Time Parallel Time Integration

Size: px
Start display at page:

Download "Time Parallel Time Integration"

Transcription

1 Time Inegraion Universiy of Geneva SSSTC Symposium, Geneva, Augus 17

2 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u n+1 = u n + f(u n ) u u

3 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u 1 = u + f(u ) u u u

4 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u u 2 = u 1 + f(u 1 ) u u 1 u

5 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u u 3 = u 2 + f(u 2 ) u u 1 u 2 u

6 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u u 4 = u 3 + f(u 3 ) u u 1 u 2 u 3 u

7 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u u 5 = u 4 + f(u 4 ) u u 1 u 2 u 3 u 4 u

8 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) u u n+1 = u n + f(u n ) u u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u9 u1 u11 u

9 Solving Evoluion Problems in Parallel? The Lorenz equaions: d d dy d dz d = σ +σy = z +r y = y bz Simpler: du d = f(u), u( ) = u du Euler: d u( n+1) u( n) Top5 Supercompuer Lis - June 17: 1. Sunway TaihuLigh (China, cores) 2. Tianhe-2 Milky-Way-2 (China, 3 1 cores) 3. Piz Dain (Swizerland, cores) How can one use so many cores o solve such a problem faser? 3 4 5

10 Over he Course of Time small scale ITERATIVE Picard Lindeloef 1893/4 large scale small scale DIRECT 1964 Miranker Liniger 1967 Shampine Was 1969 Lelarasmee Ruehli Sangiovanni Vincenelli 1982 Hackbusch 1984 Aelson Verwer 1985 Lubich Osermann 1987 Gear 1988 Jackson Norse 1986 Womble 199 Bellen Zennaro 1989 Worley 1991 Charier Philippe 1993 Hairer Norse Wanner 1992 Horon Vandewalle 1995 Burrage 1995 Saha Sadel Tremaine 1996 Gander 1996 Gander Halpern Naaf 1999 Sheen Sloan Thomee 1999 Lions Maday Turinici 1 1 Emme Minion 1/12 Gander Kwok Mandal 13 Gander Neumueller 14 Maday Ronquis 8 Chrislieb Macdonald Ong 1 Gander Gueel 13 5 Years of ime parallel ime inegraion (G, 15)

11 Jörg : Parallel for Inegraing Ordinary Differenial Equaions. Comm. of he ACM, For he las years, one has ried o speed up numerical compuaion mainly by providing ever faser compuers. Today, as i appears ha one is geing closer o he maimal speed of elecronic componens, emphasis is pu on allowing operaions o be performed in parallel. In he near fuure, much of numerical analysis will have o be recas in a more parallel form.

12 Jörg : Parallel for Inegraing Ordinary Differenial Equaions. Comm. of he ACM, For he las years, one has ried o speed up numerical compuaion mainly by providing ever faser compuers. Today, as i appears ha one is geing closer o he maimal speed of elecronic componens, emphasis is pu on allowing operaions o be performed in parallel. In he near fuure, much of numerical analysis will have o be recas in a more parallel form.

13

14 Muliple du d = f(u), u() = u, [,1] Spli [,1] ino [, 1 3 ], [1 3, 2 3 ], [2 3,1] and solve du du 1 du 2 = f(u ), = f(u 1 ), = f(u 2 ), d d d u () = U, u 1 ( 1 3 ) = U 1, u 2 ( 2 3 ) = U 2, ogeher wih he maching condiions U = u, U 1 = u ( 1 3,U ), U 2 = u 1 ( 2 3,U 1) Solving his sysem wih Newon gives he recurrence U k+1 n+1 = u n( n+1,u k n )+ u n U n ( n+1,u k n )(Uk+1 n U k n ). (see Philippe Charier and Bernard Philippe 1993)

15 The Algorihm Résoluion d EDP par un schéma en emps pararéel. Lions, Maday, Turinici, C. R. Acad. Sci. Paris, 1 Elle a pour principale moivaion les problèmes en emps réel, d où la erminologie proposée de pararéel. Algorihm for u = f(u): one needs 1. Coarse solver G( 2, 1,u 1 ) 2. Fine solver F( 2, 1,u 1 ) U n+1 = G( n+1, n,u n) U k+1 n+1 = F( n+1, n,u k n )+G( n+1, n,u k+1 n ) G( n+1, n,u k n )

16 The Algorihm Résoluion d EDP par un schéma en emps pararéel. Lions, Maday, Turinici, C. R. Acad. Sci. Paris, 1 Elle a pour principale moivaion les problèmes en emps réel, d où la erminologie proposée de pararéel. Algorihm for u = f(u): one needs 1. Coarse solver G( 2, 1,u 1 ) 2. Fine solver F( 2, 1,u 1 ) U n+1 = G( n+1, n,u n) U k+1 n+1 = F( n+1, n,u k n )+G( n+1, n,u k+1 n ) G( n+1, n,u k n ) G, Vandewalle 7: 1. is muliple shooing Un+1 k+1 = u n( n+1,un k )+ u n ( n+1,un k U )(Uk+1 n Un k ) n wih he Jacobian approimaed by differences on a coarser grid. 2. is also a ime muligrid mehod wih aggressive coarsening.

17 Precise Convergence Esimae for Theorem (G, Hairer 7) Le F( n+1, n,un k) denoe he eac soluion a n+1 and G( n+1, n,un k ) be a one sep mehod wih local runcaion error bounded by C 1 T p+1. If G( + T,,) G( + T,,y) (1+C 2 T) y, hen k ma 1 n N u(n) Uk n C1 Tk(p+1) (1+C 2 T) N 1 k (N j) ma k! 1 n N u(n) U n j=1 (C1T)k e C2(T (k+1) T) T pk ma k! 1 n N u(n) U n. G and Hairer: Nonlinear Convergence Analysis for he Algorihm, Domain Decomposiion in Science and Engineering XVII, Springer-Verlag, 7.

18 Resuls for he Lorenz Equaions Suggesed by Jean-Pierre Eckmann (4) ẋ = σ +σy ẏ = z +r y ż = y bz Parameers: σ = 1, r = 28 and b = 8 3 = chaoic regime. Iniial condiions: (,y,z)() = (,5, 5) Simulaion ime: [,T = 1] Discreizaion: Fourh order Runge Kua, T = T = T ,

19

20

21

22

23

24

25

26

27

28

29

30

31 for Parabolic Problem Discreize u A 1 B 2 A 2 B 3 A B n A n = u +f in space and ime u 1 u 2 u 3. u n = f 1 f 2 f 3. f n Soluion imes in seconds for sequenial and mulilevel mehod on one processor (G, Neumüller 16) dof forward subsiuion mulilevel

32 3D Hea Equaion Parallelizaion Resuls Scaling resuls on he Vienna Scienific Cluser VSC-2 Weak Scaling Srong Scaling 1 1 cores T dof ier ime T dof ier ime (all simulaions performed by M. Neumüller)

33 Time parallelizaion is currenly a very acive area of research Muliple leading o he parareal algorihm and mulilevel mehods are jus one of many approaches Review is available a gander

Dynamic Iterations for the Solution of Ordinary Differential Equations on Multicore Processors

Dynamic Iterations for the Solution of Ordinary Differential Equations on Multicore Processors Dynamic Ieraions for he Soluion of Ordinary Differenial Equaions on Mulicore Processors Yanan Yu Compuer Science Deparmen Florida Sae Universiy Tallahassee FL 336, USA Email:yu@cs.fsu.edu Ashok Srinivasan

More information

Ordinary differential equations. Phys 750 Lecture 7

Ordinary differential equations. Phys 750 Lecture 7 Ordinary differenial equaions Phys 750 Lecure 7 Ordinary Differenial Equaions Mos physical laws are expressed as differenial equaions These come in hree flavours: iniial-value problems boundary-value problems

More information

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel Waveform Transmission Mehod, A New Waveform-relaxaion Based Algorihm o Solve Ordinary Differenial Equaions in Parallel Fei Wei Huazhong Yang Deparmen of Elecronic Engineering, Tsinghua Universiy, Beijing,

More information

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method IOSR Journal of Mahemaics (IOSR-JM) e-issn: 7-7,p-ISSN: 319-7X, Volume, Issue (Sep. - Oc. 13), PP 1-19 Solions Soluions o Nonlinear Parial Differenial Equaions by he Tanh Mehod YusurSuhail Ali Compuer

More information

ASTR415: Problem Set #5

ASTR415: Problem Set #5 ASTR45: Problem Se #5 Curran D. Muhlberger Universi of Marland (Daed: April 25, 27) Three ssems of coupled differenial equaions were sudied using inegraors based on Euler s mehod, a fourh-order Runge-Kua

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Stability of the Parareal Algorithm

Stability of the Parareal Algorithm Stability of the Parareal Algorithm Gunnar Andreas Staff and Einar M. Rønquist Norwegian University of Science and Technology Department of Mathematical Sciences Summary. We discuss the stability of the

More information

Space-time Galerkin POD for optimal control of Burgers equation. April 27, 2017 Absolventen Seminar Numerische Mathematik, TU Berlin

Space-time Galerkin POD for optimal control of Burgers equation. April 27, 2017 Absolventen Seminar Numerische Mathematik, TU Berlin Space-ime Galerkin POD for opimal conrol of Burgers equaion Manuel Baumann Peer Benner Jan Heiland April 27, 207 Absolvenen Seminar Numerische Mahemaik, TU Berlin Ouline. Inroducion 2. Opimal Space Time

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Verification of a CFD benchmark solution of transient low Mach number flows with Richardson extrapolation procedure 1

Verification of a CFD benchmark solution of transient low Mach number flows with Richardson extrapolation procedure 1 Verificaion of a CFD benchmark soluion of ransien low Mach number flows wih Richardson exrapolaion procedure S. Beneboula, S. Gounand, A. Beccanini and E. Suder DEN/DANS/DMS/STMF Commissaria à l Energie

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

Scientific Research of the Institute of Mathematics and Computer Science DIFFERENT VARIANTS OF THE BOUNDARY ELEMENT METHOD FOR PARABOLIC EQUATIONS

Scientific Research of the Institute of Mathematics and Computer Science DIFFERENT VARIANTS OF THE BOUNDARY ELEMENT METHOD FOR PARABOLIC EQUATIONS Scieniic Research o he Insiue o Mahemaics and Compuer Science DIERENT VARIANTS O THE BOUNDARY ELEMENT METHOD OR PARABOLIC EQUATIONS Ewa Majchrzak,, Ewa Ładyga Jerzy Mendakiewicz, Alicja Piasecka Belkhaya

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 29, No. 2, pp. 656 673 c 27 Sociey for Indusrial and Applied Mahemaics A SCHWARZ WAVEFORM MOVING MESH METHOD RONALD D. HAYNES AND ROBERT D. RUSSELL Absrac. An r-refinemen (moving

More information

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering CSE 3802 / ECE 3431 Numerical Mehods in Scienific Compuaion Jinbo Bi Deparmen of Compuer Science & Engineering hp://www.engr.uconn.edu/~jinbo 1 Ph.D in Mahemaics The Insrucor Previous professional experience:

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

An Adjoint Approach for Stabilizing the Parareal Method

An Adjoint Approach for Stabilizing the Parareal Method An Adjoint Approach for Stabilizing the Parareal Method Feng Chen a, Jan S Hesthaven b, Yvon Maday c, Allan Nielsen b a Department of Mathematics, Baruch College, New York, NY 10010, USA b Mathematics

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages,

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages, Opimal Conrol Formulaion Opimal Conrol Lecures 19-2: Direc Soluion Mehods Benoî Chachua Deparmen of Chemical Engineering Spring 29 We are concerned wih numerical soluion procedures for

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Laurence Halpern 1 LAGA, Université Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France, halpern@math.univ-paris13.fr 1 Introduction:

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 29, No. 2, pp. 556 578 c 27 Society for Industrial and Applied Mathematics ANALYSIS OF THE PARAREAL TIME-PARALLEL TIME-INTEGRATION METHOD MARTIN J. GANDER AND STEFAN VANDEWALLE

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Scalable solution of non-linear time-dependent systems

Scalable solution of non-linear time-dependent systems Scalable solution of non-linear time-dependent systems Mark Maienschein-Cline and L.R. Scott April 13, 211 Abstract We study parallel solution methods for time-dependent problems where the domain decomposition

More information

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method Solving a Sysem of Nonlinear Funcional Equaions Using Revised New Ieraive Mehod Sachin Bhalekar and Varsha Dafardar-Gejji Absrac In he presen paper, we presen a modificaion of he New Ieraive Mehod (NIM

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations Applied Mahemaical Sciences, Vol. 2, 28, no. 1, 471-477 Applicaion of He s Variaional Ieraion Mehod for Solving Sevenh Order Sawada-Koera Equaions Hossein Jafari a,1, Allahbakhsh Yazdani a, Javad Vahidi

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations Research Journal of Mahemaical and Saisical Sciences ISSN 3 647 Vol. 3(), 4-9, February (5) Res. J. Mahemaical and Saisical Sci. Ieraive aplace Transform Mehod for Solving Fracional Hea and Wave- ike Euaions

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Order Reduction of Large Scale DAE Models. J.D. Hedengren and T. F. Edgar Department of Chemical Engineering The University of Texas at Austin

Order Reduction of Large Scale DAE Models. J.D. Hedengren and T. F. Edgar Department of Chemical Engineering The University of Texas at Austin Order Reducion of Large Scale DAE Models J.D. Hedengren and T. F. Edgar Deparmen of Chemical Engineering The Universiy of Teas a Ausin 1 Ouline Moivaion Two Sep Process for DAE Model Reducion 1. Reducion

More information

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp Exam Soluions Februar 0, 05 Quesion. Par (A) To find equilibrium soluions, se P () = C = = 0. This implies: = P ( P ) P = P P P = P P = P ( + P ) = 0 The equilibrium soluion are hus P () = 0 and P () =..

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Spacetime Computing. A Dynamical Systems Approach to Turbulence. Bruce M. Boghosian. Department of Mathematics, Tufts University

Spacetime Computing. A Dynamical Systems Approach to Turbulence. Bruce M. Boghosian. Department of Mathematics, Tufts University Spacetime Computing A Dynamical Systems Approach to Turbulence Bruce M. Boghosian, Tufts University Presented at 3rd NA-HPC Roadmap Workshop, Royal Society, London January 26, 2009 Acknowledgements: Hui

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Fall 200 Dep. of Chemical and Biological Engineering Korea Universiy CHE302 Process Dynamics and Conrol Korea Universiy

More information

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS Mahemaical and Compuaional Applicaions, Vol., No. 4, pp. 99-978,. Associaion for Scienific Research APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL-

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

Scheduling of Crude Oil Movements at Refinery Front-end

Scheduling of Crude Oil Movements at Refinery Front-end Scheduling of Crude Oil Movemens a Refinery Fron-end Ramkumar Karuppiah and Ignacio Grossmann Carnegie Mellon Universiy ExxonMobil Case Sudy: Dr. Kevin Furman Enerprise-wide Opimizaion Projec March 15,

More information

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm Mah Spring 6 Differenial Equaions Final Exam Due Dae: Tuesday, June 6, 5pm Your name (please prin): Insrucions: This is an open book, open noes exam. You are free o use a calculaor or compuer o check your

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 06 A Primal-Dual Type Algorihm wih he O(/) Convergence Rae for Large Scale Consrained Convex Programs Hao Yu and Michael J. Neely Absrac This paper considers

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

Parallel in Time Algorithms for Multiscale Dynamical Systems using Interpolation and Neural Networks

Parallel in Time Algorithms for Multiscale Dynamical Systems using Interpolation and Neural Networks Parallel in Time Algorithms for Multiscale Dynamical Systems using Interpolation and Neural Networks Gopal Yalla Björn Engquist University of Texas at Austin Institute for Computational Engineering and

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Parallel Numerical Methods for Ordinary Differential Equations: a Survey

Parallel Numerical Methods for Ordinary Differential Equations: a Survey Parallel Numerical Methods for Ordinary Differential Equations: a Survey Svyatoslav I. Solodushkin 1,2 and Irina F. Iumanova 1 1 Ural Federal University, Yekaterinburg, Russia 2 Krasovskii Institute of

More information

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs.

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Spring 208 Dep. of Chemical and Biological Engineering CHBE320 Process Dynamics and Conrol 4- Road Map of he Lecure

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices Modified Ieraive Mehod For he Soluion of Fredholm Inegral Equaions of he Second Kind via Marices Shoukralla, E. S 1, Saber. Nermein. A 2 and EL-Serafi, S. A. 3 1s Auhor, Prof. Dr, faculy of engineering

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

arxiv:quant-ph/ v1 5 Jul 2004

arxiv:quant-ph/ v1 5 Jul 2004 Numerical Mehods for Sochasic Differenial Equaions Joshua Wilkie Deparmen of Chemisry, Simon Fraser Universiy, Burnaby, Briish Columbia V5A 1S6, Canada Sochasic differenial equaions (sdes) play an imporan

More information

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k)

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k) Ger sgorin Circle Chaper 9 Approimaing Eigenvalues Per-Olof Persson persson@berkeley.edu Deparmen of Mahemaics Universiy of California, Berkeley Mah 128B Numerical Analysis (Ger sgorin Circle) Le A be

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

Research Article Fast Detection of Weak Singularities in a Chaotic Signal Using Lorenz System and the Bisection Algorithm

Research Article Fast Detection of Weak Singularities in a Chaotic Signal Using Lorenz System and the Bisection Algorithm Mahemaical Problems in Engineering Volume 12, Aricle ID 2848, pages doi:.1155/12/2848 Research Aricle Fas Deecion of Weak Singulariies in a Chaoic Signal Using Lorenz Sysem and he Bisecion Algorihm Tiezheng

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03 Chaper 5 Digial PID conrol algorihm Hesheng Wang Deparmen of Auomaion,SJTU 216,3 Ouline Absrac Quasi-coninuous PID conrol algorihm Improvemen of sandard PID algorihm Choosing parameer of PID regulaor Brief

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

PARAREAL TIME DISCRETIZATION FOR PARABOLIC CONTROL PROBLEM

PARAREAL TIME DISCRETIZATION FOR PARABOLIC CONTROL PROBLEM PARAREAL TIME DISCRETIZATION FOR PARABOLIC CONTROL PROBLEM Daoud S Daoud Dept. of Mathematics Eastern Mediterranean University Famagusta-North Cyprus via Mersin 10-Turkey. e mail: daoud.daoud@emu.edu.tr

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

norges teknisk-naturvitenskapelige universitet Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium

norges teknisk-naturvitenskapelige universitet Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium norges teknisk-naturvitenskapelige universitet Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium by E. Celledoni, T. Kvamsdal preprint numerics no. 7/2007 norwegian university

More information

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I Open loop vs Closed Loop Advanced I Moor Command Movemen Overview Open Loop vs Closed Loop Some examples Useful Open Loop lers Dynamical sysems CPG (biologically inspired ), Force Fields Feedback conrol

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Intermediate Differential Equations Review and Basic Ideas

Intermediate Differential Equations Review and Basic Ideas Inermediae Differenial Equaions Review and Basic Ideas John A. Burns Cener for Opimal Design And Conrol Inerdisciplinary Cener forappliedmahemaics Virginia Polyechnic Insiue and Sae Universiy Blacksburg,

More information

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION Saiful Islam and D. K. Choudhury Dep. Of Physics Gauhai Universiy, Guwahai, Assam, India. Email : saiful.66@rediffmail.com ; dkc_phys@yahoo.co.in

More information

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7].

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7]. Chaper Numerical Tess We here collec a few numerical ess, in order o pu ino evidence he poenialiies of HBVMs [4, 6, 7]. Tes problem Le us consider he problem characerized by he polynomial Hamilonian (4.)

More information

Anti-synchronization Between Two Different Hyperchaotic Systems

Anti-synchronization Between Two Different Hyperchaotic Systems Journal of Uncerain Ssems Vol.3, No.3, pp.19-, 9 Online a:.jus.org.uk Ani-snchroniaion Beeen To Differen Hperchaoic Ssems M. Mossa Al-saalha, M.S.M. Noorani Cener for Modelling & Daa Analsis, School of

More information

Numerical Solution of the System of Six Coupled Nonlinear ODEs by Runge-Kutta Fourth Order Method

Numerical Solution of the System of Six Coupled Nonlinear ODEs by Runge-Kutta Fourth Order Method Applied Mahemaical Sciences, Vol. 7,, no. 6, 87-5 Numerical Soluion of he Sysem of Six Coupled Nonlinear ODEs by Runge-Kua Fourh Order Mehod B. S. Desale Deparmen of Mahemaics School of Mahemaical Sciences

More information

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations 9 J. Mah. Fund. Sci., Vol. 8, No.,, 9-5 New Seven-Sep Numerical Mehod for Direc Soluion of Fourh Order Ordinary Differenial Equaions Zurni Omar & John Olusola Kuboye Deparmen of Mahemaics, School of Quaniaive

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information