of the Schnakenberg model

Size: px
Start display at page:

Download "of the Schnakenberg model"

Transcription

1 Pulse motion in the semi-strong limit of the Schnakenberg model Newton Institute 2005 Jens Rademacher, Weierstraß Institut Berlin joint work with Michael Ward (UBC) Angelfish 2, 6, 12 months old [Kondo, S. and Asai, R., Nature 1995]

2 Numerical simulations [Crampin 00] Turing-unstable Schnakenberg model (two species) x t Stable periodic wave train undergoes self-similar sequence of spatial period doublings Logistic growth:

3 Uniformly exponentially growing line Model for growth rate ρ : additional dilution term [Crampin 00] U t U t + ρ(xu) x Paradigm: growing reaction diffusion system U t = DU xx ρ(xu) x + F (U). Points of view: Weakly nonlinear: Turing instability - not pursued here Strongly nonlinear, here semi-strong limit [Doelman et al 97] Quasi-stationary approximation for slow growth ρ: time as continuation parameter

4 Slow growth, continuation, onset of splitting Dilution term cancels in rescaling to fixed domain: U t = g(t) 2 DU xx + F (U) ρu, g(t) = e ρt Quasi-stationary approximation: Slow parameter variation of stable solution is continuation, splitting must stem from instability. time independent bifurcation problem in g to find instability. Similarity to previously studied pulse splitting [Reynolds et al 94, Nishiura et al 99] Approximate further to U t = gd xx + F (U)

5 Interaction and localization u t = u xx + a uv 2 Schnakenberg model v t = δv xx + b + uv 2 v Turing instability: no localization, small sinusoidal pattern, strong interaction but weakly nonlinear. (a = 0.9, b = 0.1, δ 0.11) Semi-strong interaction: v more localized than u. Occurs for δ 0, δ = 0.01, natural limit of Turing case: Weak interaction: same strong localization of u and v. Wave trains near stable pulse - monotone path, no instability no splitting under slow growth.

6 Splitting in Schnakenberg model For δ = 0.01 numerically: self-similar splitting sequence stable wave trains for large range of periods - not pure modes Not directly related to Turing [Crampin 00] ρ = 0.001, t [1000, 1500], x [0, 1.3]e ρt. instability

7 Bifurcation and basin of attraction 10 U 9 stable 2 pulse stable 1 pulse part of basin of attraction units of Turing pattern period Quasi-stationary approximation breaks down at the fold point - splitting stems from basin of attraction of 2-pulse... Similar to other semi-strong splitting [Nishura, Doelman...]. But n 2n splitting, n 2: more solutions available

8 Growth of Turing pattern Near Turing instability solutions stay close to those of real Ginzburg-Landau equation: A t = A xx + µa A A 2 Modulated Turing patterns: A k (x)e ix = r(k, µ)e i(1+k)x, k 2 µ. Domain [0, 2π/g], Neumann b.c. become sin((1 + k)2π/g) = 0 k = gn/2 1, n Z Stable against e ilx for 3k 2 l 2 /2 < µ Interested in solution with k = g 1 as g. Eckhaus instability: g = 1 µ/3 t(k, l). growth µ unstable stable k [Barkley,Tuckerman 90]: instability is a subcritical pitchfork. Quasi-stationary: splitting sequence seems not very robust

9 Motion of pulses Building block of splitting: motion of pulses when placed away from symmetric, stationary location. Idea: Seek expression for instantaneous speeds Objectives: determine speed depending on location and domain size seek stable equilibria for quasi-stationary approximation relation to splitting onset Ansatz: formal asymptotics in semi-strong limit for slow motion

10 Formal asymptotics for spike speed Rescale to x ( 1, 1) via ɛ = δ/l: u t = 1/L 2 u xx + a uv 2 v t = ɛ 2 v xx + b + uv 2 v Spike position ansatz: x 0 = x 0 (ɛt), v x (x 0 ) = 0, speed c = ẋ 0. [Doelman et al 00]: Gray-Scott model on R, asymptotic ODE for c Here: obtain asymptotic boundary value problem for c cheap numerics, computations possible beyond single pulse.

11 Inner problem Rescale: τ = ɛt ɛy = x x 0 (τ) = d/dy = d/dτ v = (Lɛ) 1 V u = Lɛ U ɛ V ẋ 0 V = V V + UV 2 + blɛ ɛ 3 L 2 U ɛl 2 ẋ 0 U = U UV 2 + alɛ For ɛ = 0: asymmetric core problem (similar to Gray-Scott) cv 0 = V 0 V 0 + U 0 V0 2 0 = U 0 U 0 V0 2 Boundary conditions of V 0 : V 0(0) = 0, V 0 0 as y. Boundary conditions of U 0 via outer problem.

12 Outer problem Distributional approximation of nonlinear term: ( ) x x0 uv 2 = (Lɛ) 1 (U 0 V 0 + O(ɛ)) ɛ 1 f ɛ R f(y)dyδ x0 (x) uv 2 = A/Lδ x0 (x) + O(ɛ), A = R U 0V 2 0 dy. Substitute in u equation: L 2 u xx + a uv 2 = 0 L 2 u xx + a A/Lδ x0 (x) = O(ɛ) ɛ = 0 u xx + al 2 ALδ x0 (x) = 0

13 Outer problem Approximate u equation: u xx + al 2 ALδ x0 (x) = 0. Integrate: 1 1 u xx dx + 2aL 2 = AL u x aL 2 = AL a = A/2L Approximate u equation: u xx + AL/2 ALδ x0 (x) = 0. Solve by Green s function G xx = 1/2 δ x0 (x): u = u c ALG(x; x 0 )

14 Matching Matching one-sided Taylor series (recall u = ɛlu): u c ALG(x 0 ; x 0 ) (x x 0 )ALG x (x ± 0 ; x 0) ɛlu(y) x x 0 = ɛy u c = ALG(x 0 ; x 0 ) U 0 (y) AG x (x ± 0 ; x 0)y as y ± Here G(x; x 0 ) = x 2 /4 x x 0 /2 + G 0 G x (x ± 0 ; x 0) = (x 0 1)/2 Hence b.c. for U 0 : U 0(± ) = ±A/2(1 x 0 ) = ±al(1 x 0 )

15 Boundary conditions for U 0 B.c. for U 0 : U 0(± ) = ±al(1 x 0 ) outer region inner region asymptotic b.c. O( ε)

16 Boundary value problem for speed V + cv + UV 2 = V V U = UV 2 (0) = 0 V (± ) = 0 U (± ) = ±al(1 x 0 ) Spike dynamics: solve BVP and ẋ 0 = c with L = L(ρt). Expect validity for 1 x 0 > O(ɛ), ρ = O(ɛ). Quasi-stationary: spike motion determined by c(x 0, al), in particular the equilibrium curves c(x 0, al) = 0. Symmetry: c( x 0, al) = c(x 0, al) c(0, al) = 0. Self-similarity: same BVP arises for motion of single spike in chain of n spikes, e.g. n = 2 on ( 1, 0): x 0 = (x 0 1)/2, L = 2L.

17 Computation Continuation with AUTO [Doedel et al]: Alternate between solving BVP and updating x 0, L Map out c(x 0, al) and its domain of definition. Note: V (0) = 0 is interior condition. Resolved by splitting domain into ( 1, 0) for (U, V ) and (0, 1) for (U +, V + ) with b.c.s U + (0) = U (0), V + (0) = V (0) and V ±(0) = 0.

18 Spike motion before splitting Quasi-stationary: onset of splitting is fold point of spike (x 0 = 0) at al [Muratov, Osipov 00,...], stability [Ward et al 03]. c(x 0, al) undefined for al > spike should move to x 0 = 0 for small x Indeed al = 1: Motion for ρ = 0 and ρ = 0.01: x t

19 Singularities of c(x 0, al) for 1-spikes Onset of splitting: fold point at al Continuation of bifurcating branch of fold points in (al, x 0, c): 0 x fold of 1 spikes Outside of range of validity: -0.4 x = 1 0 U/ shifted 1 spikes Invalid in O( ε) strip al motion V

20 c Extending c - other bifurcations x = 0 0 fold of 1 spikes 0.10 x spikes c=0 c>0 fold of 1 spikes (U/50) c= * al al Relevance for splitting? If stable: growth is slow motion along curve c = 0... Expect unstable: PDE dynamics after onset is motion to x 0 = ±1.

21 Todo check against PDE simulations stability of components make (partially) rigorous... (geometric theory [Doelman et al]?, monotonicity) relation to previous work on velocity for Gray-Scott model asymptotics on half-line: onset of splitting?

22 Conclusion Quasi-stationary approximation of domain length links to previous splitting studies Semi-strong limit yields BVP for spike velocity Motion as expected even from x 0 = ±1 Approach invalid at onset of splitting: speed large and location at boundary Bifurcations at onset of splitting fold curve, velocities towards x 0 = 0 other solutions moving away from x 0 = 0 Bifurcation of c = 0 curve off 2-spike before onset - should be unstable solutions

MS: Nonlinear Wave Propagation in Singular Perturbed Systems

MS: Nonlinear Wave Propagation in Singular Perturbed Systems MS: Nonlinear Wave Propagation in Singular Perturbed Systems P. van Heijster: Existence & stability of 2D localized structures in a 3-component model. Y. Nishiura: Rotational motion of traveling spots

More information

Stationary radial spots in a planar threecomponent reaction-diffusion system

Stationary radial spots in a planar threecomponent reaction-diffusion system Stationary radial spots in a planar threecomponent reaction-diffusion system Peter van Heijster http://www.dam.brown.edu/people/heijster SIAM Conference on Nonlinear Waves and Coherent Structures MS: Recent

More information

Pattern formation in Nikolaevskiy s equation

Pattern formation in Nikolaevskiy s equation Stephen Cox School of Mathematical Sciences, University of Nottingham Differential Equations and Applications Seminar 2007 with Paul Matthews, Nottingham Outline What is Nikolaevskiy s equation? Outline

More information

The Dynamics of Reaction-Diffusion Patterns

The Dynamics of Reaction-Diffusion Patterns The Dynamics of Reaction-Diffusion Patterns Arjen Doelman (Leiden) (Rob Gardner, Tasso Kaper, Yasumasa Nishiura, Keith Promislow, Bjorn Sandstede) STRUCTURE OF THE TALK - Motivation - Topics that won t

More information

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Letter Forma, 15, 281 289, 2000 Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Yasumasa NISHIURA 1 * and Daishin UEYAMA 2 1 Laboratory of Nonlinear Studies and Computations,

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS. Arjen Doelman. (Communicated by the associate editor name)

HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS. Arjen Doelman. (Communicated by the associate editor name) Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX HOPF DANCES NEAR THE TIPS OF BUSSE BALLOONS Arjen Doelman Mathematisch Instituut, Universiteit

More information

system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA

system May 19, 2009 MS69: New Developments in Pulse Interactions SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA CWI, Amsterdam heijster@cwi.nl May 9, 29 MS69: New Developments in Pulse s SIAM Conference on Applications of Dynamical Systems Snowbird, Utah, USA Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K.

More information

ME 680- Spring Geometrical Analysis of 1-D Dynamical Systems

ME 680- Spring Geometrical Analysis of 1-D Dynamical Systems ME 680- Spring 2014 Geometrical Analysis of 1-D Dynamical Systems 1 Geometrical Analysis of 1-D Dynamical Systems Logistic equation: n = rn(1 n) velocity function Equilibria or fied points : initial conditions

More information

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit CWI, Amsterdam heijster@cwi.nl May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 1 2 3 4 Outline 1 2 3 4 Paradigm U

More information

Computational Methods in Dynamical Systems and Advanced Examples

Computational Methods in Dynamical Systems and Advanced Examples and Advanced Examples Obverse and reverse of the same coin [head and tails] Jorge Galán Vioque and Emilio Freire Macías Universidad de Sevilla July 2015 Outline Lecture 1. Simulation vs Continuation. How

More information

Metastability for the Ginzburg Landau equation with space time white noise

Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz University of Bielefeld, Germany

More information

LOCALIZED PATTERNS OF THE CUBIC-QUINTIC SWIFT-HOHENBERG EQUATIONS WITH TWO SYMMETRY-BREAKING TERMS. Zhenxue Wei

LOCALIZED PATTERNS OF THE CUBIC-QUINTIC SWIFT-HOHENBERG EQUATIONS WITH TWO SYMMETRY-BREAKING TERMS. Zhenxue Wei Ann. of Appl. Math. 34:1(2018), 94-110 LOCALIZED PATTERNS OF THE CUBIC-QUINTIC SWIFT-HOHENBERG EQUATIONS WITH TWO SYMMETRY-BREAKING TERMS Yancong Xu, Tianzhu Lan (Dept. of Math., Hangzhou Normal University,

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns CWI, Amsterdam heijster@cwi.nl December 6, 28 Oberwolfach workshop Dynamics of Patterns Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 2 3 4 Interactions of localized structures

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Lecture 7: The Swift-Hohenberg equation in one spatial dimension

Lecture 7: The Swift-Hohenberg equation in one spatial dimension Lecture 7: The Swift-Hohenberg equation in one spatial dimension Edgar Knobloch: notes by Vamsi Krishna Chalamalla and Alban Sauret with substantial editing by Edgar Knobloch January 10, 2013 1 Introduction

More information

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV MAE9B/SIOC3B: Methods in Applied Mechanics Winter Quarter 8 http://webengucsdedu/ sgls/mae9b 8 Solution IV (i The equation becomes in T Applying standard WKB gives ɛ y TT ɛte T y T + y = φ T Te T φ T +

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e.

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e. Bifurcations We have already seen how the loss of stiffness in a linear oscillator leads to instability. In a practical situation the stiffness may not degrade in a linear fashion, and instability may

More information

Multiscale Analysis of Many Particle Systems with Dynamical Control

Multiscale Analysis of Many Particle Systems with Dynamical Control Michael Herrmann Multiscale Analysis of Many Particle Systems with Dynamical Control joint work with Barbara Niethammer and Juan J.L. Velázquez Kinetic description of multiscale phenomena Archimedes Center

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Numerical techniques: Deterministic Dynamical Systems

Numerical techniques: Deterministic Dynamical Systems Numerical techniques: Deterministic Dynamical Systems Henk Dijkstra Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht, The Netherlands Transition behavior

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Lecture 10: Singular Perturbations and Averaging 1

Lecture 10: Singular Perturbations and Averaging 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 10: Singular Perturbations and

More information

BIFURCATION TO TRAVELING WAVES IN THE CUBIC-QUINTIC COMPLEX GINZBURG LANDAU EQUATION

BIFURCATION TO TRAVELING WAVES IN THE CUBIC-QUINTIC COMPLEX GINZBURG LANDAU EQUATION BIFURCATION TO TRAVELING WAVES IN THE CUBIC-QUINTIC COMPLEX GINZBURG LANDAU EQUATION JUNGHO PARK AND PHILIP STRZELECKI Abstract. We consider the 1-dimensional complex Ginzburg Landau equation(cgle) which

More information

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Projection Methods Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Introduction numerical methods for dynamic economies nite-di erence methods initial value problems (Euler method) two-point boundary value problems

More information

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont tutorial ii: One-parameter bifurcation analysis of equilibria with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht February 13, 2018 1 This session

More information

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations ENGI 940 Lecture Notes 4 - Stability Analysis Page 4.01 4. Stability Analysis for Non-linear Ordinary Differential Equations A pair of simultaneous first order homogeneous linear ordinary differential

More information

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3. June, : WSPC - Proceedings Trim Size: in x in SPT-broer Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l =,,. H.W. BROER and R. VAN DIJK Institute for mathematics

More information

Destabilization mechanisms of periodic pulse patterns near a homoclinic limit

Destabilization mechanisms of periodic pulse patterns near a homoclinic limit Destabilization mechanisms of periodic pulse patterns near a homoclinic limit Arjen Doelman, Jens Rademacher, Björn de Rijk, Frits Veerman Abstract It has been observed in the Gierer-Meinhardt equations

More information

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model Preprint 1 The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model K. KANG, T. KOLOKOLNIKOV and. J. WARD Kyungkeun Kang, Department of athematics, University of British Columbia,

More information

Pattern formation in reaction-diffusion systems an explicit approach

Pattern formation in reaction-diffusion systems an explicit approach Pattern formation in reaction-diffusion systems an explicit approach Arjen Doelman Mathematisch Instituut, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands, doelman@math.leidenuniv.nl

More information

Applied Asymptotic Analysis

Applied Asymptotic Analysis Applied Asymptotic Analysis Peter D. Miller Graduate Studies in Mathematics Volume 75 American Mathematical Society Providence, Rhode Island Preface xiii Part 1. Fundamentals Chapter 0. Themes of Asymptotic

More information

Quasipatterns in surface wave experiments

Quasipatterns in surface wave experiments Quasipatterns in surface wave experiments Alastair Rucklidge Department of Applied Mathematics University of Leeds, Leeds LS2 9JT, UK With support from EPSRC A.M. Rucklidge and W.J. Rucklidge, Convergence

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Exam in TMA4195 Mathematical Modeling Solutions

Exam in TMA4195 Mathematical Modeling Solutions Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Exam in TMA495 Mathematical Modeling 6..07 Solutions Problem a Here x, y are two populations varying with time

More information

Resonant excitation of trapped coastal waves by free inertia-gravity waves

Resonant excitation of trapped coastal waves by free inertia-gravity waves Resonant excitation of trapped coastal waves by free inertia-gravity waves V. Zeitlin 1 Institut Universitaire de France 2 Laboratory of Dynamical Meteorology, University P. and M. Curie, Paris, France

More information

Continuation of cycle-to-cycle connections in 3D ODEs

Continuation of cycle-to-cycle connections in 3D ODEs HET p. 1/2 Continuation of cycle-to-cycle connections in 3D ODEs Yuri A. Kuznetsov joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn HET p. 2/2 Contents Previous works Truncated BVP s with projection

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Solution to Homework #4 Roy Malka

Solution to Homework #4 Roy Malka 1. Show that the map: Solution to Homework #4 Roy Malka F µ : x n+1 = x n + µ x 2 n x n R (1) undergoes a saddle-node bifurcation at (x, µ) = (0, 0); show that for µ < 0 it has no fixed points whereas

More information

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME

ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME ADIABATIC STABILITY UNDER SEMI-STRONG INTERACTIONS: THE WEAKLY DAMPED REGIME THOMAS BELLSKY, ARJEN DOELMAN, TASSO J KAPER, AND KEITH PROMISLOW Abstract We rigorously derive multi-pulse interaction laws

More information

arxiv: v1 [math.ap] 8 Feb 2018

arxiv: v1 [math.ap] 8 Feb 2018 The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion system with parameters that vary in time and space Robbin Bastiaansen and Arjen Doelman July 7, 18 arxiv:18.737v1 [math.ap]

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Destabilization mechanisms of periodic pulse patterns near a homoclinic limit

Destabilization mechanisms of periodic pulse patterns near a homoclinic limit Destabilization mechanisms of periodic pulse patterns near a homoclinic limit Arjen Doelman, Jens Rademacher, Björn de Rijk, Frits Veerman Abstract It has been observed in the Gierer-Meinhardt equations

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Synchronization Transitions in Complex Networks

Synchronization Transitions in Complex Networks Synchronization Transitions in Complex Networks Y. Moreno 1,2,3 1 Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza, Zaragoza 50018, Spain 2 Department of Theoretical

More information

Continuum Modeling of Transportation Networks with Differential Equations

Continuum Modeling of Transportation Networks with Differential Equations with Differential Equations King Abdullah University of Science and Technology Thuwal, KSA Examples of transportation networks The Silk Road Examples of transportation networks Painting by Latifa Echakhch

More information

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19,

1 Introduction Self-replicating spots and pulses have been observed in excitable reaction-diusion systems [22, 17, 24, 23, 16, 9, 2, 3, 4, 25, 21, 19, Slowly-modulated two pulse solutions and pulse splitting bifurcations Arjen Doelman Korteweg-deVries Instituut Universiteit van Amsterdam Plantage Muidergracht 24 1018TV Amsterdam, The Netherlands Wiktor

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION WARREN WECKESSER Department of Mathematics Colgate University Hamilton, NY 3346 E-mail: wweckesser@mail.colgate.edu Cartwright and Littlewood discovered

More information

NONLINEAR PATTERNS IN URBAN CRIME - HOTSPOTS, BIFURCATIONS, AND SUPPRESSION

NONLINEAR PATTERNS IN URBAN CRIME - HOTSPOTS, BIFURCATIONS, AND SUPPRESSION NONLINEAR PATTERNS IN URBAN CRIME - HOTSPOTS, BIFURCATIONS, AND SUPPRESSION M.B. SHORT, A.L. BERTOZZI, AND P.J. BRANTINGHAM Abstract. We present a weakly nonlinear analysis of our recently developed model

More information

Lecture 10: Finite Differences for ODEs & Nonlinear Equations

Lecture 10: Finite Differences for ODEs & Nonlinear Equations Lecture 10: Finite Differences for ODEs & Nonlinear Equations J.K. Ryan@tudelft.nl WI3097TU Delft Institute of Applied Mathematics Delft University of Technology 21 November 2012 () Finite Differences

More information

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara Exponentially small splitting of separatrices of the pendulum: two different examples Marcel Guardia, Carme Olivé, Tere M-Seara 1 A fast periodic perturbation of the pendulum We consider a non-autonomous

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Part 4 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Ordinary Differential Equations p. 1/23 Two-point Boundary Value Problems NRiC 17. BCs specified at two

More information

Bifurcation Analysis of Non-linear Differential Equations

Bifurcation Analysis of Non-linear Differential Equations Bifurcation Analysis of Non-linear Differential Equations Caitlin McCann 0064570 Supervisor: Dr. Vasiev September 01 - May 013 Contents 1 Introduction 3 Definitions 4 3 Ordinary Differential Equations

More information

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points Nonlinear Control Lecture # 2 Stability of Equilibrium Points Basic Concepts ẋ = f(x) f is locally Lipschitz over a domain D R n Suppose x D is an equilibrium point; that is, f( x) = 0 Characterize and

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Stability in the sense of Lyapunov

Stability in the sense of Lyapunov CHAPTER 5 Stability in the sense of Lyapunov Stability is one of the most important properties characterizing a system s qualitative behavior. There are a number of stability concepts used in the study

More information

Dimensional Analysis - Concepts

Dimensional Analysis - Concepts Dimensional Analysis - Concepts Physical quantities: R j = v(r j )[R j ] = value unit, j = 1,..., m. Units: Dimension matrix of R 1,, R m : A = Change of units change of values: [R j ] = F a 1j 1 F a nj

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

4 Insect outbreak model

4 Insect outbreak model 4 Insect outbreak model In this lecture I will put to a good use all the mathematical machinery we discussed so far. Consider an insect population, which is subject to predation by birds. It is a very

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

Lecture 3 : Bifurcation Analysis

Lecture 3 : Bifurcation Analysis Lecture 3 : Bifurcation Analysis D. Sumpter & S.C. Nicolis October - December 2008 D. Sumpter & S.C. Nicolis General settings 4 basic bifurcations (as long as there is only one unstable mode!) steady state

More information

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Izumi Takagi (Mathematical Institute, Tohoku University) joint work with Kanako Suzuki (Institute for

More information

Time-dependent variational forms

Time-dependent variational forms Time-dependent variational forms Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Oct 30, 2015 PRELIMINARY VERSION

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

Turning points and traveling waves in FitzHugh-Nagumo type equations

Turning points and traveling waves in FitzHugh-Nagumo type equations Turning points and traveling waves in FitzHugh-Nagumo type equations Weishi Liu and Erik Van Vleck Department of Mathematics University of Kansas, Lawrence, KS 66045 E-mail: wliu@math.ku.edu, evanvleck@math.ku.edu

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Solution to Homework #5 Roy Malka 1. Questions 2,3,4 of Homework #5 of M. Cross class. dv (x) dx

Solution to Homework #5 Roy Malka 1. Questions 2,3,4 of Homework #5 of M. Cross class. dv (x) dx Solution to Homework #5 Roy Malka. Questions 2,,4 of Homework #5 of M. Cross class. Bifurcations: (M. Cross) Consider the bifurcations of the stationary solutions of a particle undergoing damped one dimensional

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Discretized Fast-Slow Systems near Pitchfork Singularities

Discretized Fast-Slow Systems near Pitchfork Singularities Discretized Fast-Slow Systems near Pitchfork Singularities Luca Arcidiacono, Maximilian Engel, Christian Kuehn arxiv:90.065v [math.ds] 8 Feb 09 February 9, 09 Abstract Motivated by the normal form of a

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 4, Winter 2000 UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY ROBERT

More information

Notes for Expansions/Series and Differential Equations

Notes for Expansions/Series and Differential Equations Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated

More information

BIFURCATION AND OF THE GENERALIZED COMPLEX GINZBURG LANDAU EQUATION

BIFURCATION AND OF THE GENERALIZED COMPLEX GINZBURG LANDAU EQUATION BIFURCATION AND OF THE GENERALIZED COMPLEX GINZBURG LANDAU EQUATION JUNGHO PARK Abstract. We study in this paper the bifurcation and stability of the solutions of the complex Ginzburg Landau equation(cgle).

More information

Topics Covered in Calculus BC

Topics Covered in Calculus BC Topics Covered in Calculus BC Calculus BC Correlation 5 A Functions, Graphs, and Limits 1. Analysis of graphs 2. Limits or functions (including one sides limits) a. An intuitive understanding of the limiting

More information

Dispersion relations, linearization and linearized dynamics in PDE models

Dispersion relations, linearization and linearized dynamics in PDE models Dispersion relations, linearization and linearized dynamics in PDE models 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

Homework Solutions:

Homework Solutions: Homework Solutions: 1.1-1.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term Peter Sternberg In collaboration with Dmitry Golovaty (Akron) and Raghav Venkatraman (Indiana) Department of Mathematics

More information

Travelling-wave spatially periodic forcing of asymmetric binary mixtures

Travelling-wave spatially periodic forcing of asymmetric binary mixtures Travelling-wave spatially periodic forcing of asymmetric binary mixtures Lennon Ó Náraigh School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland 19th November 2018

More information

The semi-geostrophic equations - a model for large-scale atmospheric flows

The semi-geostrophic equations - a model for large-scale atmospheric flows The semi-geostrophic equations - a model for large-scale atmospheric flows Beatrice Pelloni, University of Reading with M. Cullen (Met Office), D. Gilbert, T. Kuna INI - MFE Dec 2013 Introduction - Motivation

More information

Solution of a Fourth Order Singularly Perturbed Boundary Value Problem Using Quintic Spline

Solution of a Fourth Order Singularly Perturbed Boundary Value Problem Using Quintic Spline International Mathematical Forum, Vol. 7, 202, no. 44, 279-290 Solution of a Fourth Order Singularly Perturbed Boundary Value Problem Using Quintic Spline Ghazala Akram and Nadia Amin Department of Mathematics

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford eport no. OxPDE-/8 Kramers formula for chemical reactions in the context of Wasserstein gradient flows by Michael Herrmann Mathematical Institute, University of Oxford & Barbara Niethammer Mathematical

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Dynamics of a mass-spring-pendulum system with vastly different frequencies

Dynamics of a mass-spring-pendulum system with vastly different frequencies Dynamics of a mass-spring-pendulum system with vastly different frequencies Hiba Sheheitli, hs497@cornell.edu Richard H. Rand, rhr2@cornell.edu Cornell University, Ithaca, NY, USA Abstract. We investigate

More information

Nonlinear Stability, Thermoelastic Contact, and the Barber Condition

Nonlinear Stability, Thermoelastic Contact, and the Barber Condition J. A. Pelesko School of Mathematics, Georgia Institute of Technology, Atlanta, GA 3332-6 Nonlinear Stability, Thermoelastic Contact, and the Barber Condition The behavior of a one-dimensional thermoelastic

More information

Numerical solutions of the small dispersion limit of KdV, Whitham and Painlevé equations

Numerical solutions of the small dispersion limit of KdV, Whitham and Painlevé equations Numerical solutions of the small dispersion limit of KdV, Whitham and Painlevé equations Tamara Grava (SISSA) joint work with Christian Klein (MPI Leipzig) Integrable Systems in Applied Mathematics Colmenarejo,

More information