Automatic generation of hypergeometric identities by the beta integral method

Size: px
Start display at page:

Download "Automatic generation of hypergeometric identities by the beta integral method"

Transcription

1 Journl of Computtionl nd Applid Mthmtics 60 (00) Automtic gnrtion of hyprgomtric idntitis by th bt intgrl mthod C. Krttnthlr ;;, K. Srinivs Ro b; Institut fur Mthmtik dr Univrsitt Win, Strudlhofgss 4, A-090 Win, Austri b Institut of Mthmticl Scincs, Chnni 600, Indi Rcivd 0 Sptmbr 00; rcivd in rvisd form Mrch 00 Abstrct In this rticl, hyprgomtric idntitis (or trnsformtions) for p+ F p -sris nd for Kmp d Frit sris of unit rgumnts r drivd systmticlly from known trnsformtions of hyprgomtric sris nd products of hyprgomtric sris, rspctivly, using th bt intgrl mthod in n utomtd mnnr, bsd on th Mthmtic pckg HYP. As rsult, w obtin som known nd som idntitis which sm to not hv bn rcordd bfor in litrtur. c 00 Elsvir B.V. All rights rsrvd. MSC: primry C0; scondry C05; C70 Kywords: Bt intgrl; Gnrlizd hyprgomtric sris; Kmp d Frit functions. Introduction Eulr s bt intgrl vlution 0 z ( z) dz () () ( + ) ; (.) Corrsponding uthor. E-mil ddrsss: krtt@p.univi.c.t (C. Krttnthlr), ro@imsc.rnt.in (K. Srinivs Ro). URL: krtt Rsrch prtilly supportd by th Austrin Scinc Foundtion FWF, Grnt P094-MAT, nd by EC s IHRP Progrmm, Grnt HPRN-CT Currnt ddrss: Institut Girrd Dsrgus, Univrsit Clud Brnrd Lyon-I,, vnu Clud Brnrd, F-696 Villurbnn Cdx, Frnc /$ - s front mttr c 00 Elsvir B.V. All rights rsrvd. doi:0.06/s (0)0069-0

2 60 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) 59 7 providd R() 0 nd R() 0, is t th hrt of mny idntitis in th thory of hyprgomtric sris. An xmpl is th wll-known intgrl rprsnttion (s,.g.,, (), Sction.6) of hyprgomtric sris ; ;:::; p p+f p ; t ; ;:::; p () ;:::; z ( z) p pf p ; zt dz: (.) () ( ) 0 ;:::; p Hr w us th stndrd hyprgomtric nottion ;:::; r ( ) k ( r ) k rf s ; z z k ; b ;:::;b s k!(b ) k (b s ) k k0 whr th Pochhmmr symbol () k is dnd by () k (+)(+) (+k ), k 0, () 0. (In ordr to prov (.), on would intrchng intgrtion nd summtion on th right-hnd sid, nd thn us (.) to vlut th intgrl insid th summtion.) In this ppr, w propos th xploittion of (wht w cll) th bt intgrl mthod, mthod of driving nw hyprgomtric idntitis from old ons, using th bt intgrl vlution, which is folklor in th hyprgomtric litrtur, lthough pprncs cn b only found spordiclly (s, for xmpl,, Chptr, Exrciss 5, 4 nd 6). It sms tht it ws nvr xploitd systmticlly, probbly bcus of th ort it tks to do ll th computtions. Howvr, with th hlp of computr, ths computtions bcom compltly pinlss. This is wht w propos hr: th compltly utomtic ppliction of th bt intgrl mthod. To convy th id, w briy rcll n rly occurrnc of this mthod (but, vry likly, not th rst) in 8, Sction. W strt with th wll-known trnsformtion formul (4, (.8.0) with ; c rplcd by n; ;, rspctivly) n; F ; z ( ) n () n F n; n + ; z ; (.) multiply both sids by z ( z), intgrt both sids with rspct to z, 06 z 6, intrchng intgrtion nd summtion on both sids, thn us (.), nd nlly convrt th rsult bck to hyprgomtric nottion, to gt th trnsformtion formul: n; ; F ; ( ) n n; ; F ; () n + n; ; ; (.4) In fct, w hv to tmporrily rstrict th prmtrs nd to R() 0 nd R( ) 0, bcus othrwis bt intgrl (.) would not convrg. Howvr, ths rstrictions cn in th nd b rmovd by nlytic continution. W shll, if ncssry, mk similr tmporry ssumptions without mntioning in subsqunt drivtions.

3 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) whr n is nonngtiv intgr. In this cs w obtin n lrdy known trnsformtion formul, nmly on of Thom s F -trnsformtion formuls. (Formul (.4) cn for xmpl b xtrctd from Tbls II A nd II B (Fp(0; 4; 5) Fn(4; 0; )) in Bily s trct 4 which summrizs nd groups th quivlnt numrtor nd dnomintor functions obtind in 7 in th nottion of Whippl 9.) Howvr, not only cn this mthod b pplid to lrg vrity of idntitis, its ppliction cn b compltly utomtizd (s w lrdy nnouncd) with th hlp of th Mthmtic progrm HYP crtd by on of us 9. Thus, this mthod is similr in spirit to th id of dul idntitis in WZ-thory 0 (though it is lss sophistictd), nd th id of prmtr ugmnttion in 6,7 (which, howvr, introducs just on dditionl prmtr instd of two s in th bt intgrl mthod). Also thr, th id is to strt with known idntity, nd thn pply crtin procdur to utomticlly produc (possibly) nwidntity. (In WZ-thory, th procdur consists in nding th WZ-pir which is bhind th originl idntity, nd thn us summtion ovr th othr vribl to obtin dirnt idntity. Prmtr ugmnttion pplis crtin (q-)dirntil oprtor to known idntity.) Th lgorithm hs lso bn pplid to trnsformtion formul for products of hyprgomtric functions known in litrtur. As rsult, formul for th Kmp d Frit sris of unit rgumnts, which trnsform thm into singl-sum hyprgomtric sris, r obtind. Agin, som of th rsults obtind r known ons but som of th rsults obtind sm to b nw nd intrsting. In Sction, th lgorithm nd its implmnttion r prsntd. A sction of th Mthmtic sssion is rproducd to giv fl for th mthodology doptd. In Sction, w list th rsults if w pply our lgorithm to known hyprgomtric trnsformtion formul btwn singl-sum sris. In Sction 4, w list fw of th rsults for Kmp dfrit tht w obtin whn w pply our mchinry to idntitis involving products of hyprgomtric sris. Concluding rmrks r md in Sction 5.. Th lgorithm Lt us rcll th bsic stps of th lgorithm tht producd (.4) from (.): (i) convrt th hyprgomtric sris on both sids of givn trnsformtion into sums; (ii) multiply both sids of th qution by th fctors z ( z) ; (iii) intgrt trm by trm with rspct to z for 0 6 z 6 ; (iv) intrchng intgrtion nd summtion; (v) us th bt intgrl to vlut th intgrls insid th summtions; (vi) convrt th sums bck into hyprgomtric nottion. W giv blow(s In in th Mthmtic sssion blow) n implmnttion of this lgorithm in Mthmtic. Thr, function T is dnd, which is pplid to som qution. To briy xplin th cod: Stp (i) is prformd in th rst lin (XErsEqu,FSUM,{,}), whr th vribl X is st to th qution Equ whr on both sids th hyprgomtric sris is convrtd into sum (which is chivd by th ppliction of FSUM). Thn, in th nxt lin, both sids of th qution r multiplid by z A ( z) B A, thus prforming Stp (ii). Th subsqunt lin

4 6 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) 59 7 hs th purpos of bringing vrything insid th summtions (which is chivd by SUMSmml). Thn, Stps (iii) (vi) r prformd in th following wy. First, th vribl Y is st to th intgrl ovr z, 06 z 6, of th summnd (rprsntd by X,) of th sris on th lft-hnd sid of th qution. Subsquntly, th rsult is summd ovr k, nd thn convrtd to hyprgomtric nottion (th lttr bing chivd by SUMF). Thn th sm is don for th right-hnd sid, nd th rsult is stord in th vribl X. Finlly, in th lst lin (YX) th rsults on both sids r qutd. To illustrt th us of this lgorithm, w djoin sgmnt of th Mthmtic output whr th lgorithm is pplid to th trnsformtion formul 4, (..5). Within HYP, th trnsformtion formul is input s Tgl0 (s In). Thn th lgorithm is invokd, by pplying th function T to th trnsformtion formul. In th intrctiv mod th qustions risd by Mthmtic hv to b nswrd ppropritly. Th rsult is displyd in Out4. Mthmtic. for DOS 87 Copyright Wolfrm Rsrch, Inc. In : hyp:m In :TEqu : Modul{X,Y}, X ErsEqu; FSUM; {; }; Mlz (A ) ( z) (B A ); X (Glichung:SUMSmml); Y IntgrtX; ; {z; 0; }; Y (SUMY; {k; 0; Infinity}:SUMF); X IntgrtX; ; {z; 0; }; X (SUMX; {k; 0; Infinity}:SUMF); Y X In :Tgl0 Do you wnt to st vlus for th qution? y n: n b + c + c; b + c Out F c ; z ( z) F ; z c In4 :T% Is - nonngtiv intgr? y n: n Is -b nonngtiv intgr? y n: n A hyprgomtric sris is convrtd into sum. Entr vribl for th summtion indx: k Is -c nonngtiv intgr?

5 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) y n: n Is b-c nonngtiv intgr? y n: n A hyprgomtric sris is convrtd into sum. Entr vribl for th summtion indx: k A; F B; c ; (A) ( A + B) Out4 A; + c; b + c b + B + c; c ; (B) (A) ( A b + B + c) F ( b + B + c) Notic tht (A) is occurring on both sids of th output qution. Simpliction of th rsult cn b don ithr by hnd or using th vrious commnds vilbl in HYP. Aftr th following rplcmnts, in succssion: c, A c, B d, th nl rsult obtind is c; + ; b + F ; c d; ; (d) (s) ( c + d) (s + c) F s + c; d ; ; (.) whr s d + b c, is th prmtr xcss. This idntity blongs to th st of 0 nontrminting F sris (s 4, Exmpl 7, p. 98 nd 5, (III)). Within HYP, this output cn thn b convrtd into ny of th commonly usd forms of TEX (LATEX, AMS-LATEX, AMS- TEX or Plin-TEX). In th cs of this rticl, convrsion into AMS-LATEX cod ws pplid, which is rproducd hr.. Nw singl sum hyprgomtric idntitis from old ons In this sction, w pply th lgorithm of th prvious sction systmticlly to known hyprgomtric sris trnsformtions. Whnvr w hv bn bl to trc th obtind idntity in th litrtur, w provid th rspctiv rfrnc. In ny cs, w hv lrdy sn two such xmpls: If w strt with trnsformtion formul (.), thn th lgorithm rsults in (.4), nd if w strt with th trnsformtion formul displyd s Out of th Mthmtic sssion, thn th lgorithm rsults in (.). Th trnsformtion formul 4, (.7..) F c ; z ; c b ( z) F c ; z z will lso rsult in on of th 8 trminting F trnsformtions (s 6, (IX), p. 9), whn on of th numrtor prmtrs is ngtiv intgr.

6 64 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) If w strt with th qudrtic trnsformtion formul, (.) F + b ; z ( z) F ; + + b ; 4z ( z) nd ssum tht is nonpositiv intgr (so tht th F -sris trmint), thn w obtin ; d F + b; ; () ( d) ( ) ( d) 4 F + ; ;d;+ + b; + + d ; + + d (.) ; : (.) This trnsformtion rlting nrly-poisd F to 4 F is vlid providd is nonpositiv intgr. Howvr, by stndrd polynomil trick, it cn b sn tht it is lso tru if is rbitrry but d is nonpositiv intgr: lt d by xd nonpositiv intgr. By multiplying both sids of (.) by ( ) d ( + b) d ( + + d ) d ; both sids bcom polynomils in of dgr t most 5d. Ths two polynomils gr for ll nonpositiv, sinc w know tht (.) is tru for nonpositiv. Ths r innitly mny vlus of, whnc th polynomils must b idnticl.. If w strt with th trnsformtion formul, (5.0) ; F + + b ; z ( z) F b ; z z nd ssum tht is nonpositiv intgr, thn w obtin ; 4F + ; + d ; d () ( d) + b; + ; ; ( ) ( d) F ; d b; + + d ; (.) : (.4) This idntity is tru providd is nonpositiv intgr or d is nonpositiv intgr, th lttr bcus of th sm rgumnts s sktchd in itm. It cn b found in th litrtur s spcil cs of mor gnrl trnsformtion for bsic hyprgomtric sris (s 8, Exrcis.4, q, rvrsd; it is vilbl s T5 within HYP, s 0).. If w strt with th qudrtic trnsformtion formul of Gu (4, Exmpl 4.(iii), p. 97, with, b, x z) F + + b ; z F ; b + + b ; 4( z)z nd ssum tht is nonpositiv intgr, thn w obtin ; d F + + b ;; 4 F ; b ;d; d b ; + ; ; : (.6) (.5)

7 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) This idntity is tru providd both hyprgomtric sris trmint. It is th min thorm in (ctully, thr vn q-nlogu of (.6) cn b found; s lso 8, (.0.); Appndix (III.)). This sm rsult (.6) will b obtind whn z z in (.5). 4. If w strt with th qudrtic trnsformtion formul, (5.), rvrsd F b ; z ( z) F ; + b + b ; z 4(z ) (.7) nd ssum tht is n vn nonpositiv intgr, thn w obtin ; d F b; ; () ( d) ( ) ( d) 4 F ; + b; + d ; d + b; + + d ; + ; ; (.8) providd is n vn nonpositiv intgr or d is ny nonpositiv intgr. This idntity cn lso b obtind in dirnt (but mor complictd) wy: In th trnsformtion formul listd s T49 in HYP (s 0; it is Eq. (.5.7) from 8 with q ) lt. Thn on th right-hnd sid th scond trm vnishs, whil th rst is vry-wll-poisd 7 F 6 -sris to which Whippl s 7 F 6 -to- 4 F trnsformtion (s 4, (.4..)) cn b pplid. Th rsult is trnsformtion formul (.8). 5. Th trnsformtion formul, (.), rvrsd ; F ; z ( z) c F + c ; + + c ;4( z) z c c (.9) rsults in ; ; d F ; c; () (c d + ) (c + ) ( d) 4 F + c ; + + c ;d;c d + c; + c + ; c + ; ; (.0) providd both hyprgomtric sris trmint. 6. If w strt with th trnsformtion formul (, (4.0), with x z) F b ; 4 z ( z) ( z) F ; + b + b ; z ; (.)

8 66 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) 59 7 which is combintion of, (5.0) nd, (6.), rvrsd, nd ssum tht is nonpositiv intgr, thn w obtin ; d; 4F b; d + ; + d + ; ( ) (+ d ) ; (+ ) ( d ) 4 F + b; + d ; d + b; + ; + ; ; (.) providd or d is nonpositiv intgr. 7. If w strt with th trnsformtion formul (, (4.), with, b, x z nd, (5.), with z z( z)): F + + b ; z 4(z ) ( z) F ; + b +b ; z (.) nd ssum tht is nonpositiv intgr, thn w obtin ; 4F + d ; d () ( d + ) ; + b; d ; + + b; +d ; ( + ) ( d) F +b; + ; ; (.4) providd or d is nonpositiv intgr. 8. Th trnsformtion formul (, (.) with z 4z( z), + c +, c b) F ;4( z) z ( z) b F + b; + b + + b + + b ; z (.5) nd ssum tht is nonpositiv intgr, thn w obtin ; d; d 4F + + b; + ; ; () ( b d + ) ( b + ) ( d) F + b; + b; d + + b; b + ; ; (.6) providd both hyprgomtric sris trmint. This trnsformtion cn lso b obtind by combining th 4 F -to- F trnsformtion from tht occurrd lrdy in itm with F -trnsformtion (.). 9. If w strt with th trnsformtion formul (8, (.4.8) q, rvrsd) ; ( + z) F + ; 4 z ; ( z) F + ; b b ( z) + ; z (.7)

9 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) nd ssum tht is nonpositiv intgr, thn w obtin ; + ; d; (d + ) 4 F b; + d ; + d ; ( + ) ( d + ) ; + ; b; d 4F ; ; (.8) ( + ) ( d) + ; + providd or d is nonpositiv intgr. (In fct, whn pplying th bt intgrl mthod, w hv to dl with sum of two sris on th lft-hnd sid, which gnrts th fctor (d + ) inth rsult.) 0. If w strt with th trnsformtion formul (4, p. 97, Exmpl 4(iv) with x z) F ; + ; + b c ; 4 z + b; + c ( z) ( z) F ; c + b; + c ; z (.9) nd ssum tht is nonpositiv intgr, thn w obtin 5F + ; ; + b c; d; 4 + b; + c; + d ; + d ; () ( d + ) ; c; d ( + ) ( d) 4 F + b; + c; + ; ; (.0) providd or d is nonpositiv intgr. This is known trnsformtion btwn nrly-poisd 4F sris nd Slschutzin 5 F 4 sris (4, (.4..); to s this do th rplcmnts f, b +f h, c h, g f, in(.0)).. If w strt with th trnsformtion formul (4, p. 97, Exmpl 6 with b + b, c + c, x z) ( + z) F + ; + ; + b + c ; 4 z b; c (z ) ; + ; + b; + c ( z) + 4F ;b;c ; z nd ssum tht is nonpositiv intgr, thn w obtin 5F + ; + ; + b + c ;d; 4 ; d + b; c; + d ; + d ( + ) ( + d + ) ( + + ) ( d) (.) ; + ; + b; + c; d 5F 4 ;b;c;+ + ; ; (.)

10 68 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) 59 7 providd or d is nonpositiv intgr. On rplcing b + b; c + c; d m; + w, this idntity corrsponds to 4, (4.5.). (Th prnthticl rmrk in itm 9 pplis lso hr. Howvr, in th rsult, w movd th fctor (d + ), which is gnrtd by th sum of two sris on th lft-hnd sid of (.), to th right-hnd sid.). If w strt with th trnsformtion formul, (5.8) ( z ) +; b; +b; 4 4F + + b; + b; + ; z 4( z) +; +b; ( z)( z) + 4F + b; 5 + +b; + b; + ;4( z) z (.) nd ssum tht is ngtiv intgr, thn w obtin 4 6F + ; +; b; +b; + d ; d 5 + ; + b; ; + b; +d ; + (+ d + ) ( + ) ( + d + ) d ( + + ) ( d) 5 6 F + ; +; + b; +b; d; + d ; + b; +b; + + ; + + ; ; (.4) providd is ngtiv intgr or d is nonpositiv intgr. (Agin, th prnthticl rmrk of itm 9 pplis, this tim on both sids. Th fctors gnrtd ppr in th rst trm on th right-hnd sid.). If w strt with th cubic trnsformtion formul (, (4.05), with b, b +, x z) ; ( z) F + ; + 7 z ; b; + b 4( z) F ; +b ; + b b; + b ; z 4 (.5) nd ssum tht is nonpositiv intgr, thn w obtin ; 6F + ; + ; d; + ; b; b; + + d ; + + d ; + + d ; ( + ) ( d) ; + b; +b ;d () ( d + ) 4 F + b; b; ; ; (.6) 4

11 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) providd or d is nonpositiv intgr. This is n unusul idntity fturing trnsformtion btwn 6 F 5 -sris nd 4 F 4 -sris. 4. If w strt with th scond cubic trnsformtion formul of Bily (4, (4.06) with b, + b, x z): ; F + ; + b; + b ; 7 z 4( z) ; + b; + b ( z) F b ; +6 b ;4z (.7) nd ssum tht is nonpositiv intgr, thn w obtin ; 6F + ; + ; + d ; d ; 5 + b; b; d + ; + d + ; + d + ; ( ) (+ d ) ; + b; (+ ) ( d ) 4 F + b; d +6 b; b ; + ;4 ; (.8) providd or d is nonpositiv intgr. 5. If w strt with th trnsformtion formul 5, Entry 4 of Rmnujn, Chptr, p. 50: F ; + + b ; 4 z ( z) ( z) F ; + b nd ssum tht is nonpositiv intgr, thn w obtin 4F + ; ;d; + b; d + ; + d + ; ( ) ( + d ) ( + ) ( d ) F ; + b; d + b ; z ; + b; + (.9) ; (.0) providd or d is nonpositiv intgr. 6. Th trnsformtion formul (4, (.8.0), with c rplcd by + + b c nd z rplcd by z) xprssing th Gu solution vlid for z, in trms of th Gu functions vlid for z is F c ; z ( z) + c b (c) ( + b c) () (b) (c) (c b) (c b) (c ) F b + c; + c F b + c ; z + + b c ; z : (.)

12 70 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) 59 7 If our lgorithm is pplid, it rsults in ; c F d; ; (d) (d b) (d ) (d b) F ; c b d; ; ( + b d) (d) () (d + b c) + () (b) ( c) (d + b) d ; d b; d + b c F +d b; d + b ; (.) This thr-trm F -trnsformtion formul cn for xmpl b found in 4, (4..4.). 7. Th trnsformtion formul 5, Entry of Rmnujn F + + ; z z ( ) ( + +b) F + ; + b b ; z () (b) rsults in + ( ) ( + +b) ( + ) ( + b) F F ; d + + b ;; ; b ; z ( ) ( + +b) ( + ) ( + b) 4 F ; b ; + d ; d ; + ; ; + ( ) ( + +b) ( + d) () 4F + ; + b ; + d ; + d () (b) (d) ( + ) ; + ; + (.) ; : (.4) 4. Products of hyprgomtric sris nd idntitis for Kmp d Frit sris Thr xist mny rltions conncting products of hyprgomtric sris, including th ons clld th thorms of Cyly nd Orr 4, Sction 0.. In this sction, w pply our mchinry to idntitis of th form product of two hyprgomtric sris hyprgomtric sris: (4.) As bfor, on th right-hnd sid w will obtin nw hyprgomtric sris. Howvr, w will s tht on th lft-hnd sid w obtin Kmp dfrit sris. Ths r hyprgomtric doubl sris. Th stndrd nottion, which will b usd in th squl, for ths is s follows: () : (b) ; (b ) ; F A:B;B C:D;D (c) : (d) ; (d z ;z A j ( B j) m+n j (b B j) m j (b j) n z m C ) ; j (c D j) m+n j (d zn D j) m j (d j ) n m! n! : m;n 0

13 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) W rport blowth intrsting rsults w obtin from th idntitis of form (4.) found in 4, Sction.5.. Th stndrd thorm of th typ (4.) is th clbrtd Clusn s thorm. It concrns th squr of Gu sris nd it is F + + b ; z ; + b F +b; + + b ; z : (4.) Th Mthmtic progrm givn in Sction bov hs bn modid to tk cr of css lik this nd it gnrtd th following rsult from (4.): d : ; ; ; + b; d F :; :; : + + b; + + b; x; x 4 F ; x : (4.) + + b; +b; (Th rdr should not tht th bov rsult is obtind by rst rplcing z by xz in (4.) nd subsquntly pplying our mthod.). Th trnsformtion which follows from Thorm VII of Bily s 4, (.5.) F + + b c ; z F c ; z ; 4 F + b ; + + b ;4( z) z + b; c; + + b c rsults in d : ; ; F :; :; ; : + + b c; c; ; 6 F + b ; + + b ;b;d; d 5 + b; + + b c; c; + ; ; : (4.5) (4.4). If w strt with th trnsformtion which follows from Thorm VIII of 4, (.5.) ; b + c ; + c; b + c F c ; z F ; z ( z) 4F c c; c ; + ; z c 4( z) (4.6) nd ssum tht or b is nonpositiv intgr, thn w obtin d : ; ; b + c; F :; :; ; : c; c; ; + c; b + c; + d ; d () ( d) ( ) ( d) 6 F 5 providd, b, or d is nonpositiv intgr. + c ; ; c ;c;+ + d ; + ; (4.7)

14 7 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) Concluding rmrks W hv considrd in this rticl mthod, which w clld th bt intgrl mthod, to obtin trnsformtions nd summtion thorms from known trnsformtions of hyprgomtric nd products of hyprgomtric sris. Whil bing itslf folklor, this mthod ws utomtd with th hlp of progrms writtn in Mthmtic using th softwr pckg HYP dvlopd by on of us 9. W obtind som known idntitis (which w displyd only prtilly), nd som which w wr not bl to trc in th litrtur, mong thm som vry intrsting ons, such s (.0), (.4) (.6), or (.8). Clrly, vritions (tht cn b gin utomtd) my lso b considrd. For xmpl, instd of using th bt intgrl vlution, w my rplc z by zt t th bginning nd thn us th Eulr intgrl rprsnttion (.) (with p )of F t-sris. This yilds idntitis which qut singl sums to sums of F -sris (sid from som xplicit multiplictiv fctors). Anothr dirction would b to us othr xtnsions of th bt intgrl vlution, most notbly q-nlogus throf. Howvr, it sms tht, in prticulr in th cs of q-nlogus, th rprtory of idntitis which cn b usd s strting point, is vry limitd. Rfrncs G.E. Andrws, R. Asky, R. Roy, Spcil functions, Encyclopdi of Mthmtics nd its Applictions, Vol. 7, Cmbridg Univrsity Prss, Cmbridg, 999. G.E. Andrws, D. Stnton, Dtrminnts in pln prtition numrtion, Europ. J. Combin. 9 (998) 7 8. W.N. Bily, Products of gnrlizd hyprgomtric sris, Proc. London Mth. Soc. () 8 (98) W.N. Bily, Gnrlizd Hyprgomtric Sris, Cmbridg Univrsity Prss, Cmbridg, Bruc C. Brndt, Rmnujn s Notbooks, Prt III, Springr, Brlin, W.Y.C. Chn, Z.-G. Liu, Prmtr ugmnttion for bsic hyprgomtric sris, II, J. Combin. Thory Sr. A 80 (997) W.Y.C. Chn, Z.-G. Liu, Prmtr ugmnttion for bsic hyprgomtric sris, I, in: B.E. Sgn, R.P. Stnly (Eds.), Mthmticl Essys in Honor of Gin-Crlo Rot, Progrss in Mthmtics, Vol. 6, Birkhusr, Boston, 998, pp G. Gspr, M. Rhmn, Bsic hyprgomtric sris, Encyclopdi of Mthmtics nd its Applictions, Vol. 5, Cmbridg Univrsity Prss, Cmbridg, C. Krttnthlr, HYP nd HYPQ Mthmtic pckgs for th mnipultion of binomil sums nd hyprgomtric sris rspctivly q-binomil sums nd bsic hyprgomtric sris, J. Symbol. Comput. 0 (995) C. Krttnthlr, HYP, Mnul for Mthmtic pckg for hndling hyprgomtric sris. Avilbl from ( krtt). Y.L. Luk, Th Spcil Functions nd thir Approximtions, Vol. I, Acdmic Prss, London, 969. M. Rhmn, A. Vrm, Qudrtic trnsformtion formuls for bsic hyprgomtric sris, Trns. Amr. Mth. Soc. 5 (99) V.N. Singh, Th bsic nlogus of idntitis of th Cyly Orr typ, J. London Mth. Soc. 4 (959) 5. 4 L.J. Sltr, Gnrlizd Hyprgomtric Functions, Cmbridg Univrsity Prss, Cmbridg, K. Srinivs Ro, H.-D. Dobnr, P. Nttrmnn, Group Thorticl bsis for som trnsformtions of gnrlizd hyprgomtric sris nd th symmtris of th -j nd 6-j cocints, in: P. Ksprkovitz, D. Gru (Eds.), Procdings of th Fifth Wignr Symposium, World Scintic, Singpor, 998, pp K. Srinivs Ro, V. Rjswri, Quntum Thory of Angulr Momntum: Slctd Topics, Nros Publishing Hous, Springr, Brlin, 99.

15 C. Krttnthlr, K. Srinivs Ro / Journl of Computtionl nd Applid Mthmtics 60 (00) J. Thom, Ubr di Funktionn, wlch durch Rihn von dr Form drgstllt wrdn: :::, J. Rin Angw. Mth. 87 (879) M. Wbr, A. Erdlyi, On th nit dirnc nlogu of Rodrigus formul, Amr. Mth. Monthly 59 (95) F.J.W. Whippl, A group of gnrlizd hyprgomtric sris: rltions btwn 0 llid sris of th typ F; c; d;, Proc. London Mth. Soc. () (95) H.S. Wilf, D. Zilbrgr, Rtionl functions tht crtify combintoril idntitis, J. Amr. Mth. Soc. (990)

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

arxiv: v2 [math.ca] 24 Feb 2016

arxiv: v2 [math.ca] 24 Feb 2016 Product of prbolic cylindr functions involving Lplc trnsforms of conflunt hyprgomtric functions Ridh Nsri rxiv:53.69v [mth.ca] 4 Fb 6 Orng Lbs, 38-4 vnu Gnrl Lclrc, 9794 Issy-ls-Moulinux, Frnc In this

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Continuous Random Variables: Basics

Continuous Random Variables: Basics Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

More information

DISTORTION OF PROBABILITY MODELS

DISTORTION OF PROBABILITY MODELS ISTORTION OF PROBABILITY MOELS VÁVRA Frntišk (ČR), NOVÝ Pvl (ČR), MAŠKOVÁ Hn (ČR), NETRVALOVÁ Arnoštk (ČR) Abstrct. Th proposd ppr dls with on o possibl mthods or modlling th rltion o two probbility modls

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

Bailey [1] established a simple but very useful identity: If

Bailey [1] established a simple but very useful identity: If itlin journl of pure nd pplied mthemtics n 7 010 (179 190) 179 CERTAIN TRANSFORMATION AND SUMMATION FORMULAE FOR q-series Remy Y Denis Deprtment of Mthemtics University of Gorkhpur Gorkhpur-73009 Indi

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Math 33A Discussion Example Austin Christian October 23, Example 1. Consider tiling the plane by equilateral triangles, as below.

Math 33A Discussion Example Austin Christian October 23, Example 1. Consider tiling the plane by equilateral triangles, as below. Mth 33A Discussion Exmple Austin Christin October 3 6 Exmple Consider tiling the plne by equilterl tringles s below Let v nd w be the ornge nd green vectors in this figure respectively nd let {v w} be

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

J. Math. Anal. Appl. Some identities between basic hypergeometric series deriving from a new Bailey-type transformation

J. Math. Anal. Appl. Some identities between basic hypergeometric series deriving from a new Bailey-type transformation J. Mth. Anl. Appl. 345 008 670 677 Contents lists ville t ScienceDirect J. Mth. Anl. Appl. www.elsevier.com/locte/jm Some identities between bsic hypergeometric series deriving from new Biley-type trnsformtion

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics Lctur Quntum chromodynmics (QCD) WS/: Introduction to Nuclr nd Prticl Physics QCD Quntum chromodynmics (QCD) is thory of th strong intrction - bsd on color forc, fundmntl forc dscribing th intrctions of

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

ON THE SCOPE OF AVERAGING FOR FRANKL S CONJECTURE

ON THE SCOPE OF AVERAGING FOR FRANKL S CONJECTURE ON THE SCOPE OF AVERAGING FOR FRANKL S CONJECTURE GÁBOR CZÉDLI, MIKLÓS MARÓTI, AND E. TAMÁS SCHMIDT Abstrct. Lt F b union-closd fmily of substs of n m-lmnt st A. Lt n = F 2. For b A lt w(b) dnot th numbr

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Australian Journal of Basic and Applied Sciences. An Error Control Algorithm of Kowalsky's method for Orbit Determination of Visual Binaries

Australian Journal of Basic and Applied Sciences. An Error Control Algorithm of Kowalsky's method for Orbit Determination of Visual Binaries Austrlin Journl of Bsic nd Applid Scincs, 8(7) Novmbr 04, Pgs: 640-648 AENSI Journls Austrlin Journl of Bsic nd Applid Scincs ISSN:99-878 Journl hom pg: www.bswb.com An Error Control Algorithm of Kowlsky's

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

2 JOAQUIN BUSTO AND SERGEI K. SUSLOV l (.8) l cos nx l sin mx l dx m 6 n: In th prsnt papr w discuss a -vrsion of th Fourir sris (.) with th aid of ba

2 JOAQUIN BUSTO AND SERGEI K. SUSLOV l (.8) l cos nx l sin mx l dx m 6 n: In th prsnt papr w discuss a -vrsion of th Fourir sris (.) with th aid of ba BASIC ANALOG OF FOURIER SERIES ON A -QUADRATIC GRID JOAQUIN BUSTO AND SERGEI K. SUSLOV Abstract. W prov orthogonality rlations for som analogs of trigonomtric functions on a -uadratic grid introduc th

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information