TRANSIENT BEHAVIOR IN AXIAL COMPRESSORS IN EVENT OF ICE SHED

Size: px
Start display at page:

Download "TRANSIENT BEHAVIOR IN AXIAL COMPRESSORS IN EVENT OF ICE SHED"

Transcription

1 Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 June 15 19, 2015, Montréal, Canada GT TRANSIENT BEHAVIOR IN AXIAL COMPRESSORS IN EVENT OF ICE SHED Swati Saxena Rajkeshar Singh GE Global Research Center One Research Cirle, Niskayuna, NY 12309, USA Andrew Breeze-Stringfellow Tsuguji Nakano GE Aviation 1 Neumann Way, Evandale, OH 45215, USA ABSTRACT Incidents of partial or total thrust loss due to engine icing at cruise have been recorded over past several years. These events increase the demand for better understanding of compressor dynamics under such conditions. In the present study, physics based compressor blade row model (BRM) is used to evaluate the effect of booster ice-shed on axial high pressure compressor (HPC) at flight and approach idling conditions (65% - 82% Nc). A representative aviation high-bypass turbofan engine HPC is used in this study. Transient behavior of compressor with varying ice ingestion conditions is compared and inter-stage dynamics is analyzed. Stage re-matching occurs due to heat exchange between air and ice which dictates the stall inception stage in the compressor. It is found that although T3 drop is closely related to compressor stall inception, the transient mechanism of iceshed also plays an important role. Comparisons are made with steady energy balance equation to determine total water content (TWC) at HPC inlet to emphasize the importance of compressor transients. The ice amount, its ingestion duration and rate affect the onset of stall. HPC might sustain through a slower ice-shed while a faster ice-shed can lead to compressor stall with little or no chances of recovery. Understanding this transient behavior and inter-stage dynamics due to ice-shed will help in designing and implementing passive or active stall control mechanisms. NOMENCLATURE A Cross-sectional area at a given axial location along the compressor, m 2 A p Particle cross-sectional area, m 2 C D Aerodynamic Drag coefficient acting on spherical ice particle C p Specific heat at constant pressure, J/kg o C D p Particle diameter, m E Total energy, J e Internal energy, J f Body force per unit volume, N/m 3 F D Aerodynamic drag acting on an ice particle N f D Aerodynamic drag acting on N particles, N h Heat transfer coefficient h m Mass transfer coefficient H Total enthalpy, J L c Compressor length, m L v Latent heat of vaporization for water, J L f Latent heat of fusion for ice, J ṁ Mass flow rate, kg/s m p Particle mass, kg N Number of particles N c Corrected HPC speed N Number of particles p Static pressure, Pa P sat Air saturation pressure at a given temperature, Pa Q Heat exchange between continuous and discrete phase J/s r Radius, m r m Mean pitch-line radius, m RH Relative humidity s Discrete phase source term SH,q Specific humidity 1 Copyright 2015 by ASME

2 S E S M S V Discrete phase energy source term Discrete phase momentum source term Discrete phase mass source term t Time, s T Static temperature, K u Axial component of flow velocity, m/s U Mean pitch-line HPC speed, m/s v θ Circumferential velocity, m/s ẇ s shaft work, J/s 25 Compressor inlet 3 Compressor exit φ Axial flow coefficient ρ Density, kg/m 3 ρ p Particle (ice crystal) density, kg/m 3 Ψ Pressure rise coefficient across blade γ Specific heat ratio for air ω Core speed, rad/s Subscripts 0 Stagnation condition a Air (continuous phase) b Bleed c Continuous phase (air) E Energy h Hub (inner duct) i ice M Momentum p Particle (discrete phase) sr f c Particle surface t Tip (outer duct) v,v Vapor w Water x Axial direction Abbreviations BRM Blade Row Model FADEC Full Authority Digital Engine Control HPC High Pressure Compressor (core) LPC Low Pressure Compressor SCL Super-cooled Liquid Droplets SH25 Specific humidity at compressor inlet TWC Total Water Content, g/m 3 INTRODUCTION Commercial aircrafts operate over an extreme range of environmental conditions, with temperatures ranging from 216 K to 322 K and at altitudes up to 12,000 m. Water can exist in liquid state at very high altitudes even at temperatures well below K in form of super-cooled liquid droplets (SCL). When an aircraft flies through clouds containing SCL, water can come in contact with airframe and freeze instantly or run-back and freeze resulting in ice accretion. The ice accretion can occur on all parts that are below freezing such as fan blades, low pressure compressor blades and vanes and frame struts. Eventually, the accreted ice sheds from the surfaces upstream of compressor and causes ice ingestion into compressor. Such incidents have reported power-loss events including engine stall and surge, flameout, momentary power loss and compressor damage due to iceshed [1, 2]. Ice chunks impinging on front stage rotor blades can cause severe mechanical damage. There have been efforts to model ice-accretion in fan and low pressure compressor and predict system performance. Jorgenson et al. [3] utilized engine system modeling and mean-line compressor flow analysis code to identify potential ice accretion regions in fan and LPC, thus improving predictive capability to forecast the onset of compressor icing events. Mazzawy [4] presented a numerical model to predict mixed phase ice-accretion and shedding in turbo-fan engines in presence of ice-crystals. High-fidelity studies have also been performed to simulate iceaccretion in cascade. Veillard et al. [5] demonstrated droplet impingement using a quasi-steady mixing-plane model on NASA compressor stage 35 which gives further insight on ice-accretion locations. May et al. [6] concluded that a better ice detection mechanism will improve the engine control response in case of icing events. The compressor maps including ice-blockage were used in the control algorithm. These efforts can provide better understanding of the ice behavior at HPC inlet. Studies have been performed to understand aero-mechanical effects of water/rain ingestion in HPC. Day et al. [7] reported reduction in compressor delivery pressure in presence of water on a low speed axial compressor operating at part speed in a descent configuration. In this study, the thermodynamic effects were neglected which would be important in HPC and would result in more complicated stage-matching. Since thermodynamic effects of ice play an important role in HPC response, it is important to understand the transient compressor response to improve current FADEC to operate in a more optimized fashion without compromising on the performance and reliability. As ice moves through the compressor, it melts and evaporates thus causing shift in compressor operating line and reduced stall-margin. Compressor stages re-match to operate with an overall reduced stall margin. The dynamic behavior of the compressor is closely related on the ice ingestion rate, amount of ice ingested and the duration. Steady state analysis based on energy balance [8] will provide partial information on TWC through the compressor but it will not provide information on the time response or time scale over which compressor reacts to ice. Understanding the dynamic response and individual stage performance will help in better engine control designs to delay engine stall due to icing. There is still little understanding of transient flow physics in 2 Copyright 2015 by ASME

3 core compressor due to ice ingestion [9]. Several experimental initiatives have been recently taken to understand the ice-shed phenomenon in jet engines [10]. But ice-shed from fan and LPC blades is difficult to predict and capture during the measurements. Different forms of ice such as glaze and rime have different material properties which will also determine the shed signature. Engine operating conditions (fan and HPC speeds) can affect the ice-shed frequency. The present work addresses some of these uncertainties and variability during icing events through physics based numerical modeling. The key contribution of this study is to develop the capability to predict compressor stage dynamics in case of ice-shed events and determine compressor sensitivity towards ice-shed time duration and ice amount at HPC inlet (SH25). This paper is organized as follows: Numerical Method section describes the governing equations, flow and ice particles coupling method and the compressor used for the ice-shed study. Numerical Results and Analysis section covers the icing simulations performed at different HPC operating speed lines and discusses the HPC sensitivity towards ice shed amount and duration. The Conclusions section provides the learnings from the present study and addresses the future work. NUMERICAL METHOD This work builds on the model developed to study reduced order transient compressor response in an earlier work by Dhingra et al. [11] and Kundu et al. [12]. The literature on reduced order and lumped compressor models has been reviewed in Dhingra et al. [11]. Kundu et al. [12] reviews previous work related to icing models. The present physics based model used to simulate HPC icing is described in more detail in Kundu et al. [13]. The present reduced order model can capture stage-wise transient response and also models air bleeds. The compressor is assumed to operate at constant mechanical speed but the corrected speed might change as ice melting and evaporation affects flow properties. The governing equations, modeling assumptions and limitations are summarized in the following section for completeness. The unsteady Euler equations are solved along the compressor mean pitch line ( r = 0). The flow-field is assumed to be axi-symmetric, thus averaged in circumferential direction ( θ = 0). The compressor axis lies along x-axis. The rotor and stator blades are modeled as source terms using steady state forces based on steady stage characteristics (required as an input to the solver) at a constant HPC speed. Figure 1 shows the compressor model schematic where individual blade rows and gaps are resolved. Station 25 is HPC inlet and 3 represents HPC exit. The grid along the compressor axis is refined enough to resolve the blade rows. The blades and bleed flows are modeled as source terms and are calculated by using steady-state stage characteristics [11]. The source terms are distributed between leading and trailing edges of the blade. FIGURE 1. Schematic of the compressor model. Flow solved along mean pitch line radius (r m ), blades and bleed flows modeled as source terms in governing equations (Dhingra et al., 2011) Equation 1 shows the coupled mass, momentum and energy conservation equations solved for continuous and discrete phases. The right hand side of the equation represents the source terms to model bleed flow, blade rows and discrete phase. An additional species conservation equation needs to be solved for water vapor fraction (q or SH) to incorporate the vapor generation. q is defined as ṁ vapor /ṁ dryair which is same as specific humidity (SH). Total energy and total enthalpy for continuous phase are given by Eqs. 2 and 3 respectively. t ρ c A ρ c ua ρ c ua ρ c v θ A ρ c EA + (p + ρ c u 2 )A x ρ c uv θ A ρ c uha = ρ c qa ρ c uqa ṁ b x + S V f x A + A p x + u ṁ b f θ A + v θ ṁ b x x + S M ẇ s + ṁ b x H c + S E ṁ v x (1) E c = e c (u2 + v 2 θ ) (2) H c = E + p ρ Dry and humid air follow the ideal gas assumption where the following relations are valid: p = ρrt ; p = (γ 1)ρe; γ = C p (T )/C v (T ).The specific heat ratios for dry and humid air are function of temperature and the correlations can be found in Walsh and Fletcher [14]. Particles melt, evaporate, break and splash as they move through the compressor as shown in Fig. 2. Particles can melt partially and have water film with ice core. Water droplets splash (3) 3 Copyright 2015 by ASME

4 as they strike the blade leading edge. GE empirical models based on test data are used for modeling particle fragmentation and water droplet splash. of vapor depends on local air properties, where the vapor mass flux equation can be written as Eq. 8. The aerodynamic drag acting on the particle F D can be calculated from Eq. 9. Equation 10 relates the temperature change to the heat exchange between ice and air. The heat transfer coefficient h in Eq. 10 and mass transfer coefficient h m in Eq. 8 are based on GE empirical correlations obtained from experiments. The blockage in the cross-sectional area due to the presence of discrete phase is also taken into account. dm v dt = h m (ρ v,sr f c RH%ρ v )πd 2 p (8) FIGURE 2. Schematic showing ice fragmentation, melting and water splash as they impinge on blades along the compressor m p du p dt = 1 2 ρ cc D A p u u p (u u p ) = F D (9) The source terms due to icing are obtained by including the drag force acting on ice particles and energy transfer between the continuous and discrete phase. Equations 4, 5 and 6 show the expressions for mass, momentum and energy source terms for the discrete phase. The source term for the mass represents the generation of vapor and its addition to continuous (air) phase. The aerodynamic drag acting on the particle and the force due to vapor generation constitutes the momentum source. The heat transfer between continuous and discrete phase, change in kinetic energy of particles and vapor enthalpy are contributors to the energy source term. Equation 7 shows the drag acting on N particles. S V = 1 dx Nṁ v (4) p S M = u p S V f D (u u p ) (5) S E = S V H p + Q p x f D(u u p )u p (6) f D = NF D dx(u u p ) Lagrangian particle tracking is done by solving the coupled continuous and discrete phase equations. The rate of generation (7) m p C P,p dt p dt = hπd 2 p (T air T p ) + L v dm v dt + L f dm f dt (10) The relative humidity (RH) and specific humidity (SH) of air can be related by Eq. 11 (Eq. F2.10 in [14]): (p/p sat) RH = SH ( SH) (11) Relative humidity is calculated after each time step from water vapor fraction (q or SH) which is used to calculate the rate of vapor generation. The lower order model is based on some approximations and assumptions and thus have limitations as follows: Flow is averaged in radial and circumferential (azimuthal) directions, therefore ice migration in radial direction and non-symmetric effect in circumferential direction are not captured in the current formulation. Ice-crystals are assumed to be spherical; therefore the varying particle drag due to non-spherical shape is not captured. This assumption can be relaxed by incorporating the particle shape effects in the discrete phase transport equations. Any ice accretion or water film building on airfoils is neglected. The ice volume fraction is small enough so that particle-particle interaction can be neglected. Ice-shed impulse response is fast enough to assume the constant speed line for the current study. Therefore, the engine thrust loss due to stall cannot be predicted. Heat exchange between ice and metal surface is not taken into account. 4 Copyright 2015 by ASME

5 Some of these limitations can be relaxed as needed. Current implementation is able to capture the key thermodynamic effects due to the ice-crystal ingestion in compressor. Energy Balance across compressor Given T3 suppression due to wet conditions and compressor exit dry and wet flow conditions, the TWC at compressor inlet can be calculated from a simple energy balance equation across compressor [8]: ( ) ṁ a C p (T ) T 3 = ṁ p hi,t1 0 o C + L f + h w,0 o C (T 3,p 3 ) (12) where h i,t1 0 o C is the specific enthalpy required to bring the ice crystals from T 1 to the melting point. h w,0 o C (T 3,p 3 ) is the specific energy required to bring water to the compressor discharge condition (T 3, p3). Air mass flow rate ṁ a is available from engine data. Equation 12 is valid when compressor has attained steady state and it assumes that all ice has evaporated at HPC exit. This formulation, however, cannot capture the potential impact of transient nature of T3 drop. near peak efficiency. Ice shed duration and TWC are parameterized to study the correlation between compressor response and icing properties. The next section presents the simulation and analysis for iceshed events performed at two compressor speed-lines. NUMERICAL RESULTS AND ANALYSIS The following section presents the simulation results for icesheds and characterizes the compressor dynamic response based on the ice-shed parameters: t iceshed and SH at HPC inlet. Icecrystals and SCL can freeze on metal surfaces and build up ice on fan and stator vanes as shown in Fig. 3. Ice eventually sheds from these surfaces entering HPC, sometimes as big chunks. Simulation Setup A representative 10 stage commercial high-bypass turbofan engine HPC has been used for the present study. Air (customer and turbine cooling air) is bled out after stages 4 and 7. The amount of ice equivalent to stage 4 air bleed percentage is extracted from the main flow after fourth stage. Simulations are performed at flight idle (65% Nc) and approach idle (82% Nc) corrected HPC speeds. Without loss of generality, Rosin- Rammler distribution is used to represent ice-crystal size distribution at HPC inlet with Median Volume Diameter (MVD) of 150 microns. The sensitivity study around particle size has been previously performed in Kundu et al. [12]. The ice-crystal temperature at compressor inlet is taken as degc to represent realistic ice-crystal conditions in convective clouds. The TWC range is taken from the available test data to represent cloud water content [8]. The steady ice ingestion study presented in Kundu et al. [13] has shown the stage re-matching in presence of humidity where front stages unload (choke) and rear stages throttle. The presence of ice and water in front stages lead to lower air density. Two factors effect the air density in rear stages. Temperature drop due to heat exchange between air and discrete phase lead to increase in air density while addition of water vapor leads to decrease in air density. Due to cooling evaporation, there is net increase in air density leading to higher loads. Therefore, compressor stall initiates in rear stages and moves upstream along the compressor eventually leading to surge. This is different from the stall usually initiated from the front stage operating at higher loading FIGURE 3. Ice-accumulation regions shown upstream of HPC. Ice accumulation on fan, LPC and strut blades causes ice-shed event resulting in instantaneous ice ingestion into HPC. Ice-crystals shown by blue circles. Rotating blades shown in grey and stators shown in black. The ice-shed simulations are performed at two compressor operating speeds for different ice-shed amounts and duration to represent realistic shedding time scales. Operating Point: Approach Idling (82% Nc) Table 1 shows the list of ice-shed cases simulated at 82% Nc. A value of t iceshed = 5 ms corresponds to ice ingestion duration of 5 ms while Continuous refers to steady ice ingestion at the given SH25. Time duration of 5 ms is of the similar order as flow through time. An initial steady ice ingestion study was performed to determine the SH threshold for compressor stall in case of continuous ice ingestion. Then the ice-shed time and SH was varied to simulate broader range of ice-shed possibilities ranging from very short period of shed to a steady ice ingestion. Table 1 also lists the compressor stall behavior in each ice-shed case. Compressor is able to operate at the steady ice ingestion at lower SH25 (Run 1) while it stalls at higher SH25 ingested for a short period of time (Run 7). It can be inferred from these 5 Copyright 2015 by ASME

6 TABLE 1. Ice shed simulations at 82% Nc Run No. SH25 t iceshed (ms) Stall Observed 1 1 Continuous N Continuous Y N Y Continuous Y N Y for shorter period of time. Run 3 doesn t stall while run 4 does. Compressor is able to recover to its dry state in run 3 before last stage stalls. Runs 6 and 7 shed ice for 5 ms at SH = 2% and 3% respectively. Run 7 stalls as it goes well past the T3 drop threshold of 20% and the compressor is not able to recover. Therefore, it can be safely assumed the compressor will not stall if maximum T3 drop is less than the threshold T3 drop. But past the threshold T3 drop, ice-shed parameters (SH and duration) determine the compressor dynamics. values that both SH and ice-shed duration are important to determine the compressor response. Next, the stage-wise compressor behavior in these runs has been analyzed. The percent T3 drop as a function of time is plotted for runs 1 to 7 in Fig. 4. It is defined as a function of time (K/K) in Eq. 13: %T 3 drop (t) = (( T 3(t) T 3 dry ) /T 3dry ) 100 (13) The horizontal axis is physical time normalized with compressor flow-through time. Compressor flow-through time is calculated as the time taken by air at HPC inlet to reach HPC exit. Water freezing point at STP ( K) is well below the highest %T3 drop reported on Fig. 4. Ice ingestion starts at 6 flow-through times after the compressor has reached a steady dry state. The particle speed at HPC inlet is taken as one tenth of the air speed which increases along the compressor as air exerts force on the particles. The stall in these runs is characterized by the steep drop in mass flow through the compressor. As stages re-match in presence of discrete phase, the stall margin on rear stages keep reducing until a point where the stage moves beyond its stall limit. If this happens, the stage can initiate compressor stall. The stall point is not characterized by only the T3 drop. Several observations are made on this figure. Run 1 (SH = 1%, blue line) stabilizes after 5-6 flow through times to a constant T3 drop of nearly 13%. Run 2 (green dash line) leads to stall after reaching a T3 drop of nearly 20%. This number can be treated as the threshold of T3 drop the compressor can digest without stall in a continuous ice-ingestion case. Low frequency oscillations are observed in this case with time period of nearly 0.8 flow through time. When SH is further increased to 1.75% for continuous ice-ingestion, the compressor shows similar transients near stall as for run 2 with same oscillation frequency. This shows that the compressor dynamics near stall in closely related to its through flow time scale. Ice-shed runs 3 and 4 ingest ice FIGURE 4. Transient %T3 drop for icing events listed in table 1. Compressor operating at 82% Nc. The stage-wise compressor response to ice-shed is analyzed by observing the transient static pressure and temperature behavior along the compressor. The normalized static pressure with respect to its dry value is plotted against normalized time at each rotor inlet for runs 1 and 6. Figure 5(a) shows the compressor stage matching for SH = 1% steady ice ingestion. Middle stages (5-7) have suffered the highest pressure drop as they move towards choke. Figure 5(b) shows static pressure variation with respect to its dry run value along the compressor for run 6 in Table 1. The transient pressure drop for last stage is nearly 6% while the middle stages drop by 18%. As the compressor recovers to its dry state, the pressure over-shoots due to inertial effects. As the operating point moves to its dry conditions after the ice-ingestion is stopped, there is a time-lag between the change in flow properties and the compressor response. In the present model, the operating point traverses on the steady state characteristics and this results in an overshoot before the steady dry conditions are 6 Copyright 2015 by ASME

7 reached. Experiments (GE Engine certification tests) have reported this overshoot as well which might indicate higher flow angles to the blade and hence higher loading. (a) SH25 = 1%, continuous ice ingestion the front stages and heat exchange between the discrete and continuous phase is not sufficient to show a significant temperature drop. Therefore, local air density remains almost constant in front stages while it increases in rear stages due to higher temperature drop. Last stage sees around 14% drop in T3 with respect to its dry value. Figure 6(b) plots the temperature variation for SH = 2% and ice-shed duration of 5 ms. It can be observed that the rate at which temperature drops is similar and slower for all stages as compared to the recovery where front stages recover at a slower pace as compared to back stages. This attributes to the compressor response time to the ice particles as they enter the HPC at a slower speed than the flow Mach number. Figures 7(a) and 7(b) show the transient ice-shed response on the steady state compressor maps for front and back stages respectively. The red circle on the plots show the dry operating point.the axial force coefficient, Ψ(= f x /(0.5ρU 2 )), is plotted against the axial flow coefficient, φ x (= u x /U). As explained earlier, the front stages unload and move to a higher flow coefficient due to stage-matching while rear stages throttle and load to lower stall margin. Figure 8 show the unloading the recovery path on one of the stages. The black squares show the transient path on the compressor map. Dry operating point is shown by red circles. The overshoot can be seen in the transient. For the runs listed in table 1, the corresponding TWC can be calculated from steady energy balance Eq. 12. Table 2 shows the computed SH25 e values. The sub-script e represents the SH values calculated from energy balance equation across compressor. The maximum T3 drop has been used as an input to Eq. 12. It is observed that the steady equation consistently over predicts SH25 e at HPC inlet. Maximum T3 is an instantaneous compressor response to the ice-shed and will not represent both SH and ice-shed duration. As concluded from Fig. 4, both these parameters are important in determining the initiation of compressor stall. The transient model provides higher degrees of freedom to find more reliable ways to predict compressor behavior during icing. (b) SH25 = 2%, ice-shed duration = 5 ms FIGURE 5. Transient static pressure PS change along the compressor for continuous ice ingestion and ice-shed event. Compressor operating at 82% Nc. Figure 6(a) plots the transient temperature along the compressor for continuous ice-ingestion at SH = 1%. The gradual drop in temperature along the compressor can be observed with nearly no effect in front two stages. The ice has not melted in Operating Point: Flight Idling (65% Nc) The ice-shed simulations are performed near flight idling conditions. The steady ice-ingestion shows that the compressor is able to ingest more ice as compared to 82% Nc in terms of SH before stall. It should be noted that the physical mass flow rate through HPC is lower at 65% Nc as compared to 82% Nc. The ice-shed duration is varied around 10% SH to further understand compressor dynamics. Table 3 shows the list of six ice-shed runs simulated at 65% Nc. The run at lowest SH of 8% does not show stall. SH = 10% run stall when ice is ingested for more than 20 ms but is able to recover to its dry condition for shorter ice-shed duration. Figure 9 shows the transient percent T3 drop for all six cases described before. Horizontal axis is normalized with respect to 7 Copyright 2015 by ASME

8 (a) Front stages of axial compressor (a) SH25 = 1%, continuous ice ingestion (b) Rear stages of axial compressor (b) SH25 = 2%, ice-shed duration = 5 ms FIGURE 6. Transient temperature along the compressor for continuous ice ingestion and ice-shed event. Compressor operating at 82% Nc. compressor flow-through time and ice ingestion starts at the normalized time of 3. The first case shows that the compressor is able to sustain at much larger T3 drop (nearly 25%) when smaller amount of ice is ingested. For an higher SH25, compressor is able to recover until 22% T3 drop beyond which the compressor stalls. The compressor behavior is different from 82% Nc in terms of the threshold T3 drop and also the SH at which com- FIGURE 7. Transient compressor stage wise matching in case of iceshed, optimal operating point recovered after humid air leaves the compressor. SH25 = 2%, ice-shed duration = 5 ms. Black squares track the dynamic compressor response. Red circles show the dry operating point. pressor stalls. The individual stage work load play an important role in compressor stage-matching during icing. Figure 10(a) shows the static pressure change for each stage as a function of normalized time. Stage 10 (red dash curve) operates at higher pressure with respect to its dry value while other stages are operating at lower static pressures. Middle stages (5-7) show highest pressure drop which is consistent with the observations made for 82% Nc. Middle stages have all three phases of water present: ice, water droplets and vapor. Figure 10(b) shows 8 Copyright 2015 by ASME

9 TABLE 3. Ice-shed simulations at 65% Nc Run No. SH25 t iceshed (ms) Stall Observed 1 8 Continuous N N N N Y Y FIGURE 8. Stage matching in presence of ice: operating point move towards choke and recovering to its dry state after ice-shed. SH25 = 2%, ice-shed duration = 5 ms. Black squares track the dynamic compressor response. Red circles show the dry operating point. TABLE 2. SH25 e calculated from energy balance across compressor for icing simulations at 82% Nc Run No. SH25 %T3 drop (Maximum) SH25 e (Eq. 12) static pressure response at each stage inlet with respect to time for SH25 = 10% and ice-shed duration of 10 ms. The pressure drop is highest for middle stages and the overshoot during recovery to dry state is highest for stage 6. Pressure at stage 10 inlet is higher from its dry value during the transient which is different from the transient behavior observed for the ice-shed at 82% Nc. Figure 11(a) shows the stage-wise temperature variation during continuous ice-ingestion. The trend is predictable with temperature drop increasing from front to rear stages. This temper- FIGURE 9. Transient %T3 drop for icing runs listed in table 3. Compressor operating at 65% Nc. ature drop is directly related to amount of ice melting and water evaporation within each stage. Figure 11(b) shows the transient temperature variation during an ice-shed event where the compressor recovers to its dry state after ice-shed. The maximum temperature drop increases along the compressor and the recovery rate is faster for rear stages as compared to front stages. This is primarily due to the reason that ice particles move slower in front stages as compared to rear stages and hence the recovery rate trend. This observation is consistent with 82% Nc trend as shown in Fig. 6(b). Figures 12(a) and 12(b) show the transient ice-shed response on the steady state compressor maps for front and back stages 9 Copyright 2015 by ASME

10 (a) SH25 = 8%, continuous ice ingestion (a) SH25 = 8%, continuous ice ingestion (b) SH25 = 10%, ice-shed duration = 10 ms FIGURE 10. Transient static pressure (PS) change along the compressor for continuous ice ingestion and ice-shed event. Compressor operating at 65% Nc. respectively. The red circle on the plots show the dry operating point. Similar trend as observed at 82%Nc in Fig. 7 is obtained. The SH25 e at HPC inlet is calculated for all runs using the steady energy balance Eq. 12 and the values are listed in table 4. The SH25 e values correspond to maximum T3 drop observed during the transient. As seen in table 4, the SH25 is overpredicted from energy balance equation at 65% Nc, a similar observation was made at 82 %Nc. It can be seen that SH25 e for run 1 is higher than other runs but the compressor doesn t stall. The steady ice-ingestion results in gradual drop in T3 thus allowing stages to re-match without stalling. Run 4 and 5 give (b) SH25 = 10%, ice-shed duration = 10 ms FIGURE 11. Transient total temperature (TT) along the compressor for continuous ice ingestion and ice-shed event. Compressor operating at 65% Nc. similar numbers for SH25 e but run 5 stalls while run 4 does not. Therefore, the transient behavior provides us better insight in determining stall characteristics. CONCLUSIONS The paper presents the numerical study of transient compressor response in case of icing events at different compressor speeds. Compressor stages re-match to operate at a reduced stall 10 Copyright 2015 by ASME

11 TABLE 4. SH25 e calculated from energy balance across compressor for icing simulations at 65% Nc Run No. SH25 %T3 drop (Maximum) SH25 e (Eq. 12) (a) Front stages of axial compressor (b) Rear stages of axial compressor FIGURE 12. Transient compressor stage wise matching in case of ice-shed at 65%Nc, optimal operating point recovered after humid air leaves the compressor. SH25 = 10%, ice-shed duration = 10 ms. Black squares track the dynamic compressor response. Red circles show the dry operating point. margin and reduced efficiency under wet conditions making it susceptible to stall in an ice-shed event. Simulations have been performed for different amount of ice at HPC inlet at 82 %Nc and 65 %Nc. From the present simulations, it can be concluded that the amount of ice ingested, its ingestion rate and duration have coupled effect on compressor dynamics. These parameters cannot be separately evaluated. It has been observed that compressor might be able to sustain smaller amount of ice ingested over a longer period of time as compared to instantaneous iceshed event with larger amount of ice entering the compressor. The steady energy balance across the compressor can be useful in determining the TWC in convective clouds but the estimation can significantly vary if the transient T3 drop is due to an instantaneous icing event. The present lower-order model is able to capture the key icing physics and the transient compressor behavior well within model simplifications. Compressor operates at much higher front stage loading near take-off conditions. An ice-shed analysis near design point can be performed to evaluate compressor operability range near cruise conditions where icing events are more probable. Further understanding of the time scales of these events will help in determining the control response to trigger thrust loss abatement techniques. The model is capable of predicting the effect of ice particle size and shape on compressor dynamics. The effect of ice properties (rime or glaze) and its temperature can be incorporated in a future study. ACKNOWLEDGMENT Authors would like to acknowledge the contributions made by Reema Kundu (Georgia Tech.) and J V R Prasad (Georgia Tech.) in development of the icing solver. Technical discussions with Peter Szucs (GE Aviation) are greatly appreciated. Authors wish to thank the General Electric Company for giving permission to publish this paper. This work has been funded by GE Aviation. REFERENCES [1] Mason, J., Strapp, J., and Chow, P., The ice particle threat to engines in flight. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January. [2] Mason, J., Grzych, M. L., and Chow, P., Current perspectives on jet engine power loss in ice crystal condi- 11 Copyright 2015 by ASME

12 tions: Engine icing. AIAA Atmospheric and Space Environments, San Antonio, TX, June. [3] Jorgenson, P., Veres, J., Wright, W., and May, R., Engine icing modeling and simulation (part i): Ice crystal accretion on compression system components and modeling its effects on engine performance. SAE Technical Paper [4] Mazzawy, R., Modeling of ice accretion and shedding in turbofan engines with mixed phase/glaciated (ice crystal) conditions. Aircraft and Engine Icing International Conference, SAE, Seville, [5] Veillard, X., Habashi, W. G., Aube, M. S., and Baruzzi, G. S., Fensap-ice: Ice accretion in multi-stage jet engines. 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, AIAA [6] May, R., Guao, T.-H., Veres, J., and Jorgenson, P., Engine icing modeling and simulation (part 2): Performance simulation of engine rollback phenomena. SAE International Conference on Aircraft and Engine Icing and Ground Deicing, [7] Day, I., Williams, J., and Freeman, C., Rain ingestion in axial flow compressors at part speed. Journal of Turbomachinery, 130(1), p [8] Califf, C., and Knezevici, D., Use of a turbofan engine to measure ice crystal cloud concentration inflight. Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA [9] Grzych, M. L., and Mason, J., Weather conditions associated with jet engine power-loss and damage due to ingestion of ice particles: What we ve learned through American Meteorological Society, 14th Conference on Aviation, Range, and Aerospace Meteorology. [10] Mason, J., Chow, P., and Fuleki, D., Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test. Journal of Engineering for Gas Turbines and Power, 133(4). [11] Dhingra, M., Prasad, J., Tiwari, P., Nakano, T., and Breeze- Stringfellow, A., Impact of inter-stage dynamics on stalling stage identification. Proceedings of ASME TurboExpo: Turbine Technical Conference and Exposition, GT , pp [12] Kundu, R., Prasad, J., Saxena, S., Singh, R., Breeze- Stringfellow, A., and Nakano, T., Modeling and analysis of ice shed in multistage compressor of jet engines. Proceedings of 6th AIAA Atmospheric and Space Environments Conference, AIAA [13] Kundu, R., Prasad, J., Saxena, S., Singh, R., Breeze- Stringfellow, A., and Nakano, T., Analysis of stall onset in a multistage axial flow compressor in response to engine icing. Proceedings of 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA [14] Walsh, P. P., and Fletcher, P., Gas Turbine Performance. Blackwell Science Ltd, Malden, MA. 12 Copyright 2015 by ASME

The Ice Crystal Weather Threat to Engines

The Ice Crystal Weather Threat to Engines Jeanne Mason Boeing Commercial Airplanes The Ice Crystal Weather Threat to Engines BOEING is a trademark of Boeing Management Company. Filename.ppt 1 Agenda Introduction Recognition of engine power-loss

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

AN APPROACH TO DETECT AND MITIGATE ICE PARTICLE ACCRETION IN AIRCRAFT ENGINE COMPRESSION SYSTEMS

AN APPROACH TO DETECT AND MITIGATE ICE PARTICLE ACCRETION IN AIRCRAFT ENGINE COMPRESSION SYSTEMS https://ntrs.nasa.gov/search.jsp?r=146194 17-9-14T4:1:4+:Z Proceedings of the ASME Turbo Expo 13 GT13 June 3-7, 13, San Antonio, Texas, USA GT13-9549 AN APPROACH TO DETECT AND MITIGATE ICE PARTICLE ACCRETION

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

ICING SIMULATION ON JET ENGINE WITH TEMPERATURE CHANGE OF SUPER-COOLED DROPLET

ICING SIMULATION ON JET ENGINE WITH TEMPERATURE CHANGE OF SUPER-COOLED DROPLET 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) Ryosuke Hayashi and

More information

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems Effect of Mixed Icing Conditions on Thermal Ice Protection Systems By Kamel Al-Khalil, Ph.D. Manager, LeClerc Icing Research Laboratory New York, NY 114 FAA Specialists Workshop I. INTRODUCTION The purpose

More information

Total Temperature Measurements Using a Rearward Facing Probe in Supercooled Liquid Droplet and Ice Crystal Clouds

Total Temperature Measurements Using a Rearward Facing Probe in Supercooled Liquid Droplet and Ice Crystal Clouds https://ntrs.nasa.gov/search.jsp?r=186883 18-11-9T16:4:47+:Z Total Temperature Measurements Using a Rearward Facing Probe in Supercooled Liquid Droplet and Ice Crystal Clouds Juan H. Agui, 1 and Peter

More information

A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery

A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery Comp. Part. Mech. (2015) 2:39 50 DOI 10.1007/s40571-015-0033-z A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery Colin S. Bidwell Received:

More information

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR Proceedings of the th Brazilian Congress of Thermal Sciences and Engineering ENCIT 6 Braz. Soc. of Mechanical Sciences and Engineering ABCM, Curitiba, Brazil, Dec. 5-8, 6 Paper CIT6-96 INFLUENCE OF ROTATING

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

Aircraft Icing Icing Physics

Aircraft Icing Icing Physics Aircraft Icing Icing Physics Prof. Dr. Dept. Aerospace Engineering, METU Fall 2015 Outline Formation of ice in the atmosphere Supercooled water droplets Mechanism of aircraft icing Icing variations Ice

More information

Effects of Supercooled Water Ingestion on Engine Performance

Effects of Supercooled Water Ingestion on Engine Performance University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 Effects of Supercooled Water Ingestion on Engine Performance Rick Hutchings rhutchi3@utk.edu

More information

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-862 Mixing-Plane Method for Flutter Computation in Multi-stage

More information

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: 339 In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D Erdem Ayan and Serkan Özgen Turkish Aerospace

More information

Fan and Compressor Performance Scaling with Inlet Distortions

Fan and Compressor Performance Scaling with Inlet Distortions Fan and Compressor Performance Scaling with Inlet Distortions J. J. Defoe Turbomachinery and Unsteady Flows Research Group University of Windsor Windsor, ON, Canada UTIAS National Colloquium on Sustainable

More information

MECA-H-402: Turbomachinery course Axial compressors

MECA-H-402: Turbomachinery course Axial compressors MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year 013-014 Contents List of figures iii 1 Axial compressors 1 1.1 Introduction...............................

More information

Study for the Effect of Combined Pressure and Temperature Distortion on a Turbojet Engine

Study for the Effect of Combined Pressure and Temperature Distortion on a Turbojet Engine Study for the Effect of Combined Pressure and Temperature Distortion on a Turbojet Engine Wei Ye, Weiyang Qiao & Mingjie Hou School of Power and Energy, Northwestern Polytechnical University, Xi an 710072,

More information

Parametric Study of Greitzer s Instability Flow Model Through Compressor System Using the Taguchi Method

Parametric Study of Greitzer s Instability Flow Model Through Compressor System Using the Taguchi Method Rotating Machinery, 10: 91 97, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print DOI: 10.1080/10236210490276683 Parametric Study of Greitzer s Instability Flow Model Through Compressor System

More information

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE

PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE PREDICTION OF ICE CRYSTAL ACCRETION WITH IN-HOUSE TOOL TAICE Erdem Ayan, Serkan Özgen, Erhan Tarhan, Murat Canıbek TAI Turkish Aerospace Industries Inc. SAE 2015 International Conference on Icing of Aircraft,

More information

Dynamic Modeling and Simulation on GE90 Engine

Dynamic Modeling and Simulation on GE90 Engine The International Journal Of Engineering And Science (IJES) Volume 5 Issue 12 Pages PP 111-119 2016 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Dynamic Modeling and Simulation on GE90 Engine Shray Benawra

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 26 Tutorial 4: 3D Flows in Axial Flow Turbines We

More information

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature Turbomachinery Lecture Notes 1 007-10-04 Radial Compressors Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s r Radius

More information

NUMERICAL SIMULATION OF STATIC INFLOW DISTORTION ON AN AXIAL FLOW FAN

NUMERICAL SIMULATION OF STATIC INFLOW DISTORTION ON AN AXIAL FLOW FAN Int. J. Mech. Eng. & Rob. Res. 2014 Arun Raj S and Pal Pandian P, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 2, April 2014 2014 IJMERR. All Rights Reserved NUMERICAL SIMULATION OF STATIC

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Keywords - Gas Turbine, Exhaust Diffuser, Annular Diffuser, CFD, Numerical Simulations.

Keywords - Gas Turbine, Exhaust Diffuser, Annular Diffuser, CFD, Numerical Simulations. Numerical Investigations of PGT10 Gas Turbine Exhaust Diffuser Using Hexahedral Dominant Grid Vaddin Chetan, D V Satish, Dr. Prakash S Kulkarni Department of Mechanical Engineering, VVCE, Mysore, Department

More information

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades *

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll21/21llpp105-110 Volume 14, Number S2, December 2009 Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * KIM Jinwook

More information

Chapter three. Two-dimensional Cascades. Laith Batarseh

Chapter three. Two-dimensional Cascades. Laith Batarseh Chapter three Two-dimensional Cascades Laith Batarseh Turbo cascades The linear cascade of blades comprises a number of identical blades, equally spaced and parallel to one another cascade tunnel low-speed,

More information

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lecture Lect Radial Flow Turbines Lect Radial inflow turbines, which look similar to centrifugal compressor, are considered suitable for application in small aircraft engines. In many applications a radial

More information

COMPUTATIONAL METHOD

COMPUTATIONAL METHOD Multi Objective Design Optimization of Rocket Engine Turbopump Turbine Naoki Tani, Akira Oyama and Nobuhiro Yamanishi tani.naoki@jaxa.jp Japan Aerospace Exploration Agency JAXA is now planning to develop

More information

Reynolds number effects on the aerodynamics of compact axial compressors

Reynolds number effects on the aerodynamics of compact axial compressors Paper ID: ETC27-227 Proceedings of 2th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC2, April 3-7, 27; Stockholm, Sweden Reynolds number effects on the aerodynamics of compact

More information

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage The Boeing Company 1 Photo: courtesy of Ian McPherson The Boeing Company acknowledges the contributions

More information

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE Journal of Engineering Science and Technology Vol. 6, No. 5 (2011) 558-574 School of Engineering, Taylor s University EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

More information

Nonlinear Aircraft Engine Model for Future Integrated Power Center Development

Nonlinear Aircraft Engine Model for Future Integrated Power Center Development Nonlinear Aircraft Engine Model for Future Integrated Power Center Development Hossein Balaghi Enalou, Mohamed Rashed, Ponggorn Kulsangcharoen, Christopher Ian Hill, Serhiy Bozhko Department of Electrical

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Flow Mechanism for Stall Margin Improvement via Axial Slot Casing Treatment on a Transonic Axial Compressor

Flow Mechanism for Stall Margin Improvement via Axial Slot Casing Treatment on a Transonic Axial Compressor Journal of Applied Fluid Mechanics, Vol., No. 2, pp. 73-72, 27. Available online at www.jafmonline.net, ISSN 735-3572, EISSN 735-3645. DOI:.8869/acadpub.jafm.73.239.2747 Flow Mechanism for Stall Margin

More information

Simulation of Condensing Compressible Flows

Simulation of Condensing Compressible Flows Simulation of Condensing Compressible Flows Maximilian Wendenburg Outline Physical Aspects Transonic Flows and Experiments Condensation Fundamentals Practical Effects Modeling and Simulation Equations,

More information

GT UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE USING AN EFFICIENT NON-LINEAR HARMONIC BALANCE METHOD

GT UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE USING AN EFFICIENT NON-LINEAR HARMONIC BALANCE METHOD Proceedings of ASME Turbo Expo 213: Turbine Technical Conference and Exposition GT213 June 3-7, 213, San Antonio, Texas, USA GT213-94574 UNSTEADY SIMULATION OF A TWO-STAGE COOLED HIGH PRESSURE TURBINE

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D.

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D. Leveraging STAR-CCM+ for Aircraft Applications Durrell Rittenberg, Ph.D. Overview of Icing with STAR-CCM+ Icing in aerospace Common applications Impact of icing on Aircraft safety Common icing conditions

More information

Keywords: Ice Accretion, Rotor-Stator Interaction, Tip Clearance, Leakage Vortex.

Keywords: Ice Accretion, Rotor-Stator Interaction, Tip Clearance, Leakage Vortex. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm NUMERICAL INVESTIGATION OF TIP CLEARANCE EFFECT OF ICING IN ROTOR/STATOR INTERACTION R.

More information

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Andrey Sherbina 1, Ivan Klimov 2 and Leonid Moroz 3 SoftInWay Inc., 1500 District Avenue, Burlington, MA, 01803,

More information

Aircraft Icing FAR/CS-25, Appendix O and P charts

Aircraft Icing FAR/CS-25, Appendix O and P charts Aircraft Icing FAR/CS-25, Appendix O and P charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Fall 2015 Outline Appendix O and P - Background Existing CS-25 certification specifications for

More information

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING Sanford Fleeter, Chenn Zhou School of Mechanical Engineering Elias Houstis, John Rice Department of Computer Sciences Purdue University West Lafayette, Indiana

More information

GT NUMERICAL COMPUTATION OF THE JET IMPINGEMENT COOLING OF HIGH PRESSURE RATIO COMPRESSORS

GT NUMERICAL COMPUTATION OF THE JET IMPINGEMENT COOLING OF HIGH PRESSURE RATIO COMPRESSORS Proceedings of ASME Turbo Expo 2013 GT2013 June 3-7, 2013, San Antonio, Texas, USA GT2013-94949 NUMERICAL COMPUTATION OF THE JET IMPINGEMENT COOLING OF HIGH PRESSURE RATIO COMPRESSORS Elmar Gröschel ABB

More information

GTINDIA CFD ANALYSIS TO UNDERSTAND THE FLOW BEHAVIOUR OF A SINGLE STAGE TRANSONIC AXIAL FLOW COMPRESSOR. 1 Copyright 2013 by ASME

GTINDIA CFD ANALYSIS TO UNDERSTAND THE FLOW BEHAVIOUR OF A SINGLE STAGE TRANSONIC AXIAL FLOW COMPRESSOR. 1 Copyright 2013 by ASME Proceedings of ASME GTINDIA 203 ASME 203 GAS TURBINE INDIA CONFERENCE DECEMBER 5-6, 203, BANGALORE, KARNATAKA, INDIA GTINDIA203-3592 CFD ANALYSIS TO UNDERSTAND THE FLOW BEHAVIOUR OF A SINGLE STAGE TRANSONIC

More information

INFLUENCE OF DIFFUSER DIAMETER RATIO ON THE PERFORMANCE OF A RETURN CHANNEL WITHIN A CENTRIFUGAL COMPRESSOR STAGE

INFLUENCE OF DIFFUSER DIAMETER RATIO ON THE PERFORMANCE OF A RETURN CHANNEL WITHIN A CENTRIFUGAL COMPRESSOR STAGE Proceedings of GPPS Forum 18 Global Power and Propulsion Society Montreal, 7 th -9 th May 018 www.gpps.global GPPS-NA-018-0034 INFLUENCE OF DIFFUSER DIAMETER RATIO ON THE PERFORMANCE OF A RETURN CHANNEL

More information

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena Dr. Hui HU Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory

More information

1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO 2 RADIAL COMPRESSORS: A COMPARISON

1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO 2 RADIAL COMPRESSORS: A COMPARISON 1D AND 3D TOOLS TO DESIGN SUPERCRITICAL CO 2 RADIAL COMPRESSORS: A COMPARISON B. Monje *, D. Sánchez *, M. Savill, P. Pilidis and T. Sánchez * * Thermal Power Group (GMTS) School of Engineering, University

More information

Design of Multistage Turbine

Design of Multistage Turbine Turbomachinery Lecture Notes 7-9-4 Design of Multistage Turbine Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s c p Specific heat J/kgK h Enthalpy J/kg m&

More information

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE 20 th Annual CFD Symposium, August 09-10, 2018, Bangalore LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE Bharathan R D, Manigandan P, Vishal Tandon, Sharad Kapil,

More information

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 1 Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 2 Recap of simple 3-D flow theories (These are mainly used for design) Lect-10 1)Free Vortex

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections

Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections Numerical Study of Atmospheric Ice Accretion on Various Geometric Cross-sections by Muhammad S. Virk REPRINTED FROM WIND ENGINEERING VOLUME 35, NO. 5, 2011 MULTI-SCIENCE PUBLISHING COMPANY 5 WATES WAY

More information

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Dr. Jose L Palacios Research Associate jlp324@psu.edu Yiqiang Han Research Assistant ARMY Program Review April 7,

More information

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat Impact of S-CO2 Properties on Centrifugal Compressor Impeller: Comparison of Two Loss Models for Mean Line Analyses The Supercritical CO2 Power Cycles Symposium 2016 Akshay Khadse, Lauren Blanchette, Mahmood

More information

Improvements of a parametric model for fan broadband and tonal noise

Improvements of a parametric model for fan broadband and tonal noise Improvements of a parametric model for fan broadband and tonal noise A. Moreau and L. Enghardt DLR - German Aerospace Center, Mueller-Breslau-Str. 8, 10623 Berlin, Germany antoine.moreau@dlr.de 4083 Engine

More information

Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD

Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD International Journal of Ignited Minds (IJIMIINDS) Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD Manjunath DC a, Rajesh b, Dr.V.M.Kulkarni c a PG student, Department

More information

Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade)

Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade) Rotating Machinery, 10(5): 415 424, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490474629 Study on the Performance of a Sirocco Fan (Flow Around

More information

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study Journal of Applied Fluid Mechanics, Vol. 9, No. 5, pp. 2149-2160, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.236.25222 Axial-Flow Compressor

More information

STUDY OF THE PRESSURE DROP FOR RADIAL INFLOW BETWEEN CO-ROTATING DISCS

STUDY OF THE PRESSURE DROP FOR RADIAL INFLOW BETWEEN CO-ROTATING DISCS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES X. YU 1, 2 H. Y. LU 1 J. N. SUN 2 X. LUO 2,* G. Q. XU 2 (1 Shenyang Aeroengine Research Institute, Aviation Industry Corporation of China, Shenyang,

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

6.1 Propellor e ciency

6.1 Propellor e ciency Chapter 6 The Turboprop cycle 6. Propellor e ciency The turboprop cycle can be regarded as a very high bypass limit of a turbofan. Recall that the propulsive e ciency of a thruster with P e = P 0 and f

More information

Fuel Cell System Model: Auxiliary Components

Fuel Cell System Model: Auxiliary Components 2 Fuel Cell System Model: Auxiliary Components Models developed specifically for control studies have certain characteristics. Important characteristics such as dynamic (transient) effects are included

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

In-flight Ice Accretion Prediction Code

In-flight Ice Accretion Prediction Code In-flight Ice Accretion Prediction Code Vladimír HORÁK*, Zdeněk CHÁRA** *Corresponding author University of Defence in Brno, Kounicova 65, 612 00 Brno, Czech Republic vladimir.horak@unob.cz **Institute

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine

Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine Dongil Chang and Stavros Tavoularis Department of Mechanical Engineering, University of Ottawa, Ottawa, ON Canada Stavros.Tavoularis@uottawa.ca

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

Sound diffraction by the splitter in a turbofan rotor-stator gap swirling flow

Sound diffraction by the splitter in a turbofan rotor-stator gap swirling flow Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Sound diffraction by the splitter in a turbofan rotor-stator gap swirling flow R.J. Nijboer This report is based on a presentation

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

Analysis of Temperature Distribution Using Conjugate Heat Transfer in a HPT Stage via CFD

Analysis of Temperature Distribution Using Conjugate Heat Transfer in a HPT Stage via CFD 1 ISABE-2015-20186 Analysis of Temperature Distribution Using Conjugate Heat Transfer in a HPT Stage via CFD Lucilene Moraes da Silva Jesuino Takachi Tomita Cleverson Bringhenti Turbomachines Department

More information

NUMERICAL INVESTIGATION OF ICING EFFECTS ON VORTEX SHEDDING IN A CASCADE OF STATOR BLADES

NUMERICAL INVESTIGATION OF ICING EFFECTS ON VORTEX SHEDDING IN A CASCADE OF STATOR BLADES Heat Transfer Research 49(1):1 14 (2018) NUMERICAL INVESTIGATION OF ICING EFFECTS ON VORTEX SHEDDING IN A CASCADE OF STATOR BLADES S.M. Pouryoussefi & Yuwen Zhang* Department of Mechanical and Aerospace

More information

List of symbols. Latin symbols. Symbol Property Unit

List of symbols. Latin symbols. Symbol Property Unit Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze

More information

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015 Aircraft Icing FAR 25, Appendix C charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Fall 2015 Outline FAR 25 and FAR 29 Appendix C charts Using FAR 25 Appendix C charts Liquid water content

More information

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Civil aeroengines for subsonic cruise have convergent nozzles (page 83): 120 Civil aeroengines for subsonic cruise have convergent nozzles (page 83): Choked convergent nozzle must be sonic at the exit A N. Consequently, the pressure (p 19 ) at the nozzle exit will be above

More information

Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors: Part II Analysis

Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors: Part II Analysis Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors: Part II Analysis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models

Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in I. Kolias, A. Alexiou, N. Aretakis, K. Mathioudakis Laboratory of Thermal Turbomachines, School of Mechanical Engineering

More information

Non-Synchronous Vibrations of Turbomachinery Airfoils

Non-Synchronous Vibrations of Turbomachinery Airfoils Non-Synchronous Vibrations of Turbomachinery Airfoils 600 500 NSV Frequency,!, hz 400 300 200 F.R. Flutter 100 SFV 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Rotor Speed,!, RPM Kenneth C. Hall,

More information

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV AIAA 2 529 Unsteady Flow Investigations in an Axial Turbine Using the Massively Parallel Flow Solver TFLO Jixian Yao, Roger L. Davis, Juan J. Alonso, and Antony Jameson Stanford University, Stanford, CA

More information

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS R. J. Miller Whittle Laboratory University

More information

Research on Propeller Characteristics of Tip Induced Loss

Research on Propeller Characteristics of Tip Induced Loss 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) Research on Propeller Characteristics of Tip Induced Loss Yang Song1, a, Peng Shan2, b 1 School

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Subjects: Velocity triangles; Compressor performance maps

Subjects: Velocity triangles; Compressor performance maps 16.50 Lecture 5 Subjects: Velocity triangles; Compressor performance maps In the last lecture we discussed the basic mechanisms of energy exchange in compressors and drew some simple velocity triangles

More information

Influence of Chord Lengths of Splitter Blades on Performance of Small Axial Flow Fan

Influence of Chord Lengths of Splitter Blades on Performance of Small Axial Flow Fan Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2015, 9, 361-370 361 Open Access Influence of Chord Lengths of Splitter Blades on Performance of Small Axial

More information

Draft Paper-GT

Draft Paper-GT Proceedings of ASME Turbo Expo 2008 Power of Land, Sea, and Air June 9-13, 2008, Berlin, Germnay Draft Paper-GT2008-51033 Optimum design and sensitivity analysis of axial flow compressor with combination

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique

Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique Torsten Palenschat 317220 30.04.2014 Master seminar CES WS 2013/2014 Center for Computational Engineering Sciences RWTH Aachen

More information

The Ice Crystal Icing Hazard & Risk Mitigation: Delta Air Lines Perspective

The Ice Crystal Icing Hazard & Risk Mitigation: Delta Air Lines Perspective The Ice Crystal Icing Hazard & Risk Mitigation: Delta Air Lines Perspective Bob Culver, Chief Line Check Pilot & Tom Fahey, Mgr. Meteorology Friends/Partners Aviation Weather (FPAW) 19 November 2015 Las

More information

IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS

IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS HEFAT010 7 th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics 19-1 July 010 Antalya Turkey IN-FLIGHT ICING SIMULATION WITH SUPERCOOLED LARGE DROPLET EFFECTS Özgen S.* and Canıbek

More information

Overall Performance Design of Ramjet for Combined Engine

Overall Performance Design of Ramjet for Combined Engine 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-1426 Overall Performance Design of Ramjet for Combined Engine

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 07.08.2006 Handling time: 120 Minutes ISE

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information