What is macro? self-organized structures in physical systems

Size: px
Start display at page:

Download "What is macro? self-organized structures in physical systems"

Transcription

1 What is macro? self-organized structures in physical systems Z. Yoshida U. Tokyo Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 1 / 15

2 Outline Self-organization without blueprints Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

3 Outline Self-organization without blueprints Creation by space (not by matter) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

4 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

5 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Macro-hierarchy as leaves in phase space Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

6 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Macro-hierarchy as leaves in phase space Self-organization of vortexes Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

7 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Macro-hierarchy as leaves in phase space Self-organization of vortexes Cluster vs Vortex Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

8 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Macro-hierarchy as leaves in phase space Self-organization of vortexes Cluster vs Vortex Self-organized confinement in magnetosphere Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

9 Outline Self-organization without blueprints Creation by space (not by matter) Topological constraints and foliation Macro-hierarchy as leaves in phase space Self-organization of vortexes Cluster vs Vortex Self-organized confinement in magnetosphere Possibility of advanced fusion Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 2 / 15

10 Self-organization with blueprints Figure: Hierarchical structures are programed to emerge by gene. (The picture of cell is by Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 3 / 15

11 Self-organization without blueprints Figure: Self-organization in physical systems: Vortexes are chiral structures spontaneously created without programs. The picture of M51 spiral galaxy is by K. Okano; rt6k-okn/galaxy/m51aom.jpg Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 4 / 15

12 Self-organization without blueprints Figure: Self-organization in physical systems: Vortexes are chiral structures spontaneously created without programs. The picture of M51 spiral galaxy is by K. Okano; rt6k-okn/galaxy/m51aom.jpg Elements are just simple. The magic is played by space-time. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 4 / 15

13 Physicist s view of pendulum Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 5 / 15

14 Physicist s view of pendulum Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 5 / 15

15 Physicist s view of pendulum Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 5 / 15

16 Duality of matter and space-time Why chiral? Symmetry breaking in the matter Symmetry breaking in the space Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 6 / 15

17 Duality of matter and space-time Why chiral? Symmetry breaking in the matter Symmetry breaking in the space Here, we put the rattle back into the perspective of skewed space, and explain the chirality as the consequence of the distorted geometry. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 6 / 15

18 Duality of matter and space-time Why chiral? Symmetry breaking in the matter Symmetry breaking in the space Here, we put the rattle back into the perspective of skewed space, and explain the chirality as the consequence of the distorted geometry. We start with the Moffatt-Tokieda equation [Proc. Royal Soc. Edinburgh 138A (2008), 361]. We cast it into a Hamiltonian formalism; the underlying Lie algebra is of Bianchi Type VI. The chirality of the rattleback motion is caused by the skewed space in which the rattle back lives. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 6 / 15

19 Moffatt-Tokieda equation of rattle back The governing equation of P= pitching, R= rolling, and S= spin is P R P d R = λp R. (1) dt S 0 S We assume that λ is a positive constant number. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 7 / 15

20 Moffatt-Tokieda equation of rattle back The governing equation of P= pitching, R= rolling, and S= spin is P R P d R = λp R. (1) dt S 0 S We assume that λ is a positive constant number t 0.4 Figure: Typical solution of spin reversal: Reproduced from Fig. 1 of Moffatt-Tokieda (2008) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 7 / 15

21 Casimir invariant and the orbits The rattle back motion is the cross-section of the energy H := 1 2 Z 2 = 1 ( P 2 + R 2 + S 2) 2 and the Casimir invariant C := PR λ. (2) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 8 / 15

22 Figure: The slice of the energy contour (H = constant) by a distorted knife (the Casimir leaf) yields a skewed orbit. (ZY, T. Tokieda and J.P. Morrison, 2016 IUTAM Symposium, Venice, Italy) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 8 / 15 Casimir invariant and the orbits The rattle back motion is the cross-section of the energy H := 1 2 Z 2 = 1 ( P 2 + R 2 + S 2) 2 and the Casimir invariant C := PR λ. (2)

23 What is macro? Micro = canonical Macro = noncanonical foliation = topological constraints Figure: When the dynamics is topologically constrained to a skewed leaf, the effective energy may have complex distribution, branching out variety of structures. (Fig. 1 of Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 9 / 15

24 Self-organization of vortexes Two different types of naturally-made structures: Clusters: star, nebula, Debye shield, etc. Vortexes: spiral galaxy, magnetosphere, typhoon, tornado, etc. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 10 / 15

25 Self-organization of vortexes Two different types of naturally-made structures: Clusters: star, nebula, Debye shield, etc. Vortexes: spiral galaxy, magnetosphere, typhoon, tornado, etc. Two-different types of interactions: Forces due to energy: gravity (Newtonian), electrostatic force, etc. Forces due to space-time: magnetic force, Coriolis force, etc. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 10 / 15

26 Creation by topological constraints How can magnetic field confine a plasma, despite the fact that f e E/k BT? Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 11 / 15

27 Creation by topological constraints How can magnetic field confine a plasma, despite the fact that f e E/k BT? Confinement occurs on a macro hierarchy. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 11 / 15

28 Creation by topological constraints How can magnetic field confine a plasma, despite the fact that f e E/k BT? Confinement occurs on a macro hierarchy. Magnetized particles = quasi-particle involving micro degree of freedom. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 11 / 15

29 Creation by topological constraints How can magnetic field confine a plasma, despite the fact that f e E/k BT? Confinement occurs on a macro hierarchy. Magnetized particles = quasi-particle involving micro degree of freedom. Quasi-particles reside on a leaf of adiabatic invariants. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 11 / 15

30 Boltzmann distribution on a leaf Quasi-particles reside on a leaf of adiabatic invariants. Boltzmann distribution of quasi-particles maximizes entropy with respect to the invariant measure of the symplectic leaf. Figure: (left) Boltzmann distribution on the leaf of µ (magnetic moment). (right) Boltzmann distribution on the leaf of µ and J (bounce action). (Fig. 1 of ZY & S.M. Mahajan, PETP 2014, 073J01) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 12 / 15

31 Experimental proof of the self-organized magnetosphere Figure: (left) Theoretical model of planetary (Jovian) magnetosphere. (right) RT-1 laboratory magnetosphere at The University of Tokyo. ( Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 13 / 15

32 Problems in the frontier Non-integrable topological constraints: singularities in Poisson algebra non-holonomic constraints Fragility of topological constraints: topological evolution turbulence Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 14 / 15

33 Problems in the frontier Non-integrable topological constraints: singularities in Poisson algebra non-holonomic constraints Fragility of topological constraints: topological evolution turbulence Application of the self-organizing dynamics: advanced fusion (plasma confinement for D- 3He fusion energy) anti-matter plasma (e-p plasma,, etc.) Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 14 / 15

34 Summary Macro can be different from the simple sum (direct product) of micros, if topological constraints foliates the phase space. Macro hierarchy is identified as leaves of adiabatic invariants. The Casimir invariants of Hamiltonian systems may be regarded as adiabatic invariants, Skewness of Casimir leaves yields non-trivial structures. Z. Yoshida (U. Tokyo) Self-organization in macro systems 2016/05/24 15 / 15

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization NNP2017 11 th July 2017 Lawrence University Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization N. Sato and Z. Yoshida Graduate School of Frontier Sciences

More information

arxiv: v1 [math-ph] 29 Sep 2016

arxiv: v1 [math-ph] 29 Sep 2016 A Prototype Rattleback Model a Lie-Poisson Bianchi Type VI System with Chirality arxiv:1609.093v1 [math-ph] 9 Sep 016 Z Yoshida 1, T Tokieda, and P J Morrison 3 1 Graduate School of Frontier Sciences,

More information

arxiv: v2 [math-ph] 5 Jul 2017

arxiv: v2 [math-ph] 5 Jul 2017 Rattleback: a model of how geometric singularity induces dynamic chirality Z. Yoshida a, T. Tokieda b, P.J. Morrison c a Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 77-8561, Japan

More information

Confinement of toroidal non-neutral plasma

Confinement of toroidal non-neutral plasma 10th International Workshop on Non-neutral Plasmas 28 August 2012, Greifswald, Germany 1/20 Confinement of toroidal non-neutral plasma in magnetic dipole RT-1: Magnetospheric plasma experiment Visualized

More information

Stability Subject to Dynamical Accessibility

Stability Subject to Dynamical Accessibility Stability Subject to Dynamical Accessibility P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu http://www.ph.utexas.edu/

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Hamilton description of plasmas and other models of matter: structure and applications I

Hamilton description of plasmas and other models of matter: structure and applications I Hamilton description of plasmas and other models of matter: structure and applications I P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu

More information

Lecture I: Constrained Hamiltonian systems

Lecture I: Constrained Hamiltonian systems Lecture I: Constrained Hamiltonian systems (Courses in canonical gravity) Yaser Tavakoli December 15, 2014 1 Introduction In canonical formulation of general relativity, geometry of space-time is given

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Scaling laws for planetary dynamos driven by helical waves

Scaling laws for planetary dynamos driven by helical waves Scaling laws for planetary dynamos driven by helical waves P. A. Davidson A. Ranjan Cambridge What keeps planetary magnetic fields alive? (Earth, Mercury, Gas giants) Two ingredients of the early theories:

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

MATHEMATICAL STRUCTURES IN CONTINUOUS DYNAMICAL SYSTEMS

MATHEMATICAL STRUCTURES IN CONTINUOUS DYNAMICAL SYSTEMS MATHEMATICAL STRUCTURES IN CONTINUOUS DYNAMICAL SYSTEMS Poisson Systems and complete integrability with applications from Fluid Dynamics E. van Groesen Dept. of Applied Mathematics University oftwente

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Pentahedral Volume, Chaos, and Quantum Gravity

Pentahedral Volume, Chaos, and Quantum Gravity Pentahedral Volume, Chaos, and Quantum Gravity Hal Haggard May 30, 2012 Volume Polyhedral Volume (Bianchi, Doná and Speziale): ˆV Pol = The volume of a quantum polyhedron Outline 1 Pentahedral Volume 2

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Nonlinear MHD Stability and Dynamical Accessibility

Nonlinear MHD Stability and Dynamical Accessibility Nonlinear MHD Stability and Dynamical Accessibility Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University Philip J. Morrison Department of Physics and Institute

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

If I only had a Brane

If I only had a Brane If I only had a Brane A Story about Gravity and QCD. on 20 slides and in 40 minutes. AdS/CFT correspondence = Anti de Sitter / Conformal field theory correspondence. Chapter 1: String Theory in a nutshell.

More information

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions The Bi hamiltonian Approach to Integrable Systems Paolo Casati Szeged 27 November 2014 1 Poisson Manifolds 2 Bihamiltonian Manifolds 3 Bihamiltonian systems as Integrable systems 4 Bihamiltonian structure

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre Holographic renormalization and reconstruction of space-time Southampton Theory Astrophysics and Gravity research centre STAG CH RESEARCH ER C TE CENTER Holographic Renormalization and Entanglement Paris,

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

On the Hamilton-Jacobi Variational Formulation of the Vlasov Equation

On the Hamilton-Jacobi Variational Formulation of the Vlasov Equation On the Hamilton-Jacobi Variational Formulation of the Vlasov Equation P. J. Morrison epartment of Physics and Institute for Fusion Studies, University of Texas, Austin, Texas 7871-1060, USA. (ated: January

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Black Holes, Integrable Systems and Soft Hair

Black Holes, Integrable Systems and Soft Hair Ricardo Troncoso Black Holes, Integrable Systems and Soft Hair based on arxiv: 1605.04490 [hep-th] In collaboration with : A. Pérez and D. Tempo Centro de Estudios Científicos (CECs) Valdivia, Chile Introduction

More information

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS Gravito-Electrodynamics and EHD by HIROSHI KIKUCHI Institute for Environmental Electromagnetics, Tokyo, Japan KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

High performance computing and numerical modeling

High performance computing and numerical modeling High performance computing and numerical modeling Volker Springel Plan for my lectures Lecture 1: Collisional and collisionless N-body dynamics Lecture 2: Gravitational force calculation Lecture 3: Basic

More information

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme Chris Verhaaren Joint Theory Seminar 31 October 2016 With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme It s Halloween A time for exhibiting what some find frightening And seeing that it s not so

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

Wiggling Throat of Extremal Black Holes

Wiggling Throat of Extremal Black Holes Wiggling Throat of Extremal Black Holes Ali Seraj School of Physics Institute for Research in Fundamental Sciences (IPM), Tehran, Iran Recent Trends in String Theory and Related Topics May 2016, IPM based

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

FINAL EXAM GROUND RULES

FINAL EXAM GROUND RULES PHYSICS 507 Fall 2011 FINAL EXAM Room: ARC-108 Time: Wednesday, December 21, 10am-1pm GROUND RULES There are four problems based on the above-listed material. Closed book Closed notes Partial credit will

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Review for Final. elementary mechanics. Lagrangian and Hamiltonian Dynamics. oscillations

Review for Final. elementary mechanics. Lagrangian and Hamiltonian Dynamics. oscillations Review for Final elementary mechanics Newtonian mechanics gravitation dynamics of systems of particles Lagrangian and Hamiltonian Dynamics Lagrangian mechanics Variational dynamics Hamiltonian dynamics

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities

Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities G. W. Hammett Princeton Plasma Physics Lab (PPPL) http://w3.pppl.gov/~hammett AST559: Plasma & Fluid Turbulence Dec. 5, 2011 (based

More information

II. Spontaneous symmetry breaking

II. Spontaneous symmetry breaking . Spontaneous symmetry breaking .1 Weinberg s chair Hamiltonian rotational invariant eigenstates of good angular momentum: M > have a density distribution that is an average over all orientations with

More information

Lecture 3: The Navier-Stokes Equations: Topological aspects

Lecture 3: The Navier-Stokes Equations: Topological aspects Lecture 3: The Navier-Stokes Equations: Topological aspects September 9, 2015 1 Goal Topology is the branch of math wich studies shape-changing objects; objects which can transform one into another without

More information

Etienne Forest. From Tracking Code. to Analysis. Generalised Courant-Snyder Theory for Any Accelerator Model. 4 } Springer

Etienne Forest. From Tracking Code. to Analysis. Generalised Courant-Snyder Theory for Any Accelerator Model. 4 } Springer Etienne Forest From Tracking Code to Analysis Generalised Courant-Snyder Theory for Any Accelerator Model 4 } Springer Contents 1 Introduction 1 1.1 Dichotomous Approach Derived from Complexity 1 1.2 The

More information

Symmetries, Conservation Laws and Hamiltonian Structures in Geophysical Fluid Dynamics

Symmetries, Conservation Laws and Hamiltonian Structures in Geophysical Fluid Dynamics Symmetries, Conservation Laws and Hamiltonian Structures in Geophysical Fluid Dynamics Miguel A. Jiménez-Urias 1 Department of Oceanography University of Washington AMATH 573 1 Kinematics Canonical vs

More information

Causal nature and dynamics of trapping horizon in black hole collapse

Causal nature and dynamics of trapping horizon in black hole collapse Causal nature and dynamics of trapping horizon in black hole collapse Ilia Musco (CNRS, Observatoire de Paris/Meudon - LUTH) KSM 2017- FIAS (Frankfurt) 24-28 July 2017 Classical and Quantum Gravity Vol.

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

Hamiltonian Dynamics from Lie Poisson Brackets

Hamiltonian Dynamics from Lie Poisson Brackets 1 Hamiltonian Dynamics from Lie Poisson Brackets Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 12 February 2002 2

More information

LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES

LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES BENJAMIN HOFFMAN 1. Outline Lie algebroids are the infinitesimal counterpart of Lie groupoids, which generalize how we can talk about symmetries

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Criticality in topologically ordered systems: a case study

Criticality in topologically ordered systems: a case study Criticality in topologically ordered systems: a case study Fiona Burnell Schulz & FJB 16 FJB 17? Phases and phase transitions ~ 194 s: Landau theory (Liquids vs crystals; magnets; etc.) Local order parameter

More information

Introduction to Particle Physics

Introduction to Particle Physics Introduction to Particle Physics The Particle Zoo Symmetries The Standard Model Thomas Gajdosik Vilnius Universitetas Teorinės Fizikos Katedra Introduction to Particle Physics http://web.vu.lt/ff/t.gajdosik/wop/

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Fundamentals of Plasma Physics Basic concepts

Fundamentals of Plasma Physics Basic concepts Fundamentals of Plasma Physics Basic concepts APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra Since the dawn of Mankind men has tried to understand plasma physics...

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

The Langlands dual group and Electric-Magnetic Duality

The Langlands dual group and Electric-Magnetic Duality The Langlands dual group and Electric-Magnetic Duality DESY (Theory) & U. Hamburg (Dept. of Math) Nov 10, 2015 DESY Fellows Meeting Outline My hope is to answer the question : Why should physicists pay

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Petr Pracna J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic, Prague ZiF Cooperation

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Top-down Causality the missing link in our physical theories

Top-down Causality the missing link in our physical theories Top-down Causality the missing link in our physical theories Jose P Koshy josepkoshy@gmail.com Abstract: Confining is a top-down effect. Particles have to be confined in a region if these are to bond together.

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Charge of the Electron, and the Constants of Radiation According to J. A. Wheeler s Geometrodynamic Model

Charge of the Electron, and the Constants of Radiation According to J. A. Wheeler s Geometrodynamic Model Volume 4 PROGRESS IN PHYSICS October, 200 Charge of the Electron, and the Constants of Radiation According to J. A. Wheeler s Geometrodynamic Model Anatoly V. Belyakov E-mail: belyakov.lih@gmail.com This

More information

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012 Dirac structures Henrique Bursztyn, IMPA Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012 Outline: 1. Mechanics and constraints (Dirac s theory) 2. Degenerate symplectic

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

S-CONFINING DUALITIES

S-CONFINING DUALITIES DIMENSIONAL REDUCTION of S-CONFINING DUALITIES Cornell University work in progress, in collaboration with C. Csaki, Y. Shirman, F. Tanedo and J. Terning. 1 46 3D Yang-Mills A. M. Polyakov, Quark Confinement

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes.

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes. from November 24, 2014 1 2 3 4 5 Problem with Electricity and Magnetism In the late 1800 s physicists realized there was a problem with electromagnetism: the speed of light was given in terms of fundamental

More information

Symplectic and Poisson Manifolds

Symplectic and Poisson Manifolds Symplectic and Poisson Manifolds Harry Smith In this survey we look at the basic definitions relating to symplectic manifolds and Poisson manifolds and consider different examples of these. We go on to

More information

Buckingham s magical pi theorem

Buckingham s magical pi theorem Buckingham s magical pi theorem and the Lie symmetries of nature Harald Hanche-Olsen Theoretical physics colloquium 2002 11 05 p.1/31 A simple example θ λ The period t depends on λ, g, θ max. But how?

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Outline. 1 Geometry and Commutative Algebra. 2 Singularities and Resolutions. 3 Noncommutative Algebra and Deformations. 4 Representation Theory

Outline. 1 Geometry and Commutative Algebra. 2 Singularities and Resolutions. 3 Noncommutative Algebra and Deformations. 4 Representation Theory Outline Geometry, noncommutative algebra and representations Iain Gordon http://www.maths.ed.ac.uk/ igordon/ University of Edinburgh 16th December 2006 1 2 3 4 1 Iain Gordon Geometry, noncommutative algebra

More information

Stellar Evolution: Outline

Stellar Evolution: Outline Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

More information

Fundamental Physics at ACT. Sante Carloni, ACT

Fundamental Physics at ACT. Sante Carloni, ACT Fundamental Physics at ACT Sante Carloni, ACT Areas of Interest Research in Fundamental Physics is focused on the impact that new ideas in physics can have on the space sector. ACT Fundamental Physics

More information

5 Topological defects and textures in ordered media

5 Topological defects and textures in ordered media 5 Topological defects and textures in ordered media In this chapter we consider how to classify topological defects and textures in ordered media. We give here only a very short account of the method following

More information

SOME OBSERVATIONS REGARDING BRACKETS AND DISSIPATION. Philip J.Morrison of Mathematics University of California Berkeley, CA 94720

SOME OBSERVATIONS REGARDING BRACKETS AND DISSIPATION. Philip J.Morrison of Mathematics University of California Berkeley, CA 94720 SOME OBSERVATIONS REGARDING BRACKETS AND DISSIPATION + Philip J.Morrison of Mathematics University of California Berkeley, CA 94720 D~partment Abstract Some ideas relating to a bracket formulation for

More information

Symmetries and Dynamics of Discrete Systems

Symmetries and Dynamics of Discrete Systems Symmetries and Dynamics of Discrete Systems Talk at CASC 2007, Bonn, Germany Vladimir Kornyak Laboratory of Information Technologies Joint Institute for Nuclear Research 19 September 2007 V. V. Kornyak

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Introduction. Chapter Plasma: definitions

Introduction. Chapter Plasma: definitions Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

1 Hamiltonian formalism

1 Hamiltonian formalism 1 Hamiltonian formalism 1.1 Hamilton s principle of stationary action A dynamical system with a finite number n degrees of freedom can be described by real functions of time q i (t) (i =1, 2,..., n) which,

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information