2 JOAQUIN BUSTO AND SERGEI K. SUSLOV l (.8) l cos nx l sin mx l dx m 6 n: In th prsnt papr w discuss a -vrsion of th Fourir sris (.) with th aid of ba

Size: px
Start display at page:

Download "2 JOAQUIN BUSTO AND SERGEI K. SUSLOV l (.8) l cos nx l sin mx l dx m 6 n: In th prsnt papr w discuss a -vrsion of th Fourir sris (.) with th aid of ba"

Transcription

1 BASIC ANALOG OF FOURIER SERIES ON A -QUADRATIC GRID JOAQUIN BUSTO AND SERGEI K. SUSLOV Abstract. W prov orthogonality rlations for som analogs of trigonomtric functions on a -uadratic grid introduc th corrsponding -Fourir sris. W also discuss svral othr proprtis of this basic trigonomtric systm th -Fourir sris. A priodic function with priod 2l, (.) can b rprsntd as th Fourir sris, (.2) whr (.3) (.4) (.5) f(x) a +. Introduction f(x + 2l) f(x) X n a 2l a n l b n l a n cos n l x + b n sin n l x l l l l l l f(x) dx f(x) cos n l x dx f(x) sin n l x dx: For convrgnc conditions of (.2) s, for xampl, [], [28], [3]. Th formulas (.3){(.5) for th cocints of th Fourir sris ar consuncs of th orthogonality rlations for trigonomtric functions (.6) (.7) l l l l cos nx l sin nx l cos mx l sin mx l dx m 6 n dx m 6 n Dat: May 2, Mathmatics Subjct Classication. Primary 33B, 33D5 Scondary 42C. Ky words phrass. Trigonomtric functions, basic trigonomtric functions, orthogonality rlations, Fourir sris, -Fourir sris.

2 2 JOAQUIN BUSTO AND SERGEI K. SUSLOV l (.8) l cos nx l sin mx l dx m 6 n: In th prsnt papr w discuss a -vrsion of th Fourir sris (.) with th aid of basic or -analogs of trigonomtric functions introducd rcntly in [5] (s also [5] [24]). Our rst main objctiv will b to stablish analogs of th orthogonality rlations (.5){(.7) for -trigonomtric functions on a -uadratic grid. Thr ar svral ways to prov th orthogonality rlations (.6){(.8) for trigonomtric functions. Th mthod basd on th scond ordr dirntial uation, (.9) u +! 2 u can b xtndd to th cas of basic trigonomtric functions. Considr, for xampl, two functions cos!x cos! x, which satisfy (.9) with dirnt ignvalus!!. Thn, (.) (! 2! 2 ) l l cos!x cos! x dx Th right sid of (.) vanishs whn W (cos!x cos! x) j l l cos!x cos! x! sin!x! sin! x l l : (.) sin!l sin! l which givs (.2)! l n! l m whr n m 2 3 :::. In th sam mannr, on can prov (.7). Th last uation (.8) is valid by symmtry. W shall xtnd this considration to th cas of th basic trigonomtric functions in th prsnt papr. This papr is organizd as follows. In Sction 2 w introduc th -trigonomtric functions. In th nxt sction w driv a continuous orthogonality proprty of ths functions, thn, in Sction 4, w formally discuss th limit! of ths nw orthogonality rlations. Sction 5 is dvotd to th invstigation of som proprtis of zros of th basic trigonomtric functions in Sction 6 w valuat th normalization constants in th orthogonality rlations for ths functions. In Sction 7 w stat th orthogonality rlation for th corrsponding -xponntial functions. Finally, w introduc basic analogs of Fourir sris in Sction 8, in Sctions 9{ w giv a proof of th compltnss of th -trigonomtric systm stablish som lmntary facts about convrgnc of our -Fourir sris. Exampls of ths sris ar considrd in Sctions 2 4 w prov som basic trigonomtric idntitis w hd in Sction 3. Som miscllanous rsults concrning -trigonomtric functions ar discussd in Sction 5.

3 -FOURIER SERIES 3 2. Analogs of Trigonomtric Functions on a -Quadratic Grid Th following functions C(x) S(x) givn by (2.) (2.2) C(x) C (x!) (!2 2 ) (! 2 2 ) 2 ' S(x) S (x!) (!2 2 ) 2 4! (! 2 2 ) 2 ' 2 3 cos 2 2! 2 2! 2 wr discussd rcntly [5], [5] [24] as -analogs of cos!x sin!x on a - uadratic lattic x cos. Ths functions ar spcial cass y of mor gnral basic trigonomtric functions (2.3) (2.4) C(x y) C (x y!) (!2 2 ) (! 2 2 ) 4 ' 3 2 i+i' 2 ii' 2 i'i 2 ii' 2 2! 2 S(x y) S (x y!) (!2 2 ) 2 4! (! 2 2 ) (cos + cos ') 4 ' 3 i+i' ii' i'i ii' 32 32! 2 which ar -analogs of cos!(x + y) sin!(x + y), rspctivly (s [24]). Hr x cos y cos '. Usually w shall drop from th symbols C (x!), S (x!), C (x y!), S (x y!) bcaus th sam bas is usd throughout th papr. Th symbols 2 ' 4 ' 3 in (2.){(2.4) ar, of cours, spcial cass of basic hyprgomtric functions, (2.5) r' s a a 2 ::: a r b b 2 ::: b s t

4 4 JOAQUIN BUSTO AND SERGEI K. SUSLOV : X n (a a 2 ::: a r ) n ( b b 2 ::: b s ) n () n n(n)2 +sr t n : Th stard notations for th -shiftd factorial ar (2.6) (2.7) (a ) : (a ) n : (a a 2 ::: a m ) n : n Y a k k my l (a l ) n whr n 2 ::: or, whn jj <. S [7] for an xcllnt account of th thory of basic hyprgomtric functions. Functions (2.){(2.4) ar dnd hr for j!j < only. For an analytic continuation of ths functions in a largr domain s [2], [5], [24]. For xampl, (2.8) (2.9) C(x) S(x)!2! 2 2 (! 2 2 ) 2 ' 2!2! 2! 2! 2 2 2! 2 2! ! ( 3! 2 2 ) cos 2 ' 2!2! 2 2! 2 2! : On can s from (2.8) (2.9) that th basic trigonomtric functions (2.) (2.2) ar ntir functions in z whn i z. Analytic continuation of -trigonomtric functions (2.3) (2.4) can b obtaind on th basis of th \addition" thorms, C (x y) C (x) C (y) S (x) S (y) S (x y) S (x) C (y) + C (x) S (y) found in [24]. Th basic trigonomtric functions (2.){(2.4) ar solutions of a dirnc analog of uation (.9) on a -uadratic lattic, (2.) rx (z) ru(z) rx(z) + u(z) whr x(z) 2 (z + z ), z i, x (z) x(z + 2), 4 2! 2 ( ) 2, f(z) rf(z + ) f(z + ) f(z). S [5], [5], [2], [23], [24] for mor dtails. Euation (2.) can also b rwrittn in a mor symmtric form, (2.) x(z) u(z) x(z) whr f(z) f(z + 2) f(z 2) ( ) 2!2 u(z)

5 -FOURIER SERIES 5 Th -trigonomtric functions (2.){(2.4) satisfy th dirnc-dirntiation formulas (2.2) (2.3) x x C(x y) 24 S(x y) 24! S(x y)! C(x y): S [5] [24]. Applying th oprator x to th both sids of (2.2) or (2.3) w obtain uation (2.) again. Euation (2.) is a vry spcial cas of a gnral dirnc uation of hyprgomtric typ on nonuniform lattics (cf. [5], [2], [23], [24]). Th Asky{Wilson polynomials thir spcial limiting cass [4], [7], [2] ar wll-known as th simplst th most important orthogonal solutions of this dirnc uation of hyprgomtric typ. Rcntly, Ismail, Masson, Suslov [2], [3], [25], [26] hav found anothr typ of orthogonal solutions of this dirnc uation. In th prsnt papr w shall discuss this nw orthogonality proprty at th lvl of basic trigonomtric functions. 3. Continuous Orthogonality Proprty for -Trigonomtric Functions Our main objctiv in this papr is to nd th orthogonality rlations for - trigonomtric functions (2.){(2.2) similar to th orthogonality rlations (.5){(.7). Considr dirnc uations for th functions u(z) C (x(z)!) v(z) C (x(z)! ) in slf-adjoint form, (3.) (3.2) rx (z) (z) ru(z) rx(z) (z) rv(z) rx (z) rx(z) + (z)u(z) + (z)v(z) whr th function (z) satiss th \Parson uation"[2], [23], (3.3) (3.4) (z + ) (z) On can asily chck that (3.5) (z + ) (z) (z) (z + ) 4z2 2 2z+ 42 ( ) 2!2 42 ( ) 2!2 : 4z2 for (z) (2z 2z ) z z

6 6 JOAQUIN BUSTO AND SERGEI K. SUSLOV (3.6) (z + ) (z) 4z+2 for (z) 2+2z 22z 22+2z 222z 2 (cf. [2], [25], [26]). Thrfor, w can choos th following solution of (3.3), (3.7) (z) ( 2z 2z ) ( z z ) ( 2+2z 22z 22+2z 222z 2 ) whr is an arbitrary additional paramtr. W shall s latr that this solution satiss th corrct boundary conditions for our scond ordr dividd-dirnc Asky{Wilson oprator (2.) for crtain valus of this paramtr. Lt us multiply (3.) by v(z), (3.2) by u(z) subtract th scond uality from th rst on. As a rsult w gt (3.8) whr (3.9) ( ) u(z) v(z) (z)rx (z) [(z) W (u(z) v(z))] W (u(z) v(z)) u(z) ru(z) rx(z) v(z) rv(z) rx(z) u(z) rv(z) ru(z) v(z) rx(z) rx(z) is th analog of th Wronskian [2]. Intgrating (3.8) ovr th contour C indicatd in th Figur on th nxt pag whr z is such that z i log 2 32 givs (3.) ( ) C C u(z) v(z) (z)rx (z) dz [(z) W (u(z) v(z))] dz: As a function in z, th intgr in th right sid of (3.) has th natural purly imaginary priod T log whn < <, so this intgral is ual to (3.) D (z) W (u(z) v(z)) dz whr D is th boundary of th rctangl on th Figur orintd countrclockwis. Th basic trigonomtric functions C(x) S(x) ar ntir functions in th complx z-plan du to (2.8){(2.9). Thrfor, th pols of th intgr in (3.) insid th rctangl in th Figur ar th simpl pols of (z) at z, z at z i log, z i log whn < R < 2. Hnc, by Cauchy's thorm, (3.2) W (u v) dz D Rs f(z)j z + Rs f(z)j z + Rs f(z)j zi log + Rs f(z)j zi log

7 -FOURIER SERIES 7 Im z 3i 2 log 6 3i 2 log + r r C + i log + i log r r R z i 2 log i 2 log + whr (3.3) f(z) (z) W (u(z) v(z)) z ( 2z 2z ) W (u(z) v(z)) : ( 2+2z 22z 22+2z 222z 2 ) Evaluation of th rsidus at ths simpl pols givs (3.4) Rs f(z)j z lim z! (z ) f(z) ( 2 2 ) 2 log ( ) W (u(z) v(z))j z (3.5) Rs f(z)j z lim (z + ) f(z) z! ( 2 2 ) 2 log ( ) W (u(z) v(z))j z

8 8 JOAQUIN BUSTO AND SERGEI K. SUSLOV (3.6) (3.7) Rs f(z)j zi log lim (z + i log ) f(z) z!i log ( 2 2 ) 2 log ( ) W (u(z) v(z))j zi log Rs f(z)j zi log lim (z + + i log ) f(z) z! But (3.8) by (3.9), thrfor, (3.9) W (u(z) v(z)) ( 2 2 ) 2 log ( ) W (u(z) v(z))j zi log : v(z)u(z ) u(z)v(z ) x(z) x(z ) W (u(z) v(z))j z W (u(z) v(z))j z W (u(z) v(z))j zi log W (u(z) v(z))j zi log du to th symmtris C(x) C(x), x(z) x(z), x(z) x(z i log ). Thus, th rsidus ar ual as a rsult w gt (3.2) 2 ( ) 2!2! 2 C u(z) v(z) (z)rx (z) dz i ( 2 2 ) log ( ) W (u() v()) whr < R < 2. W hav stablishd our main uation (3.2) for th cas u(z) C (x(z)!) v(z) C (x(z)! ). Th sam lin of considration shows that this uation is also tru whn u(z) S (x(z)!) v(z) S (x(z)! ). Th corrsponding analogs of th Wronskians in (3.2) can b writtn as (3.2) W (C(x(z)!) C(x(z)! )) (3.22) 24 [! C (x(z)! ) S (x(z 2)!)! C (x(z)!) S (x(z 2)! )] W (S(x(z)!) S(x(z)! )) 24 [! S (x(z)!) C (x(z 2)! )! S (x(z)! ) C (x(z 2)!)]

9 -FOURIER SERIES 9 by (2.2){(2.3), rspctivly. On can s from (3.2) (3.22) that th right sid of (3.2) vanishs in both cass whn ignvalus!! ar roots of th following uation (3.23) S (x(4)!) S (x(4)! ) : This is a dirct analog of (.) for basic trigonomtric functions. In th last cas, u(z) C (x(z)!) v(z) S (x(z)! ), th lft sid of (3.2) vanishs by symmtry. It is intrsting to vrify that by using our mthod as wll. Euations (3.) to (3.8) ar valid again. But now (3.24) W (u(z) v(z))j z W (u(z) v(z))j z W (u(z) v(z))j zi log W (u(z) v(z))j zi log du to th symmtris C(x) C(x), S(x) S(x), x(z) x(z), x(z) x(z i log ). Thrfor, (3.25) 2 ( ) 2!2! 2 C u(z) v(z) (z)rx (z) dz i ( 2 2 ) 2 log ( ) [W (u() v()) W (u() v())] whn < R < 2. Combining all th abov cass togthr, w nally arriv at th continuous orthogonality rlations for basic trigonomtric functions, (3.26) C (cos!) C (cos! ) 8 >< >: ( 2 2 ) d if! 6! 2 2 ( ) 2 S (!) if!! (3.27) (3.28) S (cos!) S (cos! ) 8 >< >: ( 2 2 ) d if! 6! 2 2 ( ) 2 C (cos!) S (cos! ) S (!) if!! ( 2 2 ) d : Hr : x(4) th ignvalus!! satisfy th \boundary" condition (3.23).

10 JOAQUIN BUSTO AND SERGEI K. SUSLOV For arbitrary! 6! on gts from (3.2){(3.22) (3.29) (3.3) C (cos!) C (cos! ) ( 2 2 ) d 2 ( ) 2 [! C (! ) S (!)! C (!) S (! )] Also, in th limit!!!, (3.3) (3.32)! 2! S (cos!) S (cos! ) ( 2 2 ) d 2 ( ) 2 [! S (!) C (! )! S (! ) C (!)] :! 2! C 2 (cos!) 2 2! ( ) 2 d ( 2 2 )! C S + C (!) C (!) S (!) S 2 (cos!) 2 2! ( ) 2 d ( 2 2 )! C S C (!) C (!) S (!) : W rmind th radr that is dnd by x(4) notation will b usd throughout this work. This 4. Formal Limit! In this sction w formally obtain orthogonality of th trigonomtric functions as limiting cass of our orthogonality rlations (3.26){(3.28) for basic trigonomtric functions. According to [24], (4.) lim! C x y 2! ( ) cos! (x + y)

11 (4.2) lim S x y! If! 6! w can rwrit (3.26) as (4.3) whr -FOURIER SERIES 2! ( ) sin! (x + y) : C (cos!) C (cos! ) 2 d (4.4) Using th limiting rlation [7] (a r) : (a r) (ar r) : (4.5) on can s that (4.6) lim (a r) (! a) 2! 2 sin as!. Thrfor, changing! to ( )!2 in (4.3), with th hlp of (4.) whn y w obtain th orthogonality rlation (.6) with l. Th boundary condition (.) follows from (3.23) in th sam limit. Whn!! w can rwrit (3.26) as (4.7) C 2 (cos!) 2 2 ( ) 2 (2) C (!) S whr (4.8) (z) ( ) z ( ) ( z ) is a -analog of Eulr's gamma function (z) (s, for xampl, [7]). Changing! to ( )!2 in (4.8), with th aid of (4.9) w gt (4.) 2 cos 2 nx dx lim (z) (z)! 2 2 (2) cos2 n 2 whr n 2 :::, in th limit!. In a similar mannr on can obtain (.7) (.8) from (3.27) (3.28), rspctivly.

12 2 JOAQUIN BUSTO AND SERGEI K. SUSLOV 5. Som Proprtis of ros In Sction 3 w hav stablishd th orthogonality rlations for th basic trigonomtric functions (3.26){(3.28) undr th boundary condition (3.23). Hr w would lik to discuss som proprtis of!-zros of th corrsponding basic sin function, (5.) S (!) (!2 2 ) (! 2 2 )! 2 th basic cosin function, 2 ' ! 2 3 ( 3! 2 2 )! 2 2! 2 2 ' 2!2! 2 32! 2 52! (5.2) C (!) (!2 2 ) (! 2 2 ) 2 2 ' 32 2! 2 2! 2 (! 2 2 ) 2 ' 2!2! 2 2! 2 32! 2 2 On can s that ths functions hav almost th sam structur as th -Bssl function discussd in [2], [3]. So w can apply a similar mthod to stablish main proprtis of zros of th functions (5.){(5.2). Th rst proprty is that th -sin function S (!) has an innity of ral!-zros. To prov that w can again considr th larg!-asymptotics of th function (5.). Th 2 ' hr can b transformd by (III.) of [7], which givs : (5.3) S (!) 52 32! 2 2 ( 3! 2 2 )! 2 2 ' 2! 2 32! : For larg valus of!, such that! n whr n 2 :::, 2! (5.4) 2' ! 2! ' ( 2 )

13 by th -binomial thorm. Thrfor, as!!, -FOURIER SERIES 3 2 (5.5) S (!) ( 2 ) 2! 32! 2 2 (! 2 2 ) [ + o()] by (5.3) (5.4). But th function 32! 2 2 oscillats has an innity of ral zros as! approachs innity. Indd, considr th points! n, such that (5.6) 2 2 n 2 2n whr n 2 ::: 2 < 2 < 32, as tst points. Thn, by using (I.9) of [7], (5.7) S ( n ) ( 2 ) 2 ( 2 2 ) () n n n ( 2 2 ) n [ + o()] as n!, on can s that th right sid of (5.7) changs sign innitly many tims at th tst points! n as! approachs innity. In a similar mannr, on can prov that th -cosin function C (!) has an innity of ral!-zros also. Thus w hav stablishd th following thorm. Thorm 5.. Th basic sin S (!) basic cosin C (!) functions hav an innity of ral!-zros whn < <. Now w can prov our nxt rsult. Thorm 5.2. Th basic sin S (!) basic cosin C (!) functions hav only ral!-zros whn < <. Proof. Suppos that! is a zro of th basic sin function (5.) which is not ral. It follows from (5.) (III.4) of [7] that (5.8) S (!) 52! 2 2 (! 2 2 )! 2 2 ' ! ! 2 : Now w can s that! is not purly imaginary, bcaus othrwis our function would b a multipl of a positiv function. Lt! b th complx numbr conjugat to!, so that! is also a zro of (5.) bcaus this function is a ral function of!. Sinc! 2 6! 2 th intgral in th orthogonality rlation (3.26) uals zro, but th intgr on th lft is positiv,

14 4 JOAQUIN BUSTO AND SERGEI K. SUSLOV so w hav obtaind a contradiction. Hnc a complx zro! cannot xist. On can considr th cas of th basic cosin function in a similar fashion. Thorm 5.3. If < <, thn th ral!-zros of th basic sin S (!) basic cosin C (!) functions ar simpl. Proof. This follows dirctly from th rlations (3.3) (3.32). Considr, for xampl, th cas of th basic sin function. If!!, thn th intgral in th lft sid (3.3) is positiv, which mans that S (!) 6 whn S (!). Th sam tru for th zros of th basic cosin function. Our nxt proprty is that th positiv zros of th basic sin function S (!) ar intrlacd with thos of th basic cosin function C (!). Thorm 5.4. If!! 2! 3 ::: ar th positiv zros of S (!) arrangd in ascnding ordr of magnitud, $ $ 2 $ 3 ::: ar thos of C (!), thn (5.9) if < <.! < $ <! < $ 2 <! 3 < $ 3 < ::: Proof. Suppos that! k! k+ ar two succssiv zros of S (!). Thn S (!) has dirnt signs at!! k!! k+. This mans, in viw of (3.32), that C (!) changs its sign btwn! k! k+, thrfor, has at last on zro on ach intrval (! k! k+ ). To complt th proof of th thorm, w should show that C (!) changs its sign on ach intrval (! k! k+ ) only onc. Suppos that C ( $ k ) C ( $ k+ )! k < $ k < $ k+ <! k+. Thn, by (3.32), th function S (!) has dirnt signs at! $ k! $ k+, thrfor, this function has at last on mor zro on (! k! k+ ). So, w hav obtaind a contradiction,, thrfor, th basic cosin function C (!) has xactly on zro btwn any two succssiv zros of th basic sin function S (!). Th proof of Thorm 5. has strongly indicatd that asymptotically th larg!-zros of th basic sin function S (!) ar (5.)! n { n n 4 { n < 34 as n!. Th sam considration as in [] [3] shows that S (!) changs sign only onc btwn any two succssiv tst points! n! n+ dtrmind by (5.6) for larg valus of n. W includ dtails of this proof in Sction 6 to mak this work as slf-containd as possibl. Our nxt thorm provids a mor accurat stimat for th distribution of th larg zros of this function. Thorm 5.5. If!! 2! 3 ::: ar th positiv zros of S (!) arrangd in ascnding ordr of magnitud, thn (5.) as n!.! n 4n + o ()

15 Proof. In viw of (5.) (III.32) of [7], (5.2) S (!) -FOURIER SERIES 5! ! 2 2! 2 2 ( 3! 2 2! 2 2 ) + 2 ' ! 2! ! 2 2! 2 2 ( 3! 2 2! 2 2 ) 2 ' ! 2 which givs th larg!-asymptotic of S (!). Whn! 4n n 2 3 ::: th rst trm in (5.2) vanishs w gt (5.3) S 4n () n n n 2 ( 2 2 ) n with th hlp of (I.9) of [7], Thus, (5.4) which provs our thorm. 2 ' lim n! S 4n In a similar fashion, on can stablish th following thorm. 2 2n+2 Thorm 5.6. If $ $ 2 $ 3 ::: ar th positiv zros of C (!) arrangd in ascnding ordr of magnitud, thn (5.5) as n!. $ n 34n + o () Th asymptotic formulas (5.) (5.5) for larg!-zros of th basic sin S (!) basic cosin C (!) functions conrm th intrlacing proprty (5.9) from Thorm 5.4. Lt us also discuss th larg!-asymptotics of th basic sin S (x!) basic cosin C (x!) functions whn x cos blongs to th intrval of orthogonality < x <. From (2.) (2.2) on gts (5.6) C (cos!) 2 ' 2! 2! 2! 2 2 ( 4i! 2! 2 2 ) 2 ' 2 4i 2 2! 2

16 6 JOAQUIN BUSTO AND SERGEI K. SUSLOV +! 2! 2 2 ( 4i! 2! 2 2 ) 2 ' 2 4i 2 2! 2 (5.7) S (cos!) 24! cos 2 ' 24! cos 3 2! 2 " 2 2! 2! 2 2 ( 3 4i! 2! 2 2 ) 2 ' 2 4i 2 2! ! 2! 2 2 ( 3 4i! 2! 2 2 ) # 2 ' 2 4i 2 2! 2 (5.8) C (cos!) by (III.3) (III.32) of [7]. For jxj <, jj < larg! it is clar from (5.6) (5.7) that th lading trms in th asymptotic xpansions of C (cos!) S (cos!) ar givn by!2 2 ( 4i 2 ) (! 2 2 ) + ( 4i 2 )!2 2 (! 2 2 ) (5.9) S (cos!) 24! cos " 2! 2 2 ( 3 4i 2 ) (! 2 2 ) 2! 2 2 # + ( 3 4i 2 ) (! 2 2 )

17 -FOURIER SERIES 7 rspctivly. In particular, whn!! n ar larg zros of th basic sin function S (!) w can stimat (5.2) (5.2) C (cos! n ) C cos 4n S (cos! n ) S cos 4n du to (5.) as n!. Rlations (5.8){(5.2) lad to th following thorm. Thorm 5.7. For < x cos < jj < th lading trm in th asymptotic xpansion of C (cos! n ) as n! is givn by (5.22) whr (5.23) (5.24) (5.25) C cos 4n 2 2 ( 2 ) 2 A i cos ((2 + ) n ) A i ( ) A i 2 ( 2 2 ) arg A i : For < x cos < jj < th lading trm in th asymptotic xpansion of S (cos! n ) as n! is givn by (5.26) whr S cos 4n 2 2 ( 2 ) 2 B i cos ((2 + ) (n ) ) (5.27) (5.28) (5.29) From (5.23) (5.27), B i i ( ) B i 2 ( 2 2 ) arg B i : (5.3) A i i ( ) B i :

18 8 JOAQUIN BUSTO AND SERGEI K. SUSLOV It is worth mntioning also that th factor A i 2 B i 2 coinsids with th wight function in our orthogonality rlations (3.26){(3.28) for th basic trigonomtric functions. In a similar fashion, on can us th rst lins in (5.6), (5.7), Exrcis 3.8 of [7] (s also th sam lin of rasonings in [8]) to stablish complt asymptotic xpansions of th basic sin cosin functions for th larg valus of!. Thorm 5.8. For < x cos < jj < complt asymptotic xpansions of C (cos!) S (cos!) as j!j! ar givn by!2 2 (5.3) C (cos!) ( ) (! 2 2 ) X 2n 2n!2 2 ( 2 2 4i 2 ) n n!2 2 n + ( ) (! 2 2 ) X n 2n 2n!2 2 ( 2 2 4i 2 ) n n (5.32) S (cos!) i 2! 2 2 ( ) (! 2 2 ) X 2n+4 2n 2! 2 2 ( 2 2 4i 2 ) n n n + i 2! 2 2 ( ) (! 2 2 ) X 2n+4 2n!2 2 ( 2 2 4i 2 ) : n n n Th asymptotic xpansions (5.3){(5.32) ar not in trms of th usual asymptotic sunc (x!) n, but ar sums of two complt asymptotic xpansions in trms n (cf. [8]). of th \invrs gnralizd powrs" 2! 2 2 Rmark 5.. Mourad Ismail pointd out to our attntion th following uadratic transformation formula (5.33) 2' r 2 4 ( ) ( + ) (2r) (r ) J (2) (r ) whr jrj < 2, rlating th 2 ' of a givn structur with Jackson's basic Bssl functions J (2) (r ). A similar rlation was arlir found by Rahman [22]. This n

19 -FOURIER SERIES 9 transformation shows that our basic sin S (!) basic cosin C (!) functions ar just multipls of J (2) (2) (2! ) J (2! ), namly, 2 2 (5.34) (5.35) S (!) ( )! 2 J (2) (2! ) ( 2 ) (! ) C (!) ( )! 2 J (2) (2! ) : ( 2 ) (! ) Th main proprtis of zros of th -Bssl functions J (2) (r ) wr stablishd in Ismail's paprs [9] [] by a dirnt mthod. This givs indpndnt proofs of our Thorms 5.{5.4. Som monotonicity proprtis of zros of J (2) (r ) wr discussd in [4]. Chn, Ismail, Muttalib [8] hav found a complt asymptotic xpansion of J (2) (r ) for th larg argumnt, (5.36) J (2) (r ) 2 2 ( ) r 2 " i r 2 (+2)2 2 X +2 n2 n ( ) n n + i r 2 (+2)2 2 X n n2 +2 n ( ) n i r 2 (+2)2 2 i r 2 (+2)2 2 This follows also from Exrsiss of [7]. Euations (5.34){(5.36) rsult in (5.) (5.5). 6. Evaluation of Som Constants In this sction w shall nd xplicitly th valus of th normalization constants in th right sids of th orthogonality rlations (3.26){(3.27) for th basic sin basic cosin functions. First, w valuat th intgral (6.) 2k (!) C 2 (cos!) + S 2 (cos!) d ( 2 2 ) C (cos cos!) whr w hav usd th idntity (4.4) of [24], (6.2) ( 2 2 ) d C (x x!) C 2 (x!) + S 2 (x!) : n n # :

20 2 JOAQUIN BUSTO AND SERGEI K. SUSLOV In viw of (2.3), for j!j < on can writ (6.3) 2 (!2 2 ) (! 2 2 ) k (!) X! 2 n n 2 n ( 2 ) n ( n+2 n+2 ) d: Th intgral in th right sid is a spcial cas of th Asky{Wilson intgral [4], (6.4) Thrfor, ( n+2 n+2 ) d 2 ( 2n+2 ) ( n+2 n+ n+ n+ n+ n+32 ) : (6.5) 2 (!2 2 ) (! 2 2 ) k (!) 2 2 ( 2 ) X (! 2 ) n n+2 whr w hav usd th idntity 2n+2 n+ n+ n+32 n+32 : But, X (! 2 ) n n+2 n n 2 2' 2! ! 2 ( 2! 2 ) 2' 2! 2 2! 2 by (III.) of [7]. Th last lin provids an analytic continuation of this sum in th complx!-plan. Finally, w obtain (6.6) k (!) 2 C 2 (cos!) + S 2 (cos!) d ( 2 2 ) (6.7) 2 2! 2 (! 2 2 ) (! 2 ) (! 2 2 ) 2 ' 2! 2 2! 2 :

21 -FOURIER SERIES 2 Th scond lin givs th larg asymptotic of th function k (!), (6.8) k (!) 2! 2 (! 2 ) (! 2 2 ) (! 2 2 ) + o! 2 as! 2! but! 2 6 n2 for a positiv intgr n. In particular, whn!! n ar larg zros of th basic sin function S (!) on gts as n! (6.9) k (! n ) k 4n 2 ( )2 ( 2 ) 2 by (5.) (I.9) of [7]. With th aid of (6.6){(6.7) on can now rwrit (3.3) (3.32) in mor xplicit form, (6.) (6.) C 2 (cos!) k (!) + 2 2! ( ) 2 S 2 (cos!) k (!) 2 2! ( ) 2 ( 2 2 ) d C (!) S (!) ( 2 2 ) d C (!) S (!) : Ths basic intgrals ar, obviously, -xtnsions of th following lmntary intgrals (6.2) cos 2!x dx +! sin! cos! (6.3) sin 2!x dx! sin! cos! rspctivly. Whn! satiss th boundary condition (3.32) th last trms in th right sids of (6.) (6.) vanish w obtain th valus of th normalization constants in th orthogonality rlations (3.26){(3.28) in trms of th function k (!) dnd by (6.7). 7. Orthogonality Rlations for -Exponntial Functions Eulr's formula, (7.) i!x cos!x + i sin!x

22 22 JOAQUIN BUSTO AND SERGEI K. SUSLOV allows us to rwrit th orthogonality rlations for th trigonomtric functions (.6){ (.8) in a complx form, l xp i m x xp i n (7.2) 2l l l x dx mn whr (7.3) l mn Th -analog of Eulr's formula (7.) is (7.4) if m n if m 6 n: E (x i!) C (x!) + is (x!) whr E (x ) with i! is th -xponntial function introducd in [5] (s also [5] [24], w shall us th sam notations as in [24]) C (x!) S (x!) ar basic cosin sin functions dnd by (2.) (2.2), rspctivly. Our orthogonality rlations for th basic trigonomtric functions (3.26){(3.28) rsult in th following orthogonality proprty for th -xponntial function (7.5) 2k (! n ) E (cos i! m ) E (cos i! n ) d ( 2 2 mn ) whr! m! n!! 2! 3 :::!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud th normalization constants k (! n ) ar dnd by (6.7). A basic analog of (7.6) is (7.7) i!(x+y) cos! (x + y) + i sin! (x + y) E (x y i!) C (x y!) + is (x y!) s [5] [24]. Th gnral xponntial function on a -uadratic grid E (x y i!) has th following orthogonality proprty. Thorm 7.. (7.8) E (cos cos ' i! m ) E (cos cos ' i! n ) ( 2 2 ) d 2k (! n ) E (cos ' i! n ) E (cos ' i! n ) mn whr! m! n!! 2! 3 :::!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud th normalization constants k (! n ) ar dnd by (6.7).

23 -FOURIER SERIES 23 Proof. Using of th \addition" thorm for basic xponntial functions [24], (7.9) E (x y i!) E (x i!) E (y i!) th orthogonality rlation (7.5) on gts (7.8). In a similar fashion, w can stablish th following rsults. Thorm 7.2. (7.) C (cos cos '! m ) C (cos cos '! n ) d ( 2 2 ) if m 6 n k (! n ) C (cos ' cos '! n ) if m n (7.) S (cos cos '! m ) S (cos cos '! n ) d ( 2 2 ) if m 6 n k (! n ) C (cos ' cos '! n ) if m n (7.2) C (cos cos '! m ) S (cos cos '! n ) d ( 2 2 ) if m 6 n k (! n ) S (cos ' cos '! n ) if m n whr! m! n!! 2! 3 :::, ar positiv zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud th normalization constants k (! n ) ar dnd by (6.7). Proof. Us th \addition" thorm for th basic trigonomtric functions [24] th orthogonality rlations (3.26){(3.28). 8. Basic Fourir Sris By analogy with (.2) w can now introduc a -vrsion of Fourir sris, (8.) f (cos ) a + X n (a n C (cos! n ) + b n S (cos! n ))

24 24 JOAQUIN BUSTO AND SERGEI K. SUSLOV whr!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud, (8.2) a 2k () f (cos ) ( 2 2 ) d (8.3) a n k (! n ) f (cos ) C (cos! n ) ( 2 2 ) d (8.4) b n k (! n ) f (cos ) S (cos! n ) ( 2 2 ) d: Th complx form of th basic Fourir sris (8.) is (8.5) with (8.6) c n f (cos ) 2k (! n ) X n c n E (cos i! n ) f (cos ) E (cos i! n ) ( 2 2 ) d whr! n!! 2! 3 :::!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud th normalization constants k (! n ) ar dnd by (6.7). Ths xprssions, of cours, mrly indicat how th cocints of our basic Fourir sris ar to b dtrmind on th hypothsis that th xpansion xists is uniformly convrgnt. W shall study th ustion of convrgnc of th sris (8.) (8.5) in th nxt sctions. Th -Fourir sris of f in ithr of th forms (8.) (8.5) will b dnotd in a usual mannr by S [f]. 9. Compltnss of th -Trigonomtric Systm Compltnss of th trigonomtric systm f inx g n on th intrval ( ) is on of th fundamntal facts in th thory of trigonomtric sris (s, for xampl, [], [8], [2], [9] [3]). In this sction w shall prov a similar proprty for th systm of basic trigonomtric function fe (x i! n )g, whr! n!! 2! 3 :::!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!)

25 -FOURIER SERIES 25 arrangd in ascnding ordr of magnitud. But rst w nd to discuss connctions btwn th basic trigonomtric functions th continuous -Hrmit polynomials. Th continuous -Hrmit polynomials, (9.) H n (cos j) hav two gnrating functions, (9.2) whn jrj < (9.3) X n X n nx k r n ( ) n H n (cos j) (s, for xampl, [7], [5], [24]). Lmma 9.. Th following functions (9.4) (9.5) ( ) n ( ) k ( ) nk i(n2k) (r i r i ) n2 4 ( ) n n H n (cos j) 2 2 E (cos ) (x ) 2 2 E (x ) s(!)! 2 2 S (!) ((x i!) (x i!)) (9.6) c(!)! 2 2 C (!) 2 ((x i!) + (x i!)) ar ntir functions in!, rspctivly, of ordr zro for all ral valus of x. Proof. Th gnrating function (9.3) givs a powr sris xpansion for th function (9.4), (9.7) with (9.8) (x ) X n h n h n (x) n2 4 h n n ( ) n H n (xj) : Th radius of convrgnc of this sris is innity, bcaus (9.9) R lim (jh nj) n n!! n n24 lim H n (xj) n! : ( ) n

26 26 JOAQUIN BUSTO AND SERGEI K. SUSLOV Thus, (x ) is an ntir function in. Th ordr of this ntir function is [9] n log n (9.) lim n! log jh n j n log n lim : n! log j n2 4 H n (xj) ( ) n j Functions (9.5) (9.6) ar just a sum or dirnc of two functions of typ (9.4), so thy ar also ntir functions of ordr zro. This provs th lmma. Th nxt stp is to stablish th following inualitis. Lmma 9.2. Lt cosh x cosh whr x cos,,. Thn (9.) j (cos )j (cosh jj) (9.2) (cosh jj) (cosh jj) if <. Proof. On can rwrit (9.) as [n2] X ( ) (9.3) H n (cos j) 2 n cos (n 2k) : ( ) k ( ) nk Thus, (9.4) k [n2] X jh n (cos j)j 2 Estimating both sids of (9.3) givs k ( ) n ( ) k ( ) nk H n (cosh j) : 2 2 E (cos ) X X n n n2 4 ( ) n n2 4 ( ) n jj n jh n (cos j)j jj n H n (cosh j) jj 2 2 E (cosh jj) cosh (n 2k) by (9.4) (9.3). This provs (9.). Th monotonicity proprty (9.2) follows from th monotonicity of th hyprbolic cosin function. It is clar that th systm fe (x i! n )g n is complt if th uivalnt systm f (x i! n )g n is closd.

27 -FOURIER SERIES 27 Suppos that th systm f (x i! n )g n is not closd on ( ). This mans that thr xists at last on function (x), not idntically zro, such that (9.5) (x) (x i! n ) (x) dx n 2 ::: whr (x) is th absolutly continuous masur in th orthogonality rlation (7.5). Thn, th function (9.6) f(!) (x) (x i! n ) (x) dx is an ntir function of ordr zro f(! n ) for all n 2 :::. Thus th study of closur amounts to th study of zros of a crtain ntir function. Suppos that (x) is intgrabl on ( ), (9.7) Thn (9.8) by (9.) (9.7). Considr th uotint (9.9) jf(!)j j(x)j (x) dx A < : j(x) (x i!)j (x) dx (cosh j!j) j(x)j (x) dx A (cosh j!j) g(!) f(!) s(!) of two ntir functions, f(!) s(!) dnd by (9.6) (9.5), rspstivly. Th functions f(!) s(!) hav th sam zros, so g(!) is an ntir function. Th ordr of this ntir function is zro bcaus both f(!) s(!) ar of ordr zro (s [9], Corollary of Thorm 2 on p. 24). Morovr, this function g(!) is boundd on a straight lin paralll to th imaginary axis. Indd, lt! + i. Using th sam argumnts as in Sction 5 on can s that (9.2) lim jj! s(i) ( jj) < : From this condition th inuality (9.8), it follows that th ntir function g(!) is boundd on th imaginary axis. But an ntir function of ordr zro boundd on a lin must b a constant (s Thorms 2{22 Corollary on pp. 49{5 of [9]). Thn, (9.2) f(!) c s(!)

28 28 JOAQUIN BUSTO AND SERGEI K. SUSLOV, thrfor, (9.22) jcj (x) (x i!) s(!) (x) dx (x i!) (x) s(!) (x) dx A E (cosh j!j) S(cosh j!j)! as j!j! <. Thus, f(!) is idntically zro th function (x) dos not xist. W hav stablishd th following thorm. Thorm 9.3. Th systm of th basic trigonomtric function fe (x i! n )g, whr n 2 :::!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud, is complt on ( ). As corollaris w hav th following rsults. Thorm 9.4. If f(x) g(x) hav th sam -Fourir sris, thn f g. Proof. Th -Fourir cocints of f g all vanish, so that f g. Thorm 9.5. If f(x) is continuous S [f], th -Fourir sris of function f, convrgs uniformly, thn its sum is f(x). Proof. Lt g(x) dnot th sum of S [f], th -Fourir sris in th right sid of (8.5). Thn th cocints of S [f] ar -Fourir cocints of g. Hnc, S [f] S [g], so that f g, f g bing continuous, f(x) g(x). Bssl's inuality for th -trigonomtric systm fe (x i! n )g n, whr!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud, taks th form (9.23) NX nn jc n j 2 jf(x)j 2 (x) dx providd f 2 L 2 ( ), which mans that jf(x)j 2 is intgrabl on ( ) with rspct to th wight function (x) in th orthogonality rlation (7.5). Hr c n ar th -Fourir cocints of f(x) dnd by (8.6). Whn N! w gt Parsval's formula (9.24) X n jc n j 2 jf(x)j 2 (x) dx du to th compltnss of th -trigonomtric systm fe (x i! n )g n th spac L 2 ( ) [], [8]. It follows that th -Fourir cocints c n tnd to zro if f 2 L 2 ( ).

29 -FOURIER SERIES 29. Bilinar Gnrating Function In this sction w shall driv th following bilinar gnrating rlation, (.) X n (r 2! 2 n 2 ) (! 2 n 2 ) k (! n ) E (cos i! n ) E (cos ' ir! n ) r2 2 2 (r i+i' r ii' r i'i r ii' ) for th basic xponntial functions. Hr as bfor! n!! 2! 3 :::!!! 2! 3 ::: ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud. W shall us this gnrating function for a furthr invstigation of th convrgnc of th basic Fourir sris (8.5) in th subsunt sction. Lt us stablish a conncting rlation of th form, (.2) ( 2 r 2 2 ) E (cos r) ( 2 2 ) ( r 2 ' ' ) 2 (r i+i' r ii' r i'i r ii' ) E (cos ' ) d' whr jrj <. On can asily s that if w could prov th uniform convrgnc in th variabl x cos of th sris in th lft sid of (.), than th intgral in (.2) givs th corrct valus of th basic Fourir cocints (s (8.5){(8.6)), which vris th gnrating rlation (.) by Thorm 9.5. So, on nds to giv a prov of (.2) rst. Th continuous -Hrmit polynomials hav th following bilinar gnrating function (th Poisson krnl), (.3) X n r n ( ) n H n (cos j) H n (cos 'j) (r 2 ) (r i+i' r ii' r i'i r ii' ) whr jrj <. Th orthogonality rlation for ths polynomials is (.4) H m (cos j) H n (cos j) d 2 ( ) n ( ) mn (s, for xampl, [7]). Exping E (cos ' ) in th right sid of (.2) in th uniformly convrgnt sris of th -Hrmit polynomials with th aid of (9.3), w

30 3 JOAQUIN BUSTO AND SERGEI K. SUSLOV gt (.5) 2 ( r 2 ' ' ) (r i+i' r ii' r i'i r ii' ) 2 2 E (cos ' ) d' X n 2 n2 4 ( ) n n ( r 2 ' ' ) (r i+i' r ii' r i'i r ii' ) H n (cos 'j) d': Th sris in (.3) convrgs uniformly whn jrj <. Thn, using (.4), (.6) 2 H n (cos 'j) ( r 2 ' ' ) (r i+i' r ii' r i'i r ii' ) d' r n H n (cos j) : From (.5), (.6), (9.3) w nally arriv at th conncting rlation (.2). Uniform convrgnc of th sris in (.) can b justid with th hlp of th inuality (9.) th corrsponding asymptotic xprssions. This provs (.) by Thorm 9.5. It is worth mntioning a fw spcial cass of (.). Whn r w obtain th following gnrating function, (.7) X n for E (x i! n ). If ' 2, on gts (.8) (! 2 n 2 ) k (! n ) E (cos i! n ) 2 2 X n (r 2! 2 n 2 ) (! 2 n 2 ) k (! n ) E (cos i! n ) r2 2 2 (r 2 r 2 2 ) : A trminating cas of this gnrating rlation appars whn r 2 intgr m 6, (.9) jmj X njmj (! 2 n! 2 m 2 ) (! 2 n 2 ) k (! n ) E (cos i! n )! 2 m for an

31 Hr m 2 3 :::. -FOURIER SERIES 3 r2 2 2 (! 2 m! 2 m 2 ) :. Mthod of Summation of Basic Fourir Sris According to Thorm 9.5, for a continuous function f(x) th basic Fourir sris S [f] convrgs to f(x) if it convrgs uniformly. In this sction w shall discuss anothr mthod of summation of basic Fourir sris. Lt f(x) b a boundd function that is continuous on ( ) lt S [f] b its -Fourir sris dnd by th right sid of (8.5). Rplac this sris by (.) whr S r [f] X n c n (r) E (cos i! n ) (.2) c n (r) (r2! n 2 2 ) (! n 2 2 ) f (cos ) E (cos ir! n ) 2k (! n ) providd that < r <. Comparing (.2) (8.6), (.3) ( 2 2 ) d lim c n (r) c n r! whr c n ar th rgular -Fourir cocints of f(x). Suppos that th sris S r [f] convrgs uniformly with rspct to th paramtr r whn < r <. Thn, (.4) lim S r [f] S [f] : r! On th othr h, from (.){(.2) on gts (.5) S r [f] X n 2k (! n ) (r 2! n 2 2 ) E (cos i! n ) (! n 2 2 ) f (cos ') E (cos ' ir! n ) ( ' ' ) ( 2 ' 2 ' ) d': Using th uniform convrgnc of th sris in th bilinar gnrating function (.), w nally obtain (.6) S r [f] 2 f (cos ') ( r 2 ' ' ) (r i+i' r ii' r i'i r ii' ) d':

32 32 JOAQUIN BUSTO AND SERGEI K. SUSLOV It has bn shown in [3] (s also [29]) that (.7) lim r! 2 f (cos ') ( r 2 ' ' ) (r i+i' r ii' r i'i r ii' ) d' f (cos ) for vry boundd function f (cos ) that is continuous on < <. As a rsult w hav provd th following thorm. Thorm.. Lt f(x) b a boundd function that is continuous on ( ) lt S r [f] b th sris dnd by (.){(.2). If S r [f] convrgs uniformly with rspct to th paramtr r whn < r <, thn lim r! S r [f] S [f] f(x). 2. Rlation Btwn -Trigonomtric Systm -Lgndr Polynomials Th trigonomtric systm f inx g n th systm of th Lgndr polynomials fp m (x)g ar two complt systms in m L2 ( ). Th corrsponding unitary transformation btwn ths two orthogonal basiss its invrs ar (2.) (2.2) inx P m (x) 2 2 X i n m (m + 2) J m+2 (n) P m (x) m X n 2 (i) m J m+2 (n) inx 2n rspctivly. Rlation (2.) is a spcial cas of a mor gnral xpansion, 2 X (2.3) irx () i m ( + m) J +m (r) C m (x) r m whr C m (x) ar ultrasphrical polynomials J +m (r) ar Bssl functions [27]. Expansion (2.2) is th Fourir sris of th Lgndr polynomials on ( ). Orthogonality proprtis of th trigonomtric systm Lgndr polynomials lad to th orthogonality rlations, (2.4) (2.5) X m X n m + 2 n m + 2 n J m+2 (n) J m+2 (l) nl J m+2 (n) J p+2 (n) mp for th corrsponding Bssl functions. Th basic trigonomtric systm fe (x i! n )g n th systm of th continuous -ultrasphrical polynomials fc m (x j )g with m 2, which ar th basic analogs of th Lgndr polynomials, ar two complt orthogonal systms in L 2 ( ), whr is th wight function in th orthogonality rlation (7.5). Thrfor, thr xists a -vrsion of th unitary transformation (2.){(2.2).

33 -FOURIER SERIES 33 Ismail hang [5] hav found th following -analog of (2.3), (2.6) E (x i!) ( )! (! 2 2 ) ( ) X m i m +m m2 4 J (2) +m (2! ) C m (x j ) whr J (2) +m (2! ) is Jackson's -Bssl function (s, for xampl, [7]). Spcial cas 2 givs th basic analog of th xpansion (2.), (2.7) E (x i! n ) ( )! 2 n (! 2 n 2 ) ( 2 ) X m i m m+2 m2 4 J (2) m+2 (2! n ) C m x 2 whr! n! n!!! 2! 3 :::, ar nonngativ zros of th basic sin function S (!) arrangd in ascnding ordr of magnitud. On th othr h, th continuous -ultrasphrical polynomials C m x 2 can b xpd in th -Fourir sris as (2.8) C m x 2 2 Indd, by (8.5){(8.6), (2.9) whr (2.) c n ( ) X n C m x 2 2k (! n ) (i) m m2 4! n 2 J (2) k (! n ) (! n 2 2 ) (2! m+2 n ) E (x i! n ) : X n c n E (x i! n ) C m cos 2 E (cos i! n ) d: ( 2 2 ) Using (2.7), whr th sris on th right convrg uniformly in x for any!, th orthogonality rlation (2.) C m cos 2 Cp cos 2 d ( 2 2 )

34 34 JOAQUIN BUSTO AND SERGEI K. SUSLOV 2 (s, for xampl, [7]), on gts 2 2 ( ) 2 m+2 mp (2.2) or, (2.3) c n c n 2 ( ) (i) m m ( ) 2 2 ' m ( ) 2! 2 n k(! n ) (! 2 n 2 ) J (2) m+2 (2! n ) (i) m m2 4! n m (! n 2 2 ) ( 2 ) m+ k (! n ) (! n 2 2 ) m+52 2m+3 (i) m m2 4! m n ( 2 ) m+ k (! n ) 2! 2 n " m+32 ( 2m+3 2 )! 2 n m+32 2m! 2 n 2 (! 2 n 2! 2 n 2 ) m+32 2 ' m+2 2m 2! 2 n (2.4) +! 2 n m+52 2m! n 2 2 ( 2m+3 2 ) (! n 2 2! n 2 2 ) # 2 ' m+52 32m 3 2! 2 n by (5.3) (III.32) of [7], rspctivly. Th last uation givs th larg!- asymptotic of th basic Fourir cocints. With th aid of (5.), (6.9), (I.9) of [7], w nally obtain (2.5) as n!, whr D is som constant. jc n j s D n2! Thrfor, th sris on th right sid of (2.8) convrgs uniformly w hav stablishd th xpansion of th -Lgndr polynomials C m x 2 in trms of th basic trigonomtric functions E (x i! n ) du to Thorm 9.5. Rlations (2.7){(2.8) dn th unitary oprator acting in L 2 ( ) [2]. Orthogonality rlations of th matrix of this oprator lad to th following orthogonality proprtis X (2.6) m m+2! n k(! n ) (! 2 n 2 ) 2 m2 2

35 -FOURIER SERIES 35 (2.7) J (2) m+2 (2! n ) J (2) m+2 (2! l ) nl X n m+2! n k(! n ) (! 2 n 2 ) 2 m2 2 J (2) m+2 (2! n ) J (2) p+2 (2! n ) mp for th corrsponding Jackson's -Bssl function. Ths rlations ar, clarly, - analogs of (2.4){(2.5). 3. Som Basic Trigonomtric Idntitis On of th most important formulas for th trigonomtric functions is th main trigonomtric idntity, (3.) cos 2!x + sin 2!x : It follows from th Pythagoran Thorm or from th addition formulas for th trigonomtric functions, but on can also prov this idntity on th bas of th diffrntial uation. Th functions cos!x sin!x ar two solutions of (.9) corrsponding to th sam ignvalu!. Thrfor, (3.2) or (3.3) d dx [W (cos!x sin!x)] cos 2!x + sin 2!x constant: Substituting x, on vris (3.). On can xtnd this considration to th cas of th basic trigonomtric functions. Considr uation (3.8) with u(z) C (x(z)!), v(z) S (x(z)!), (z), (3.4) whr (3.5) [W (u(z) v(z))] W (u v) W (C (x!) S (x!)) 24! [C (x(z)!) C (x(z 2)!) + S (x(z)!) S (x(z 2)!)] is th analog of th Wronskian (3.9) w also usd (2.2){(2.3). On can asily s that W (u v) hr is a doubly priodic function in z without pols in th rctangl on th Figur. Thrfor, this function is just a constant by Liouvill's thorm, C (x (z)) C (x (z 2)) + S (x (z)) S (x (z 2)) C: Th valu of this constant C can b found by choosing x, which givs C (!2 2 ) 2 (! 2 2 ) 2

36 36 JOAQUIN BUSTO AND SERGEI K. SUSLOV 2 ' 2 ' 2! 2 2! 2 (!2 2 ) 2 (! 2 2 ) 2 ' 2! 2 (!2 2 ) (! 2 2 ) by th -binomial thorm. As a rsult on gts (3.6) C (cos!) C (cos ( + i log 2)!) + S (cos!) S (cos ( + i log 2)!) (!2 2 ) (! 2 2 ) as a -xtnsion of th main idntity (3.). Th spcial cas z 4, whn x(4), of (3.6) has th simplst form (3.7) C 2 (!) + S 2 (!) (!2 2 ) (! 2 2 ) : Our idntity (3.6) can also b drivd as a spcial cas of th \addition" thorm for th basic trigonomtric functions stablishd in [24]. In a similar fashion, w can nd an analog of th idntity (3.8) cos 2! (x + y) + sin 2! (x + y) considring mor gnral basic sin cosin functions, C (x y!) S (x y!), as two solutions of uation (2.). Th rsult is (3.9) C (cos cos '!) C (cos ( + i log 2) cos '!) + S (cos cos '!) S (cos ( + i log 2) cos '!) (!2 2 ) (! 2 2 ) C 2 (cos '!) + S 2 (cos '!) (!2 2 ) (! 2 2 ) C (cos ' cos '!) : W hav usd (6.2) hr. This idntity can also b vrid with th aid of th \addition" thorms for th basic trigonomtric functions. Idntity (3.7) givs th valus of th basic cosin function C (!) at th zros of th basic sin function S (!), (3.) C (! n ) () n s (! 2 n 2 ) (! 2 n 2 )

37 -FOURIER SERIES 37 vic vrsa, (3.) S ( $ n ) () n s ($ 2 n 2 ) ($ 2 n 2 ) with th aid of Thorm Exampl Lt us considr a priodic function p (x) which is dnd in th intrval ( ) by p (x) x. Its Fourir cocints ar Thrfor, (4.) c c n 2 x x inx dx ()n n 6 : in 2 Th spcial cas m of (2.8), (4.2) X n X n () n n C x 2 i 2 X n inx () n sin nx n : ( ) 4! 2 n k (! n ) (! 2 n 2 ) J (2) 32 (2! n ) E (x i! n ) givs us a possibility to stablish th -analog of (4.). Lt us rst simplify th right sid of (4.2). Using th thr-trm rcurrnc rlation for th -Bssl functions (s Exrcis.25 of [7]) (5.32){(5.33), on gts (4.3) J (2) 32 (2! n ) 2 J (2) 2 (2! n ) On th othr h, (4.4) 2 ( ) (! 2 n 2 ) (! n ) 2 C (! n ) : C x 2 2 x: 2 +

38 38 JOAQUIN BUSTO AND SERGEI K. SUSLOV Combining (4.2){(4.4) (3.), w nally obtain, (4.5) x 2 2 ( ) 2 X n 2 2 ( ) 2 X n s () n (! n 2 2 ) i k (! n )! n (! n 2 2 ) E (x i! n ) s () n (! n 2 2 ) k (! n )! n (! n 2 2 ) Ths uations ar, clarly, -analogs of (4.). S (x! n ) : 5. Miscllanous Rsults Undr crtain rstrictions a function f(z) analytic in th ntir complx plan having zros at th points a a 2 a 3 ::: (ths ar th only zros of f(z)), whr lim n! ja n j is innit, can b rprsntd as an innit product (5.) f(z) f() zf ()f () Y zan zan n s, for xampl, [28], [9]. Considr th ntir function f(!)! 2 2 S(!) (5.2)! which has simpl ral zros at!! n by Thorms 5.{5.3. In this cas f() f(!) 2 2 f(!) f() + 2 f ()! 2 + ::: f () Y n!!n!!n +!!n!!n : As a rsult w arriv at th innit product rprsntation for th basic sin function, (5.3) S(!)! 2 (! 2 2 )

39 -FOURIER SERIES 39 Y!!n!!n +!!n!!n n 2! (! 2 2 ) Y n!2 In a similar mannr, on can obtain an innit product rprsntation for th basic cosin function, (5.4) C(!) (! 2 2 )! 2 n : Y!$n!$n +!$n!$n n (! 2 2 ) Y n!2 Euations (3.){(3.) (5.3){(5.4) rsult in th following rlations, (5.5) (5.6) () n (! 2 m ) () n ($ 2 m ) $ 2 n Y n Y n :!2 m $ 2 n $2 m! 2 n btwn th zros of th basic sin S(!) basic cosin C(!) functions. 6. Appndix: Estimat of Numbr of ros of S(!) In this sction w giv an stimat for numbr of zros of th basic sin function S(!) on th basis of Jnsn's thorm (s, for xampl, [6] [9]). W shall apply th mthod proposd by Mourad Ismail at th lvl of th third Jackson - Bssl functions [](s also [3] for an xtnsion of his ida to -Bssl functions on a -uadratic grid). Lt us considr th ntir function f(!) dnd in (5.2) again lt n f (r) b th numbr of of zros of f(!) in th circl j!j < r. Considr also circls of radius R R n { n, 4 { < 34 with n 2 3 ::: in th complx!-plan. Sinc n f (r) is nondcrasing with r on can writ (6.) if R n r R n+,, thrfor, (6.2) n f (R n ) Rn+ Rn n f (R n ) n f (r) n f (R n+ ) dr Rn+ r n f (r) Rn r dr n f (R n+ ) Rn+ Rn dr r :

40 4 JOAQUIN BUSTO AND SERGEI K. SUSLOV But, nally, on gts (6.3) Rn+ Rn log n f (R n ) dr r log r Rn+ Rn+ Rn n f (r) r Rn log dr log n f (R n+ ) : In th proof of Thorm 5. w hav stablishd th fact that for sucintly larg n thr ar at last two roots of f(!) btwn th circls j!j R n j!j R n+. Thus, for sucintly larg n th inuality (6.3) should rally hav on of th following forms (6.4) or (6.5) log n f (R n ) log n f (R n ) < Rn+ Rn Rn+ Rn n f (r) r n f (r) r dr < log n f (R n+ ) dr log n f (R n+ ) : Our nxt stp is to stimat th intgral in (6.4){(6.5). By Jnsn's thorm [6], [9] (6.6) Rn+ Rn n f (r) r dr Rn+ 2 2 n f (r) dr r log Rn f { n i# f ({ n i# ) For larg valus of n in viw of (5.5), f { n i# f ({ n i# ) ( 32 { 2 2n # 2 ) 32 { 2 2n2 # log whr { 2 2. Thrfor, (6.7) Rn+ Rn as n!. From (6.3) (6.7), + f { n i# f ({ n i# ) n f (r) r log log 2n 32 { 2 2n2 # 2 2n log + log n f (r) dr r dr 2n log + log + o () n n f (R n ) 2n + d#: log log 2n

41 , thrfor, n f (R n ) (6.8) lim n! 2n On th othr h, from (6.4){(6.5), (6.9) or (6.) which givs -FOURIER SERIES 4 : n f (R n ) 2n + log log < n f (R n+ ) n f (R n ) < 2n + log log n f (R n+ ) n f (R n+ ) n f (R n ) < 2n log log 2n 2 + log log 4 Thus, w hav stablishd that (6.) n f (R n+ ) n f (R n ) < 4 as n!. Du to th symmtry f (!) f (!) th last inuality implis that thr is only on positiv root of S(!) btwn th tst points! n dnd by (5.6) for larg valus of n. 7. Acknowldgmnts W wish to thank Dick Asky, Mourad Ismail, John McDonald, Mizan Rahman for valuabl discussions commnts. On of us (S. S.) gratfully acknowldg th hospitality of th Dpartmnt of Mathmatics at Arizona Stat Univrsity wr this work was don. Rfrncs [] N. I. Akhizr, Thory of Approximation, Frdrick Ungar Publishing Co., Nw York, 956. [2] N. I. Akhizr I. M. Glazman, Thory of Linar Oprators in Hilbrt Spac, Dovr, Nw York, 993. [3] R. A. Asky, M. Rahman, S. K. Suslov, On a gnral -Fourir transformation with nonsymmtric krnls, J. Comp. Appl. Math. 68 (996), 25{55. [4] R. A. Asky J. A. Wilson, Som basic hyprgomtric orthogonal polynomials that gnraliz Jacobi polynomials, Mmoirs Amr. Math. Soc., Numbr 39 (985). [5] N. M. Atakishiyv S. K. Suslov, Dirnc hyprgomtric functions, in: \Progrss in Approximation Thory: An Intrnational Prspctiv", ds. A. A. Gonchar E. B. Sa, Springr Sris in Computational Mathmatics, Vol. 9, Springr{Vrlag, 992, pp. {35. [6] R. P. Boas, Entir Functions, Acadmic Prss, Nw York, 954. [7] G. Gaspr M. Rahman, Basic Hyprgomtric Sris, Cambridg Univrsity Prss, Cambridg,99. [8] Y. Chn, M. E. H. Ismail, K. A. Muttalib, Asymptotics of basic Bssl functions -Lagurr polynomials, J. Comp. Appl. Math. 54 (994), 263{272. [9] M. E. H. Ismail, Th basic Bssl functions polynomials, SIAM J. Math. Anal. 2 (98), 454{468. [] M. E. H. Ismail, Th zros of basic Bssl functions, th functions J+ax (x), associatd orthogonal polynomials, J. Math. Anal. Appl. 86 (982), {9. [] M. E. H. Ismail, Som proprtis of Jackson's third -Bssl functions, to appar.

42 42 JOAQUIN BUSTO AND SERGEI K. SUSLOV [2] M. E. H. Ismail, D. R. Masson, S. K. Suslov, Th -Bssl functions on a -uadratic grid, to appar. [3] M. E. H. Ismail, D. R. Masson, S. K. Suslov, Proprtis of a -analogu of Bssl functions, to appar. [4] M. E. H. Ismail M.E. Muldoon, On th variation with rspct to a paramtr of zros of Bssl -Bssl functions, J. Math. Anal. Appl. 35 (988), 87{27. [5] M. E. H. Ismail R. hang, Diagonalization of crtain intgral oprators, Advancs in Math. 8 (994), {33. [6] M. E. H. Ismail, M. Rahman, R. hang, Diagonalization of crtain intgral oprators II, J. Comp. Appl. Math. 68 (996), 63{96. [7] R. Kokok R. F. Swarttow, Th Asky schm of hyprgomtric orthogonal polynomials its -analogus, Rport 94{5, Dlft Univrsity of Tchnology, 994. [8] A. N. Kolmogorov S. V. Fomin, Introductory Ral Analysis, Dovr, Nw York, 97. [9] B. Ya. Lvin, Distribution of ros of Entir Functions, Translations of Mathmatical Monographs, Vol. 5, Amr. Math. Soc., Providnc, Rhod Isl, 98. [2] N. Lvinson, Gap Dnsity Thorms, Amr. Math. Soc. Collo. Publ., Vol. 36, Nw York, 94. [2] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Classical Orthogonal Polynomials of a Discrt Variabl, Nauka, Moscow, 985 [in Russian] English translation, Springr{Vrlag, Brlin, 99. [22] M. Rahman, An intgral rprsntation som transformation proprtis of -Bssl functions, J. Math. Anal. Appl. 25 (987), 58{7. [23] S. K. Suslov, Th thory of dirnc analogus of spcial functions of hyprgomtric typ, Russian Math. Survys 44 (989), 227{278. [24] S. K. Suslov, \Addition" thorms for som -xponntial -trigonomtric functions, Mthods Applications of Analysis, to appar. [25] S. K. Suslov, Som orthogonal vry-wll-poisd 8 ' 7 -functions, J. Phys. A: Math. Gn., submittd as a Lttr. [26] S. K. Suslov, Som orthogonal vry-wll-poisd 8 ' 7 -functions that gnraliz th Asky{Wilson polynomials, undr prparation. [27] G. N. Watson, A Tratis on th Thory of Bssl Functions, scond dition, Cambridg Univrsity Prss, Cambridg, 944. [28] E. T. Whittakr G. N. Watson, A Cours of Modrn Analysis, fourth dition, Cambridg Univrsity Prss, Cambridg, 952. [29] N. Winr, Th Fourir Intgral Crtain of Its Applications, Cambridg Univrsity Prss, Cambridg, 933 Dovr dition publishd in 948. [3] A. ygmund, Trigonomtric Sris, scond dition, Cambridg Univrsity Prss, Cambridg, 968. Joauin Bustoz, Dpartmnt of Mathmatics, Arizona Stat Univrsity, Tmp, Arizona , U.S.A. addrss: bustoz@math.la.asu.du Srgi K. Suslov, Kurchatov Institut, Moscow, 2382, Russia Currnt addrss: Dpartmnt of Mathmatics, Arizona Stat Univrsity, Tmp, Arizona , U.S.A. addrss: suslov@math.la.asu.du

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Equidistribution and Weyl s criterion

Equidistribution and Weyl s criterion Euidistribution and Wyl s critrion by Brad Hannigan-Daly W introduc th ida of a sunc of numbrs bing uidistributd (mod ), and w stat and prov a thorm of Hrmann Wyl which charactrizs such suncs. W also discuss

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1 wald s Mthod Rvisitd: Rapidly Convrgnt Sris Rprsntations of Crtain Grn s Functions Vassilis G. Papanicolaou 1 Suggstd Running Had: wald s Mthod Rvisitd Complt Mailing Addrss of Contact Author for offic

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator Proprtis of Phas Spac Wavfunctions and Eignvalu Equation of Momntum Disprsion Oprator Ravo Tokiniaina Ranaivoson 1, Raolina Andriambololona 2, Hanitriarivo Rakotoson 3 raolinasp@yahoo.fr 1 ;jacqulinraolina@hotmail.com

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Application of Vague Soft Sets in students evaluation

Application of Vague Soft Sets in students evaluation Availabl onlin at www.plagiarsarchlibrary.com Advancs in Applid Scinc Rsarch, 0, (6):48-43 ISSN: 0976-860 CODEN (USA): AASRFC Application of Vagu Soft Sts in studnts valuation B. Chtia*and P. K. Das Dpartmnt

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

1 N N(θ;d 1...d l ;N) 1 q l = o(1)

1 N N(θ;d 1...d l ;N) 1 q l = o(1) NORMALITY OF NUMBERS GENERATED BY THE VALUES OF ENTIRE FUNCTIONS MANFRED G. MADRITSCH, JÖRG M. THUSWALDNER, AND ROBERT F. TICHY Abstract. W show that th numbr gnratd by th q-ary intgr part of an ntir function

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations MATH 39, WEEK 5: Th Fundamntal Matrix, Non-Homognous Systms of Diffrntial Equations Fundamntal Matrics Considr th problm of dtrmining th particular solution for an nsmbl of initial conditions For instanc,

More information

EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS

EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS K Y B E R N E T I K A V O L U M E 4 9 0 3, N U M B E R, P A G E S 4 7 EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS Rajkumar Vrma and Bhu Dv Sharma In th prsnt papr, basd on th concpt of fuzzy ntropy,

More information

EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k 1, k 2 )-HESSIAN SYSTEMS WITH CONVECTION TERMS

EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k 1, k 2 )-HESSIAN SYSTEMS WITH CONVECTION TERMS Elctronic Journal of Diffrntial Equations, Vol. 26 (26, No. 272, pp. 8. ISSN: 72-669. URL: http://jd.math.txstat.du or http://jd.math.unt.du EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k, k 2 -HESSIAN

More information

ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone mathmatics Articl A Simpl Formula for th Hilbrt Mtric with Rspct to a Sub-Gaussian Con Stéphan Chrétin 1, * and Juan-Pablo Ortga 2 1 National Physical Laboratory, Hampton Road, Tddinton TW11 0LW, UK 2

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Some remarks on Kurepa s left factorial

Some remarks on Kurepa s left factorial Som rmarks on Kurpa s lft factorial arxiv:math/0410477v1 [math.nt] 21 Oct 2004 Brnd C. Kllnr Abstract W stablish a connction btwn th subfactorial function S(n) and th lft factorial function of Kurpa K(n).

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

Lie Groups HW7. Wang Shuai. November 2015

Lie Groups HW7. Wang Shuai. November 2015 Li roups HW7 Wang Shuai Novmbr 015 1 Lt (π, V b a complx rprsntation of a compact group, show that V has an invariant non-dgnratd Hrmitian form. For any givn Hrmitian form on V, (for xampl (u, v = i u

More information

ELLIPTIC SELBERG INTEGRALS AND CONFORMAL BLOCKS. 0 j<k 1. Γ(1 + γ + jγ)γ(α + jγ)γ(β + jγ) Γ(1 + γ)γ(α + β + (p + j 1)γ).

ELLIPTIC SELBERG INTEGRALS AND CONFORMAL BLOCKS. 0 j<k 1. Γ(1 + γ + jγ)γ(α + jγ)γ(β + jγ) Γ(1 + γ)γ(α + β + (p + j 1)γ). ELLIPTIC SELBERG INTEGRALS AND CONFORMAL BLOCKS G. FELDER, L. STEVENS, AND A. VARCHENKO, arxiv:math.qa/020040 v 3 Oct 2002 Dpartmnt Mathmatik, ETH-Zntrum, 8092 Zürich, Switzrland, fldr@math.thz.ch Dpartmnt

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Mutually Independent Hamiltonian Cycles of Pancake Networks

Mutually Independent Hamiltonian Cycles of Pancake Networks Mutually Indpndnt Hamiltonian Cycls of Pancak Ntworks Chng-Kuan Lin Dpartmnt of Mathmatics National Cntral Univrsity, Chung-Li, Taiwan 00, R O C discipl@ms0urlcomtw Hua-Min Huang Dpartmnt of Mathmatics

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

4037 ADDITIONAL MATHEMATICS

4037 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Lvl MARK SCHEME for th Octobr/Novmbr 0 sris 40 ADDITIONAL MATHEMATICS 40/ Papr, maimum raw mark 80 This mark schm is publishd as an aid to tachrs and candidats,

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

State-space behaviours 2 using eigenvalues

State-space behaviours 2 using eigenvalues 1 Stat-spac bhaviours 2 using ignvalus J A Rossitr Slids by Anthony Rossitr Introduction Th first vido dmonstratd that on can solv 2 x x( ( x(0) Th stat transition matrix Φ( can b computd using Laplac

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer DSP-First, / TLH MODIFIED LECTURE # CH-3 Complx Exponntials & Complx Numbrs Aug 016 1 READING ASSIGNMENTS This Lctur: Chaptr, Scts. -3 to -5 Appndix A: Complx Numbrs Complx Exponntials Aug 016 LECTURE

More information

Self-interaction mass formula that relates all leptons and quarks to the electron

Self-interaction mass formula that relates all leptons and quarks to the electron Slf-intraction mass formula that rlats all lptons and quarks to th lctron GERALD ROSEN (a) Dpartmnt of Physics, Drxl Univrsity Philadlphia, PA 19104, USA PACS. 12.15. Ff Quark and lpton modls spcific thoris

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information