problem, knowledge

More information

Propositional Resolution

Propositional Resolution Computational Logic Lecture 4 Propositional Resolution Michael Genesereth Spring 2005 Stanford University Modified by Charles Ling and TA, for CS2209 Use with permission Propositional Resolution Propositional

More information

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence CSE 311: Foundations of Computing Lecture 3: Digital Circuits & Equivalence Homework #1 You should have received An e-mail from [cse311a/cse311b] with information pointing you to look at Canvas to submit

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter

More information

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations Chapter 1, Part I: Propositional Logic With Question/Answer Animations Chapter Summary! Propositional Logic! The Language of Propositions! Applications! Logical Equivalences! Predicate Logic! The Language

More information

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning.

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning. 3: Logic Why logic? Logic about inference or argument Start from assumptions or axioms Make deductions according to rules of reasoning Logic 3-1 Why logic? (continued) If I don t buy a lottery ticket on

More information

CSE 20 Discrete Math. Algebraic Rules for Propositional Formulas. Summer, July 11 (Day 2) Number Systems/Computer Arithmetic Predicate Logic

CSE 20 Discrete Math. Algebraic Rules for Propositional Formulas. Summer, July 11 (Day 2) Number Systems/Computer Arithmetic Predicate Logic CSE 20 Discrete Math Algebraic Rules for Propositional Formulas Equivalences between propositional formulas (similar to algebraic equivalences): Associative Summer, 2006 July 11 (Day 2) Number Systems/Computer

More information

PRUNING PROCEDURE FOR INCOMPLETE-OBSERVATION DIAGNOSTIC MODEL SIMPLIFICATION

PRUNING PROCEDURE FOR INCOMPLETE-OBSERVATION DIAGNOSTIC MODEL SIMPLIFICATION PRUNING PROCEDURE FOR INCOMPLETE-OBSERVATION DIAGNOSTIC MODEL SIMPLIFICATION Ivan Havel Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University Karlovo náměstí 13, 121 35

More information

Propositional Logic Resolution (6A) Young W. Lim 12/31/16

Propositional Logic Resolution (6A) Young W. Lim 12/31/16 Propositional Logic Resolution (6A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Propositional Resolution Introduction

Propositional Resolution Introduction Propositional Resolution Introduction (Nilsson Book Handout) Professor Anita Wasilewska CSE 352 Artificial Intelligence Propositional Resolution Part 1 SYNTAX dictionary Literal any propositional VARIABLE

More information

CSC384: Intro to Artificial Intelligence Knowledge Representation II. Required Readings: 9.1, 9.2, and 9.5 Announcements:

CSC384: Intro to Artificial Intelligence Knowledge Representation II. Required Readings: 9.1, 9.2, and 9.5 Announcements: CSC384: Intro to Artificial Intelligence Knowledge Representation II Required Readings: 9.1, 9.2, and 9.5 Announcements: 1 Models Examples. Environment A Language (Syntax) Constants: a,b,c,e Functions:

More information

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester)

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) First-Order Theorem Proving and Vampire Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) Outline Introduction First-Order Logic and TPTP Inference Systems

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

Lecture 10: Even more on predicate logic" Prerequisites for lifted inference: Skolemization and Unification" Inference in predicate logic"

Lecture 10: Even more on predicate logic Prerequisites for lifted inference: Skolemization and Unification Inference in predicate logic CS440/ECE448: Intro to Artificial Intelligence Lecture 10: Even more on predicate logic Prof. Julia Hockenmaier juliahmr@illinois.edu http://cs.illinois.edu/fa11/cs440 Inference in predicate logic All

More information

Propositional Calculus

Propositional Calculus Propositional Calculus Dr. Neil T. Dantam CSCI-498/598 RPM, Colorado School of Mines Spring 2018 Dantam (Mines CSCI, RPM) Propositional Calculus Spring 2018 1 / 64 Calculus? Definition: Calculus A well

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Describe and use algorithms for integer operations based on their expansions Relate algorithms for integer

More information

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz )

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) Logic in AI Chapter 7 Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) 2 Knowledge Representation represent knowledge about the world in a manner that

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

Logical Agents. Propositional Logic [Ch 6] Syntax, Semantics, Entailment, Derivation. Predicate Calculus Representation [Ch 7]

Logical Agents. Propositional Logic [Ch 6] Syntax, Semantics, Entailment, Derivation. Predicate Calculus Representation [Ch 7] Logical Agents Reasoning [Ch 6] Propositional Logic [Ch 6] Syntax Semantics Entailment Derivation Predicate Calculus Representation [Ch 7] Syntax Semantics Expressiveness... Situation Calculus Predicate

More information

Logical Agents (I) Instructor: Tsung-Che Chiang

Logical Agents (I) Instructor: Tsung-Che Chiang Logical Agents (I) Instructor: Tsung-Che Chiang tcchiang@ieee.org Department of Computer Science and Information Engineering National Taiwan Normal University Artificial Intelligence, Spring, 2010 編譯有誤

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 13, 5/18/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Inference in first-order

More information

Artificial Intelligence: Methods and Applications Lecture 3: Review of FOPL

Artificial Intelligence: Methods and Applications Lecture 3: Review of FOPL Artificial Intelligence: Methods and Applications Lecture 3: Review of FOPL Henrik Björklund Ruvan Weerasinghe Umeå University What I d be doing Topics in Knowledge Representation 12 th Nov (Tue) Revision

More information

Lecture 12 September 26, 2007

Lecture 12 September 26, 2007 CS 6604: Data Mining Fall 2007 Lecture: Naren Ramakrishnan Lecture 12 September 26, 2007 Scribe: Sheng Guo 1 Overview In the last lecture we began discussion of relational data mining, and described two

More information

Proof Tactics, Strategies and Derived Rules. CS 270 Math Foundations of CS Jeremy Johnson

Proof Tactics, Strategies and Derived Rules. CS 270 Math Foundations of CS Jeremy Johnson Proof Tactics, Strategies and Derived Rules CS 270 Math Foundations of CS Jeremy Johnson Outline 1. Review Rules 2. Positive subformulas and extraction 3. Proof tactics Extraction, Conversion, Inversion,

More information

Strong AI vs. Weak AI Automated Reasoning

Strong AI vs. Weak AI Automated Reasoning Strong AI vs. Weak AI Automated Reasoning George F Luger ARTIFICIAL INTELLIGENCE 6th edition Structures and Strategies for Complex Problem Solving Artificial intelligence can be classified into two categories:

More information

Methods of Partial Logic for Knowledge Representation and Deductive Reasoning in Incompletely Specified Domains

Methods of Partial Logic for Knowledge Representation and Deductive Reasoning in Incompletely Specified Domains Methods of Partial Logic for Knowledge Representation and Deductive Reasoning in Incompletely Specified Domains Anatoly Prihozhy and Liudmila Prihozhaya Information Technologies and Robotics Department,

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope)

Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope) CS 188 Spring 2019 Introduction to Artificial Intelligence Written HW 6 Sol. Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope) Instructions for self-assessment: Take your original

More information

Last Time. Inference Rules

Last Time. Inference Rules Last Time When program S executes it switches to a different state We need to express assertions on the states of the program S before and after its execution We can do it using a Hoare triple written

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Malte Helmert and Gabriele Röger University of Basel April 24, 2017 Propositional Logic: Overview Chapter overview: propositional

More information

Computation and Logic Definitions

Computation and Logic Definitions Computation and Logic Definitions True and False Also called Boolean truth values, True and False represent the two values or states an atom can assume. We can use any two distinct objects to represent

More information

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 9: Search 8 Victor R. Lesser CMPSCI 683 Fall 2010 ANNOUNCEMENTS REMEMBER LECTURE ON TUESDAY! EXAM ON OCTOBER 18 OPEN BOOK ALL MATERIAL COVERED IN LECTURES REQUIRED READINGS WILL MOST PROBABLY NOT

More information

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015 CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015 Lecturer: Toniann Pitassi Scribe Notes by: Xu Zhao 1 Communication Complexity Applications Communication Complexity (CC) has many

More information

Propositional Resolution Part 1. Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence

Propositional Resolution Part 1. Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence Propositional Resolution Part 1 Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence SYNTAX dictionary Literal any propositional VARIABLE a or negation of a variable a, a VAR, Example

More information

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning.

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning. CS 730/830: Intro AI 3 handouts: slides, asst 6, asst 7 Wheeler Ruml (UNH) Lecture 12, CS 730 1 / 16 Logic First-Order Logic The Joy of Power in First-order Logic Wheeler Ruml (UNH) Lecture 12, CS 730

More information

Formal Verification Methods 1: Propositional Logic

Formal Verification Methods 1: Propositional Logic Formal Verification Methods 1: Propositional Logic John Harrison Intel Corporation Course overview Propositional logic A resurgence of interest Logic and circuits Normal forms The Davis-Putnam procedure

More information

First-Order Logic. CS367 ARTIFICIAL INTELLIGENCE Chapter 8

First-Order Logic. CS367 ARTIFICIAL INTELLIGENCE Chapter 8 First-Order Logic CS367 ARTIFICIAL INTELLIGENCE Chapter 8 2012 Semester 2 Patricia J Riddle Adapted from slides by Stuart Russell, http://aima.cs.berkeley.edu/instructors.html 1 Outline Why FOL? Syntax

More information

RN, Chapter 8 Predicate Calculus 1

RN, Chapter 8 Predicate Calculus 1 Predicate Calculus 1 RN, Chapter 8 Logical Agents Reasoning [Ch 6] Propositional Logic [Ch 7] Predicate Calculus Representation [Ch 8] Syntax, Semantics, Expressiveness Example: Circuits Inference [Ch

More information

CSE507. Course Introduction. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Course Introduction. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 courses.cs.washington.edu/courses/cse507/14au/ Course Introduction Emina Torlak emina@cs.washington.edu Today What is this course about? Course logistics Review

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations Chapter 1, Part I: Propositional Logic With Question/Answer Animations Chapter Summary Propositional Logic The Language of Propositions Applications Logical Equivalences Predicate Logic The Language of

More information

(Part II) Reading: R&N Chapters 8, 9

(Part II) Reading: R&N Chapters 8, 9 Knowledge Representation using First-Order Logic (Part II) Reading: R&N Chapters 8, 9 Outline Review: KB = S is equivalent to = (KB S) So what does {} = S mean? Review: Follows, Entails, Derives Follows:

More information

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Jugal Kalita University of Colorado Colorado Springs Fall 2014 Logic Gates and Boolean Algebra Logic gates are used

More information

Propositional Logic 1

Propositional Logic 1 Propositional Logic 1 Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth Tables 2 Propositions A proposition is

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Chapter Summary. Propositional Logic. Predicate Logic. Proofs. The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1.

Chapter Summary. Propositional Logic. Predicate Logic. Proofs. The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1. Chapter 1 Chapter Summary Propositional Logic The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1.3) Predicate Logic The Language of Quantifiers (1.4) Logical Equivalences (1.4)

More information

Propositional Logic: Methods of Proof. Chapter 7, Part II

Propositional Logic: Methods of Proof. Chapter 7, Part II Propositional Logic: Methods of Proof Chapter 7, Part II Inference in Formal Symbol Systems: Ontology, Representation, ti Inference Formal Symbol Systems Symbols correspond to things/ideas in the world

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Maren Bennewitz, and Marco Ragni Albert-Ludwigs-Universität Freiburg Contents 1 Agents

More information

Propositional Logic. Logical Expressions. Logic Minimization. CNF and DNF. Algebraic Laws for Logical Expressions CSC 173

Propositional Logic. Logical Expressions. Logic Minimization. CNF and DNF. Algebraic Laws for Logical Expressions CSC 173 Propositional Logic CSC 17 Propositional logic mathematical model (or algebra) for reasoning about the truth of logical expressions (propositions) Logical expressions propositional variables or logical

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 17, 2016

More information

Resolution (14A) Young W. Lim 8/15/14

Resolution (14A) Young W. Lim 8/15/14 Resolution (14A) Young W. Lim Copyright (c) 2013-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

AI Programming CS S-09 Knowledge Representation

AI Programming CS S-09 Knowledge Representation AI Programming CS662-2013S-09 Knowledge Representation David Galles Department of Computer Science University of San Francisco 09-0: Overview So far, we ve talked about search, which is a means of considering

More information

CSE 311: Foundations of Computing. Lecture 2: More Logic, Equivalence & Digital Circuits

CSE 311: Foundations of Computing. Lecture 2: More Logic, Equivalence & Digital Circuits CSE 311: Foundations of Computing Lecture 2: More Logic, Equivalence & Digital Circuits Last class: Some Connectives & Truth Tables Negation (not) p p T F F T Disjunction (or) p q p q T T T T F T F T T

More information

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World Agenda Artificial Intelligence 10. Propositional Reasoning, Part I: Principles How to Think About What is True or False 1 Introduction Álvaro Torralba Wolfgang Wahlster 2 Propositional Logic 3 Resolution

More information

CS : Speech, NLP and the Web/Topics in AI

CS : Speech, NLP and the Web/Topics in AI CS626-449: Speech, NLP and the Web/Topics in AI Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture-17: Probabilistic parsing; insideoutside probabilities Probability of a parse tree (cont.) S 1,l NP 1,2

More information

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition.

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. Lecture #14: 0.0.1 NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. 0.0.2 Preliminaries: Definition 1 n abstract problem Q is a binary relations on a set I of

More information

Adam Blank Spring 2017 CSE 311. Foundations of Computing I

Adam Blank Spring 2017 CSE 311. Foundations of Computing I Adam Blank Spring 2017 CSE 311 Foundations of Computing I Pre-Lecture Problem Suppose that p, and p (q r) are true. Is q true? Can you prove it with equivalences? CSE 311: Foundations of Computing Lecture

More information