Chapter 1. Numerical Errors. Module No. 1. Errors in Numerical Computations

Size: px
Start display at page:

Download "Chapter 1. Numerical Errors. Module No. 1. Errors in Numerical Computations"

Transcription

1 Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur

2 . Chapter Numerical Errors Module No. Errors in Numerical Computations

3 Two major techniques are used to solve any mathematical problem analytical and numerical. The analytical solution is obtained in a compact form and generally it is free from error. On the other hand, numerical method is a technique which is used to solve a problem with the help of computer or calculator. In general, the solution obtained by this method contains some error. But, for some class of problems it is very difficult to obtain an analytical solution. For these problems we generally use numerical methods. For example, the solutions of complex non-linear differential equations cannot be determined by analytical methods, but these problems can easily be solved by numerical methods. In numerical method there always be a scope to occur errors and hence it is important to understand the source, propagation, magnitude, and rate of growth of these errors. To solve a problem with the help of computer, a special method is required and this method is known as numerical method. Analytical methods are not suitable to solve a problem by computer. Thus, the numerical methods are highly appreciated and extensively used by scientists and engineers. Let us discuss sources of error.. Sources of error It is well known that the solution of a problem obtained by numerical method contains some errors. But, our intension is to minimize the error. To minimize it, the most essential thing is to identify the causes or sources of the error. Three sources of errors, viz. inherent errors, round-off errors and truncation errors occur to find a solution of a problem by using numerical method. They are discussed below. (i) Inherent errors: These type of errors occur due to the simplified assumptions made during mathematical modelling of the problem. These errors also occur when the data is obtained from certain physical measurements of the parameters of the proposed problem. (ii) Round-off errors: Generally, the numerical methods are performed using computer. In numerical computation, all the numbers are represented as decimal fraction. Again, a computer can store finite number of digits for a number. Some numbers viz. /3, /6, /7 etc. can not be represented by decimal fraction in finite numbers of digits.

4 Errors in Numerical Computations Thus, to represent these numbers some digits must be discarded and hence the numbers should be rounded-off into some finite number of digits. So in arithmetic computation, some errors will occur due to the finite representation of the numbers; these errors are called round-off errors. These errors depend on the word length of the used computer. (iii) Truncation errors: These errors occur due to the finite representation of an inherently infinite process. These types of errors are explained by an example. Let us consider the cosine series. The Taylor s series expansion of cos x is cos x = x2 2! + x4 4! x6 6! +. This is well known that this series s infinite. If we consider the first five terms to calculate the value of cos x for a given x, then we obtained an approximate value. The error occurs due to the truncation of the remaining terms of the series and it is called the truncation of error. Note that the truncation error is independent of the computational machine..2 Exact and approximate numbers In numerical computation, a number is consider as either exact or approximate value of a solution of a problem. Exact number represents the true value of a result while the approximate number represents the value which is closed to the true value. For example, in the statements a book has 34 pages, the population of a locality is 5000 the numbers 34, 5000 are exact numbers. But, in the assertions the time taken to fly from Kolkata to New Delhi is 2 hrs, the number of leaves of a mango tree is 50000, the numbers 2 and are approximate numbers, as time to fly from Kolkata to New Delhi is approximately 2 hrs and similarly, the number of leaves of the tree is approximately 50000, because it is not possible to count exact number of leaves of a big tree. These approximations are coming either from the imperfection of measuring instruments or the measurement depends on other parameters. There are no absolutely exact measuring instruments; each of them has its own accuracy. 2

5 It may be noted that same number may be exact as well as approximate. For example, the number 3 is exact when it represents the number of rooms of a house and approximate when it represents the number π. The accuracy of a solution is defined in terms of number of digits used in the computation. The significant digits or significant figures of a number are all its digits, except for zeros which appear to the left of the first non-zero digit. But, the zeros at the end of a number are always significant digit. The numbers and have 3 and 8 significant digits respectively. Some times we need to cut off usable digits. The number of digits to be cut off depends on the problem. This process to cut off digits from a number is called rounding-off of numbers. That is, in rounding process the number is approximated to a very close number consisting of a smaller number of digits. In that case, one or more digits are kept with the number, taken from left to right, and all other digits are discarded. Rules of rounding-off (i) If the discarded digits constitute a number which is larger than half the unit in the last decimal place that remains, then the last digit that is left is increased by one. If the discarded digits constitute a number which is smaller than half the unit in the last decimal place that remains, then the digits that remain do not change. (ii) If the discarded digits constitute a number which is equal to half the unit in the last decimal place that remains, then the last digit that is half is increased by one, if it is odd, and is unchanged if it is even. This rule is often called a rule of an even digit. In Table., we consider different cases to illustrate the round-off process. In this table the numbers are rounded-off to the six significant figures. But, computer kept more number of digits during round-off. It depends on the computer and the type of the number declared in a programming language. Note that the round-off numbers contain errors and this errors are called round-off errors. 3

6 Errors in Numerical Computations Exact number Round-off number to six significant figures (added in the last digit) (last digit remains unchanged) (added in the last digit) (added in the last digit) (last digit remains unchanged) (added in the last digit to make even digit) (added in the last digit) (added in the last digit) (added in the last digit) (added two 0 s to make six figures) (integer is rounded to six digits) Table.: Different cases of round-off numbers.3 Absolute, relative and percentage errors Let x A be the approximate value of the exact number X T. The difference between the exact value x T and its approximate value x A is an error. But, by principle it is not possible to determine the value of the error x T x A and even its sign, when the exact number x T is unknown. The errors are designated as absolute error, relative error and percentage error. Absolute error: Let x A be the approximate value of the exact number x T. Then the absolute error is denoted by ( x) and satisfies the relation x x T x A. Note that the absolute error is the upper bound of the difference between x T and x A. This definition is applicable when there are many approximate values of the exact number x T. Otherwise, x = x T x A. 4

7 Also, the exact value x T lies between x A x and x A + x. It can be written as x T = x A ± x. (.) The upper bound of the absolute error is absolute error 2 0 m, (.2) when the number is rounded to m decimal places. Note that the absolute error measures the total error and hence this error measures only the quantitative side of the error. It does not measure the qualitative, i.e. how much the measurement is accurate. For example, the length and the width of a pond are determined by a tape in meter. Suppose that width w = 50 ± 2 m and the length l = 250 ± 2 m. In both the measurements the absolute error is 2 m, but it is obvious that the second measure is more accurate. To determine the quality of measurements, we introduced a new concept called relative error. Relative error: The relative error is denoted by δx and is defined by δx = x x A or This expression can also be written as x x T, x T 0 and x A 0. x T = x A ( ± δx) or x A = x T ( ± δx). Note that the absolute error is the total error when whole thing is measured, while relative error is the error when we measure unit. That is, the relative error is the error per unit measurement. In case of above example, the relative errors are δw = Thus, the second measurement is more accurate. = 0.04 and δl = = In general, the relative error measures the quantity of error and quality of the measurement. Thus, the relative error is a better measurement of error than absolute error. Percentage error: The relative error is measured in unit scale while the percentage error is measured 5

8 Errors in Numerical Computations in 00 unit scale. The percentage error is measured by δx 00%. This error is sometimes called relative percentage error. Percentage error measures both the quantity and quality. Generally, when relative error is very small then the percentage error is determined. Note that the relative and percentage errors are free from the unit of measurement, while absolute error depends on the measuring unit. Example x A = Find the absolute, relative and percentage error in x A when x T = 7 and Solution. The absolute error x = x T x A = = = = rounding up to two significant figures. 7 The relative error δx = x = = x T /7 The percentage error is δx 00% = % 0.03%. Example.2 Find the absolute error and the exact number corresponding to the approximate number x A = Assume that the percentage error is 0.%. Solution. The relative error is δx = 0.% = Therefore, the absolute error is x = x A δx = = Thus, the exact value is = ± Example.3 Suppose two exact numbers and their approximate values are given by Find out which approximation is better. x T = and y T = Solution. To find the absolute error, we take the numbers x A and y A with a larger number of decimal digits as x A , y A = Therefore, the absolute error in x T is x = , and y =

9 Thus, δx = / = % δy = /8.426 = = %. The percentage error in second case is while in first case it is Thus the second measurement is more better than the first one..4 Valid significant digits A decimal integer can be represented in many ways. For example, the number can be written as or or Note that each number has two parts, the first part is called mantissa and second part is called exponent. In last form, the mantissa is a proper fraction and first digit after decimal point is non-zero. This form is known as normalize form and it is commonly used in computer. Every positive decimal number a can be expressed as a = d 0 m + d 2 0 m + + d n 0 m n+ +, where d i are the digits constituting the number (i =, 2,...). The digit d 0 and 0 m i+ is the value of the ith decimal place starting from left. Let d n be the nth digit of the approximate number x. This digit is called valid significant digit (or simply a valid digit) if it satisfies the following condition x m n+. (.3) If the inequality of (.3) does not satisfied, the digit d n is said to be doubtful. If d n is a valid digit then all the digits preceding to d n are also valid. Theorem. If a number is correct up to n significant figures and the first significant digit is k, then the relative error is less than k 0 n. Proof. Let x A and x T be the approximate and exact values. Also, assume that x A is correct up to n significant figures and m decimal places. There are three cases arise: (i) m < n (ii) m = n and (iii) m > n. 7

10 Errors in Numerical Computations From (.2) it is known that the absolute error x m. (i) When m < n. In this case, the total number of digits in integral part is n m. Let k be the first significant digit in x T. Therefore, Thus, the relative error x m and x T k 0 n m m. δx = x x T m k 0 n m m = 2k 0 n. Since, n is a positive integer and k is an integer lies between and 9, for all k and n except k = n =. Hence, (ii) When m = n. 2k 0 n > k 0 n δx < k 0 n. In this case, the first significant digit is same as first digit after decimal point, i.e. the number is proper fraction. As in previous case, (iii) When m > n m δx = k 0 n m m = 2k 0 n < k 0 n. In this case, the first significant digit k is at the (n m+) = (m n )th position and the integer part is zero. Then x m and x T k 0 (m n+) m. Thus, Hence the theorem m δx = k 0 (m n+) m = 2k 0 n < k 0 n.

Chapter 1: Introduction and mathematical preliminaries

Chapter 1: Introduction and mathematical preliminaries Chapter 1: Introduction and mathematical preliminaries Evy Kersalé September 26, 2011 Motivation Most of the mathematical problems you have encountered so far can be solved analytically. However, in real-life,

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 November 6, 2007 2 kostas.kokkotas@uni-tuebingen.de http://www.tat.physik.uni-tuebingen.de/kokkotas Kostas Kokkotas 3 Error Analysis Definition : Suppose that x is an approximation to

More information

Chapter 1 Mathematical Preliminaries and Error Analysis

Chapter 1 Mathematical Preliminaries and Error Analysis Numerical Analysis (Math 3313) 2019-2018 Chapter 1 Mathematical Preliminaries and Error Analysis Intended learning outcomes: Upon successful completion of this chapter, a student will be able to (1) list

More information

Errors. Intensive Computation. Annalisa Massini 2017/2018

Errors. Intensive Computation. Annalisa Massini 2017/2018 Errors Intensive Computation Annalisa Massini 2017/2018 Intensive Computation - 2017/2018 2 References Scientific Computing: An Introductory Survey - Chapter 1 M.T. Heath http://heath.cs.illinois.edu/scicomp/notes/index.html

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... Introduce the topic of numerical methods Consider the Error analysis and sources of errors Introduction A numerical method which

More information

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Floating Point Number Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview Real number system Examples Absolute and relative errors Floating point numbers Roundoff

More information

Chapter 1. Numerical Errors. Module No. 3. Operators in Numerical Analysis

Chapter 1. Numerical Errors. Module No. 3. Operators in Numerical Analysis Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-71309 email: anita.buie@gmail.com . Chapter 1 Numerical Errors Module

More information

Introduction CSE 541

Introduction CSE 541 Introduction CSE 541 1 Numerical methods Solving scientific/engineering problems using computers. Root finding, Chapter 3 Polynomial Interpolation, Chapter 4 Differentiation, Chapter 4 Integration, Chapters

More information

Notes for Chapter 1 of. Scientific Computing with Case Studies

Notes for Chapter 1 of. Scientific Computing with Case Studies Notes for Chapter 1 of Scientific Computing with Case Studies Dianne P. O Leary SIAM Press, 2008 Mathematical modeling Computer arithmetic Errors 1999-2008 Dianne P. O'Leary 1 Arithmetic and Error What

More information

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460 Notes for Part 1 of CMSC 460 Dianne P. O Leary Preliminaries: Mathematical modeling Computer arithmetic Errors 1999-2006 Dianne P. O'Leary 1 Arithmetic and Error What we need to know about error: -- how

More information

Appendix F. Treatment of Numerical Data. I. Recording Data F-1

Appendix F. Treatment of Numerical Data. I. Recording Data F-1 Treatment of umerical Data I. Recording Data When numerical data are recorded, three kinds of information must be conveyed: the magnitude of the number, how well the number is known, and the units used

More information

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic Computer Arithmetic MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Machine Numbers When performing arithmetic on a computer (laptop, desktop, mainframe, cell phone,

More information

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation greater than or equal to one, and less than 10 positive exponents: numbers greater than 1 negative exponents: numbers less than 1, (> 0) (fractions) 2 ways to write the same number: 6,500: standard form

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan September 12, 2015 Outline 1 Round-off errors and computer arithmetic

More information

How do computers represent numbers?

How do computers represent numbers? How do computers represent numbers? Tips & Tricks Week 1 Topics in Scientific Computing QMUL Semester A 2017/18 1/10 What does digital mean? The term DIGITAL refers to any device that operates on discrete

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

Chapter 1 Error Analysis

Chapter 1 Error Analysis Chapter 1 Error Analysis Several sources of errors are important for numerical data processing: Experimental uncertainty: Input data from an experiment have a limited precision. Instead of the vector of

More information

Lesson 1.3: Algebra and Scientific Notation with Small Numbers

Lesson 1.3: Algebra and Scientific Notation with Small Numbers Specific Objectives Students will understand that in algebra, numbers and variables can be combined to produce expressions, equations and inequalities. numbers between 0 and 1 can be written using scientific

More information

Chapter 1 Computer Arithmetic

Chapter 1 Computer Arithmetic Numerical Analysis (Math 9372) 2017-2016 Chapter 1 Computer Arithmetic 1.1 Introduction Numerical analysis is a way to solve mathematical problems by special procedures which use arithmetic operations

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 1 Chapter 4 Roundoff and Truncation Errors PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR)

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) Autumn Session UNIT 1 Numerical analysis is the study of algorithms that uses, creates and implements algorithms for obtaining numerical solutions to problems

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

The Rules of the Game

The Rules of the Game The Rules of the Game Over hundreds of years ago, physicists and other scientists developed a traditional way of expressing their observations. International System of Units (SI) metric system. The amount

More information

Chapter 2 - Measurements and Calculations

Chapter 2 - Measurements and Calculations Chapter 2 - Measurements and Calculations 2-1 The Scientific Method "A logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating

More information

An Introduction to Differential Algebra

An Introduction to Differential Algebra An Introduction to Differential Algebra Alexander Wittig1, P. Di Lizia, R. Armellin, et al. 1 ESA Advanced Concepts Team (TEC-SF) SRL, Milan Dinamica Outline 1 Overview Five Views of Differential Algebra

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements Engineering Fundamentals and Problem Solving, 6e Chapter 6 Engineering Measurements Chapter Objectives Determine the number of significant digits in a measurement Perform numerical computations with measured

More information

Numerical Methods. Dr Dana Mackey. School of Mathematical Sciences Room A305 A Dana Mackey (DIT) Numerical Methods 1 / 12

Numerical Methods. Dr Dana Mackey. School of Mathematical Sciences Room A305 A   Dana Mackey (DIT) Numerical Methods 1 / 12 Numerical Methods Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) Numerical Methods 1 / 12 Practical Information The typed notes will be available

More information

Chapter 1 Mathematical Preliminaries and Error Analysis

Chapter 1 Mathematical Preliminaries and Error Analysis Chapter 1 Mathematical Preliminaries and Error Analysis Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Limits and Continuity

More information

Base unit-a defined unit of measurement based on an object or event in the physical world. Length

Base unit-a defined unit of measurement based on an object or event in the physical world. Length Base unit-a defined unit of measurement based on an object or event in the physical world Five base units: Temperature Mass Length Time Energy Derived unit-a unit of measurement defined by a combination

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Computer Representation of Numbers Counting numbers (unsigned integers) are the numbers 0,

More information

NUMERICAL METHODS C. Carl Gustav Jacob Jacobi 10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

NUMERICAL METHODS C. Carl Gustav Jacob Jacobi 10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 0. Gaussian Elimination with Partial Pivoting 0.2 Iterative Methods for Solving Linear Systems 0.3 Power Method for Approximating Eigenvalues 0.4 Applications of Numerical Methods Carl Gustav Jacob Jacobi

More information

Latest Syllabus - NMO

Latest Syllabus - NMO Latest Syllabus - NMO CLASS 1 Numerals and Number Name (2 digit numbers) Addition, Subtraction Knowledge of currency notes. Knowledge of clock. Knowledge of basic units of Length,. Knowledge of basic figures

More information

Mathematics Foundation for College. Lesson Number 1. Lesson Number 1 Page 1

Mathematics Foundation for College. Lesson Number 1. Lesson Number 1 Page 1 Mathematics Foundation for College Lesson Number 1 Lesson Number 1 Page 1 Lesson Number 1 Topics to be Covered in this Lesson Sets, number systems, axioms, arithmetic operations, prime numbers and divisibility,

More information

INTRODUCTION TO COMPUTATIONAL MATHEMATICS

INTRODUCTION TO COMPUTATIONAL MATHEMATICS INTRODUCTION TO COMPUTATIONAL MATHEMATICS Course Notes for CM 271 / AMATH 341 / CS 371 Fall 2007 Instructor: Prof. Justin Wan School of Computer Science University of Waterloo Course notes by Prof. Hans

More information

(Significant Digits are in BOLD type and the non-significant digits are underlined)

(Significant Digits are in BOLD type and the non-significant digits are underlined) Name Per. Date Significant Digits Worksheet Significant digits (or significant figures) are used to represent the accuracy of a measurement. In a measurement the significant digits represent all the reliable

More information

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation Measurement Chapter 2 Measurements and Problem Solving Quantitative observation Comparison based on an accepted scale e.g. Meter stick Has 2 parts number and unit Number tells comparison Unit tells scale

More information

Errors Intensive Computation

Errors Intensive Computation Errors Intensive Computation Annalisa Massini - 2015/2016 OVERVIEW Sources of Approimation Before computation modeling empirical measurements previous computations During computation truncation or discretization

More information

Chemistry: The Study of Change Chang & Goldsby 12 th edition

Chemistry: The Study of Change Chang & Goldsby 12 th edition Chemistry: The Study of Change Chang & Goldsby 12 th edition modified by Dr. Hahn Chapter 1 Example 1.4 Determine the number of significant figures in the following measurements: (a)478 cm (b)6.01 g end

More information

Every time a measurement is taken, we must be aware of significant figures! Define significant figures.

Every time a measurement is taken, we must be aware of significant figures! Define significant figures. SCHM 103: FUNDAMENTALS OF CHEMISTRY Ch. 2: Numerical Side of Chemistry Types of data collected in experiments include: Qualitative: Quantitative: Making Measurements Whenever a piece of data is collected,

More information

Section 4.7 Scientific Notation

Section 4.7 Scientific Notation Section 4.7 Scientific Notation INTRODUCTION Scientific notation means what it says: it is the notation used in many areas of science. It is used so that scientist and mathematicians can work relatively

More information

Introduction and mathematical preliminaries

Introduction and mathematical preliminaries Chapter Introduction and mathematical preliminaries Contents. Motivation..................................2 Finite-digit arithmetic.......................... 2.3 Errors in numerical calculations.....................

More information

GEOMETRY AND MENSURATION...

GEOMETRY AND MENSURATION... Contents NUMBERS...3 1. Number System... 3 2. Sequence, Series and Progression... 8 ARITHMETIC... 12 3. Averages... 12 4. Ratio and Proportion... 16 5. Percentage... 20 6. Profit and Loss... 23 7. Interest...

More information

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights?

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights? Scientific Notation Table of Contents Click on the topic to go to that section The purpose of scientific notation Scientific Notation How to write numbers in scientific notation How to convert between

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE 102 Engineering Computation Phillip Wong Error Analysis Accuracy vs. Precision Significant Figures Systematic and Random Errors Basic Error Analysis Physical measurements are never exact. Uncertainty

More information

Round-off Errors and Computer Arithmetic - (1.2)

Round-off Errors and Computer Arithmetic - (1.2) Round-off Errors and Comuter Arithmetic - (.). Round-off Errors: Round-off errors is roduced when a calculator or comuter is used to erform real number calculations. That is because the arithmetic erformed

More information

Floating-point Computation

Floating-point Computation Chapter 2 Floating-point Computation 21 Positional Number System An integer N in a number system of base (or radix) β may be written as N = a n β n + a n 1 β n 1 + + a 1 β + a 0 = P n (β) where a i are

More information

PHY 335 Data Analysis for Physicists

PHY 335 Data Analysis for Physicists PHY 335 Data Analysis or Physicists Instructor: Kok Wai Ng Oice CP 171 Telephone 7 1782 e mail: kng@uky.edu Oice hour: Thursday 11:00 12:00 a.m. or by appointment Time: Tuesday and Thursday 9:30 10:45

More information

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Module 1.01 Basic Mathematics and Algebra Part 4 of 9 Radiological Control Technician Training Fundamental Academic Training Phase I Coordinated and Conducted for the Office of Health, Safety and Security

More information

Chapter 3 Math Toolkit

Chapter 3 Math Toolkit Chapter 3 Math Toolkit Problems - any Subtitle: Error, where it comes from, how you represent it, and how it propagates into your calculations. Before we can start talking chemistry we must first make

More information

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER?

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER? UNITS & MEASUREMENT WHY DO UNITS AND MEASUREMENT MATTER? Chemistry In Action On 9/3/99, $15,000,000 Mars Climate Orbiter entered Mar s atmosphere 100 km (6 miles) lower than planned and was destroyed by

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors 3-1 Roundoff errors and floating-point arithmetic

More information

A video College Algebra course & 6 Enrichment videos

A video College Algebra course & 6 Enrichment videos A video College Algebra course & 6 Enrichment videos Recorded at the University of Missouri Kansas City in 1998. All times are approximate. About 43 hours total. Available on YouTube at http://www.youtube.com/user/umkc

More information

University of South Carolina. Stephen L Morgan. Tutorial on the Use of Significant Figures

University of South Carolina. Stephen L Morgan. Tutorial on the Use of Significant Figures University of South Carolina Stephen L Morgan Tutorial on the Use of Significant Figures All measurements are approximations--no measuring device can give perfect measurements without experimental uncertainty.

More information

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ABSTRACT We will be doing some review of Math concepts in this lab. Scientific notation, unit conversions, scale modeling, time to

More information

Chapter 4 Number Representations

Chapter 4 Number Representations Chapter 4 Number Representations SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 9, 2016 Table of Contents 1 Fundamentals 2 Signed Numbers 3 Fixed-Point

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl, Donald J. DeCoste University of Illinois Chapter 2 Measurements and Calculations

More information

grasp of the subject while attaining their examination objectives.

grasp of the subject while attaining their examination objectives. PREFACE SUCCESS IN MATHEMATICS is designed with the purpose of assisting students in their preparation for important school and state examinations. Students requiring revision of the concepts covered in

More information

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013 Number Systems III MA1S1 Tristan McLoughlin December 4, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/1558 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

MTH303. Section 1.3: Error Analysis. R.Touma

MTH303. Section 1.3: Error Analysis. R.Touma MTH303 Section 1.3: Error Analysis R.Touma These lecture slides are not enough to understand the topics of the course; they could be used along with the textbook The numerical solution of a mathematical

More information

Instructors Manual Algebra and Trigonometry, 2e Cynthia Y. Young

Instructors Manual Algebra and Trigonometry, 2e Cynthia Y. Young Dear Instructor, Instructors Manual Algebra and Trigonometry, 2e Cynthia Y. Young I hope that when you read my Algebra and Trigonometry book it will be seamless with how you teach. My goal when writing

More information

Mathematics OBJECTIVES FOR ENTRANCE TEST - YEAR 7. Numbers

Mathematics OBJECTIVES FOR ENTRANCE TEST - YEAR 7. Numbers Mathematics OBJECTIVES FOR ENTRANCE TEST - YEAR 7 1. Adding and subtracting Integers 2. Multiplying and Dividing Integers 3. Adding and Subtracting Decimals 4. Multiplying and Dividing by 10, 100 and 1000

More information

Lecture 6: Introducing Complexity

Lecture 6: Introducing Complexity COMP26120: Algorithms and Imperative Programming Lecture 6: Introducing Complexity Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2015 16 You need this book: Make sure you use the up-to-date

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

CHEM Chapter 1

CHEM Chapter 1 CHEM 1110 Chapter 1 Chapter 1 OVERVIEW What s science? What s chemistry? Science and numbers Measurements Unit conversion States of matter Density & specific gravity Describing energy Heat and its transfer

More information

Introduction to Scientific Computing Languages

Introduction to Scientific Computing Languages 1 / 19 Introduction to Scientific Computing Languages Prof. Paolo Bientinesi pauldj@aices.rwth-aachen.de Numerical Representation 2 / 19 Numbers 123 = (first 40 digits) 29 4.241379310344827586206896551724137931034...

More information

Measurement and Uncertainty

Measurement and Uncertainty Measurement and Uncertainty Name: Date: Block: There is uncertainty in every measurement due to of accuracy and precision. Accuracy: how close the instrument measures to an accepted. Precision: how closely

More information

1 ERROR ANALYSIS IN COMPUTATION

1 ERROR ANALYSIS IN COMPUTATION 1 ERROR ANALYSIS IN COMPUTATION 1.2 Round-Off Errors & Computer Arithmetic (a) Computer Representation of Numbers Two types: integer mode (not used in MATLAB) floating-point mode x R ˆx F(β, t, l, u),

More information

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Lab 1: Simple Pendulum 1 The Pendulum Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Physics 15c; REV 0 1 January 31, 2007 1 Introduction Most oscillating systems behave like

More information

Stochastic calculus for summable processes 1

Stochastic calculus for summable processes 1 Stochastic calculus for summable processes 1 Lecture I Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions. It is a

More information

ALGEBRA+NUMBER THEORY +COMBINATORICS

ALGEBRA+NUMBER THEORY +COMBINATORICS ALGEBRA+NUMBER THEORY +COMBINATORICS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming

More information

Course Outcome Summary

Course Outcome Summary Course Information: Description: Instruction Level: 9-12 Total Credits: 2 Prerequisites: Textbooks: Course Algebra I Algebra is a symbolic extension of arithmetic and allows you to solve more complex problems

More information

Essential Mathematics

Essential Mathematics Appendix B 1211 Appendix B Essential Mathematics Exponential Arithmetic Exponential notation is used to express very large and very small numbers as a product of two numbers. The first number of the product,

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 10: Sizes of Infinite Sets 1. Show that the set of all polynomials

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors Roundoff errors and floating-point arithmetic

More information

A little context This paper is concerned with finite automata from the experimental point of view. The behavior of these machines is strictly determin

A little context This paper is concerned with finite automata from the experimental point of view. The behavior of these machines is strictly determin Computability and Probabilistic machines K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro in Automata Studies, Shannon, C. E. and McCarthy, J. Eds. Annals of Mathematics Studies, Princeton University

More information

Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit.

Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit. Student Outcomes Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit. Classwork Discussion (5 minutes) Our knowledge of the integer powers

More information

CHM111 Lab Math Review Grading Rubric

CHM111 Lab Math Review Grading Rubric Name CHM111 Lab Math Review Grading Rubric Part 1. Basic Algebra and Percentages Criteria Points possible Points earned Question 1 (0.25 points each question) 2 Question 2 (0.25 points each question) 1

More information

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , ,

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , , Name: Date: Practice Midterm Exam Sections 1., 1.3,.1-.7, 6.1-6.5, 8.1-8.7 a108 Please develop your one page formula sheet as you try these problems. If you need to look something up, write it down on

More information

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section C

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section C Section C.1: Significant Digits Significant digits The digits in a number that represents actual measurements and therefore have meaning are called significant digits. Significant digits: Nonzero digits.

More information

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract What Every Programmer Should Know About Floating-Point Arithmetic Last updated: November 3, 2014 Abstract The article provides simple answers to the common recurring questions of novice programmers about

More information

Maths Scheme of Work. Class: Year 10. Term: autumn 1: 32 lessons (24 hours) Number of lessons

Maths Scheme of Work. Class: Year 10. Term: autumn 1: 32 lessons (24 hours) Number of lessons Maths Scheme of Work Class: Year 10 Term: autumn 1: 32 lessons (24 hours) Number of lessons Topic and Learning objectives Work to be covered Method of differentiation and SMSC 11 OCR 1 Number Operations

More information

December 04, scientific notation present.notebook

December 04, scientific notation present.notebook Today we will review how to use Scientific Notation. In composition book, Title a new page Scientific notation practice lesson You will answer the questions that come up as we go and I will collect comp

More information

Numbers and Operations

Numbers and Operations Numbers and Operations George E. Hrabovsky MAST Mathematics as the study of objects, their relationships, and the structures created by their relationships Mathematics is the abstract study of objects

More information

Compute the behavior of reality even if it is impossible to observe the processes (for example a black hole in astrophysics).

Compute the behavior of reality even if it is impossible to observe the processes (for example a black hole in astrophysics). 1 Introduction Read sections 1.1, 1.2.1 1.2.4, 1.2.6, 1.3.8, 1.3.9, 1.4. Review questions 1.1 1.6, 1.12 1.21, 1.37. The subject of Scientific Computing is to simulate the reality. Simulation is the representation

More information

ARITHMETIC AND BASIC ALGEBRA

ARITHMETIC AND BASIC ALGEBRA C O M P E T E N C Y ARITHMETIC AND BASIC ALGEBRA. Add, subtract, multiply and divide rational numbers expressed in various forms Addition can be indicated by the expressions sum, greater than, and, more

More information

MEASUREMENT AND PROBLEM SOLVING. Chapter 3 & 4

MEASUREMENT AND PROBLEM SOLVING. Chapter 3 & 4 MEASUREMENT AND PROBLEM SOLVING Chapter 3 & 4 Importance of Measurements 1. Fundamental to all sciences 2. In chemistry you use the International System of Measurements (SI units). Qualitative vs. Quantitative

More information

7th Grade Advanced Pacing Guide

7th Grade Advanced Pacing Guide 1st Nine Weeks Equations 8.EE.7 Solve linear equations in one variable including rational coefficients. a. Give examples of linear equations in one variable with one solution, infinitely many solutions,

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

Introduction to Finite Di erence Methods

Introduction to Finite Di erence Methods Introduction to Finite Di erence Methods ME 448/548 Notes Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@pdx.edu ME 448/548: Introduction to Finite Di erence Approximation

More information

Welcome to Chemistry! Sept 11, 2015 Friday

Welcome to Chemistry! Sept 11, 2015 Friday Welcome to Chemistry! Sept 11, 2015 Friday DO NOW: How many sig figs in this number? 2001.1109 Round this number to 3 sig figs...... Objectives: 1. Quantitative Tools for Chemistry: complete calculations

More information

Executive Assessment. Executive Assessment Math Review. Section 1.0, Arithmetic, includes the following topics:

Executive Assessment. Executive Assessment Math Review. Section 1.0, Arithmetic, includes the following topics: Executive Assessment Math Review Although the following provides a review of some of the mathematical concepts of arithmetic and algebra, it is not intended to be a textbook. You should use this chapter

More information

Introduction to Uncertainty. Asma Khalid and Muhammad Sabieh Anwar

Introduction to Uncertainty. Asma Khalid and Muhammad Sabieh Anwar Introduction to Uncertainty Asma Khalid and Muhammad Sabieh Anwar 1 Measurements and uncertainties Uncertainty Types of uncertainty Standard uncertainty Confidence Intervals Expanded Uncertainty Examples

More information

Introduction to 1118 Labs

Introduction to 1118 Labs Name: Partner(s): 1118 section: Desk # Date: Introduction to 1118 Labs Introductory materials are at: www.langaraphysics.com/lab.html. You may find following 3 links useful for this lab: Measurements:

More information

P.1. Real Numbers. Copyright 2011 Pearson, Inc.

P.1. Real Numbers. Copyright 2011 Pearson, Inc. P.1 Real Numbers Copyright 2011 Pearson, Inc. What you ll learn about Representing Real Numbers Order and Interval Notation Basic Properties of Algebra Integer Exponents Scientific Notation and why These

More information

Positive Rational Exponents

Positive Rational Exponents Lesson 7-7 Positive Rational Exponents BIG IDEA The expression x m_ n is only defi ned when x is nonnegative and stands for the positive nth root of the mth power of x, or, equivalently, the mth power

More information

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , ,

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , , Name: Date: Practice Midterm Exam Sections 1., 1.3,.1-.7, 6.1-6.5, 8.1-8.7 a108 Please develop your one page formula sheet as you try these problems. If you need to look something up, write it down on

More information

Introduction to Scientific Computing

Introduction to Scientific Computing (Lecture 2: Machine precision and condition number) B. Rosić, T.Moshagen Institute of Scientific Computing General information :) 13 homeworks (HW) Work in groups of 2 or 3 people Each HW brings maximally

More information