LHCf Technical Design Report. Measurement of Photons and Neutral Pions in the Very Forward Region of LHC

Size: px
Start display at page:

Download "LHCf Technical Design Report. Measurement of Photons and Neutral Pions in the Very Forward Region of LHC"

Transcription

1 LHCf Technical Design Report CERN-LHCC LHCF-TDR February 2006 Measurement of Photons and Neutral Pions in the Very Forward Region of LHC O. Adriani(1), L. Bonechi(1), M. Bongi(1), R. D Alessandro(1), D.A. Faus(2), M. Haguenauer(3), Y. Itow (4), K. Kasahara(5), K. Masuda(4), Y. Matsubara(4), H. Menjo(4), Y. Muraki(4), P. Papini(1), T. Sako(4), T. Tamura(6), S. Torii(7), A. Tricomi(8), W.C. Turner(9), J. Velasco(2), K. Yoshida(6) The LHCf collaboration (1) INFN Firenze, Univ. di Firenze, Firenze, Italy (2) IFIC, Centro Mixto CSIC-UVEG, Valencia, Spain (3) Ecole-Polytechnique, Paris, France (4) STE laboratory, Nagoya University, Nagoya, Japan (5) Shibaura Institute of Technology, Saitama, Japan (6) Kanagawa University, Yokohama, Japan (7) RISE, Waseda Univ., Tokyo, Japan (8) INFN Catania, Univ. di Catania, Catania, Italy (9) LBNL, Berkeley, California, USA

2 Highlight of the talk 1. Short history 2. Review of physics 3. Detector overview and background study (after November 16 th LHCC) 4. Progress report on cabling, safety, installation, trigger, luminosity measurement, etc 5. Possible running scenario 6. Summary Many important technical aspects can not be covered in this presentation TDR for details

3 Letter Of Intent: May 2004 Technical report: September 2005 Technical Design Report: February 2006 LHCC October 2005 comments: The physics goals are worthwhile and the proposed experiment appears suited to achieve them A few key issues require immediate consideration, and documentation in the update of the TP: establish official contact with the relevant structures in the AT/AB departments, as well as in ATLAS etc appoint a technical coordinator (possibly located at CERN?) consider and document safety issues On the other hand: the TP is not sufficiently detailed and fails to provide a solid and compelling evidence that the above expectations are justified TDR was released to answer to these questions

4 Main problems in High Energy Cosmic Rays (E>10 15 ev) 1. Composition X max (g/cm 2 ) 2. Spectrum / GZK Cutoff Energy (ev)

5 Development of atmospheric showers Simulation of an atmospheric shower due to a ev proton. The dominant contribution to the energy flux is in the very forward region (θ 0) In this forward region the highest energy available measurements of π 0 cross section were done by UA7 (E=10 14 ev, y = 5 7) The direct measurement of the π production cross section as function of p T is essential to correctly estimate the energy of the primary cosmic rays (LHC: ev)

6 Experimental Method: 2 independent detectors on both sides of IP Detector I Tungsten Scintillator Scintillating fibers INTERACTION POINT Detector II Tungsten Scintillator Silicon µstrips 140 m 140 m Beam line 1. Redundancy 2. Background rejection (especially beam-gas) IP1 was definitely chosen in October 2005

7 Here the beam pipe splits in 2 separate tubes. Charged particle are swept away by magnets!!! We will cover up to y Detectors will be installed in the TAN region, 140 m away from the Interaction Point, in front of luminosity monitors

8 The TAN and LHCf box ~ ( ) cm 3 marble shielding manipulator boxes for DAQ electronic

9 ARM #1 detector scintillating fibers tungsten layers - 2 towers ( cm 2 and cm 2 ) ~47 r.l. ( r.l. tungsten layers) Energy 16 scintillator layers (3 mm thick) - 4 pairs of scintillating fiber layers for tracking purpose (two orthogonal directions) scintillators Impact point (η)

10 We used LHC style electronics and readout silicon layers ARM #2 detector - 2 towers ( cm 2 and cm 2 ) 44 r.l. (22 2 r.l. tungsten layers) 16 scintillator layers (3 mm thick) - 4 pairs of silicon microstrip layers for tracking purpose (X and Y directions) Energy Impact point (η) See TDR for details scintillators tungsten layers

11 Transverse projection of detector #1 in the TAN slot

12 Transverse projection of detector #2 in the TAN slot

13 LHCf physics measurements 1. Single photon spectrum 2. π 0 fully reconstructed (1 γ in each tower) π 0 reconstruction is an important tool for energy calibration (π 0 mass constraint) Basic concept: minimum 2 towers (π 0 reconstruction) Smallest tower on the beam (multiple hits) Dimension of the tower Moliere radius Maximum acceptance (given the LHC constraints) Simulation is used to understand the physics performances Beam test in Summer 2004 (Energy resolution)

14 Development of showers in Arm #2 E γ = 500 GeV Fluka based simulation

15 Position resolution of Arm #2 calorimeter 7 µm for 1.8 TeV photons March 22, 2006 LHCf Technical Design Report O. Adriani

16 Single γ geometrical acceptance Some runs with LHCf vertically shifted few cm will allow to cover the whole kinematical range

17 A vertical beam crossing angle > 0 will increase the acceptance of LHCf Acceptance map on P Tγ -E γ plane 140 Beam crossing angle Detectable events

18 Monte Carlo γ ray energy spectrum (5% Energy resolution is taken into account) 10 6 generated LHC interactions 1 minute exposure Discrimination between various models is feasible Quantitative discrimination with the help of a properly defined χ 2 discriminating variable based on the spectrum shape (see TDR for details)

19 π 0 geometrical acceptance Arm #2 Arm #1

20 Energy spectrum of π 0 expected from different models (Typical energy resolution of γ is 3 % at 1TeV)

21 π 0 mass resolution Arm #1 E/E=5% 200 µm spatial resolution m/m = 5%

22 Model dependence of neutron energy distribution Original n energy 30% energy resolution

23 Results of the beam test at H4 line

24 Summary 1 We will be able to measure π 0 mass with ±5% resolution. We will be able to distinguish the models by measurements of π 0 and γ We will be able to distinguish the models by measurements of n Beam crossing angle 0 and/or vertical shifts of LHCf by few cm will allow more complete physics measurements

25 Estimation of the background beam-beam pipe beam-gas answered (on Nov.16), E γ (signal) > 200 GeV, OK background < 1% answered (on Nov.16) It depends on the beam condition background < 1% (under Torr) (see details in TDR) (see details in TDR) beam halo-beam pipe It has been newly estimated from the beam loss rate Background < 10% (conservative value) (see details in TDR)

26 Background from the beam pipe

27

28 Support from CERN for Integration We had (and we will have!) continuous meetings with CERN teams General : TS/LEA Integration: TS/IC Cabling: TS/EL Cooling: TS/CV Survey (cabling): TS/SU Safety: SG Radiation protection: SC/RP ATLAS, BRAN, ZDC teams A very useful TAN integration workshop has been organized on March 10 at CERN (TS/LEA). Takashi Sako: Technical coordinator All the involved groups were present!!!! Engineering Change Request (ECR) has been submitted and approved last week: Machine people are well informed about LHCf No problems foreseen for the LHCf installation at the LHC startup Main item to be discussed is the BRAN (LUMI) interference (see later)

29 Rack, data taking and trigger *Two racks will be located at Y26-05.A1 and Y27-05.A1 at USA15 hall of ATLAS counting room *The trigger signal will be created after 1.4 µsec of the beam crossing 1 st level trigger 2 nd level trigger

30 Cables TS/LEA is fully aware of the cables stuff Demande Installation Cable (DIC) has been submitted The order is under way Cables will be pulled in the July-September period See TDR for details

31 Radiation Safety We have estimated the total radiation dose and activation of LHCf installed in the TAN The activation after 30 days of operation and 1 day cool-down at L /cm -2 sec -1 is msv/hr Remote handling procedures may not be needed We are in contact with SC/RP peoples

32 Installation plan A detailed installation plan has been agreed with TS/LEA Arm #1: 128 days from May 2006 to November 2006 Cables tray Cables Detector Manipulator Electronics Tests Arm #2: 210 days from May 2006 to February 2007, similar to #1 LHCf Arm #1 and #2 will be ready to take the first LHC data.. (Beam test of the complete Arm #1 and part of the Arm #2 is foreseen August 24 th, September 3 rd at SPS)

33 LHCf and LUMI monitor (BRAN) LUMI monitor (BRAN) inside TAN is beyond LHCf (replacing 4th copper bar) Cu Bar / ZDC LHCf Lumi IP1 LHCf Cu Bar / ZDC Lumi LHCf 44 X 0 thickness But the thickness is not uniform (diamond shaped towers, no material outside towers) LUMI Monitor see different thickness of material in different geometrical regions different response as function of the impact point position (calibration is required) reduction of the number of neutral particles hitting BRAN possible dependence of the detector response as function of the beam position? We are studying the problem of the LHCf effect on LUMI together with W.C. Turner and his group from LBNL. CERN LHC and ATLAS people are informed about these studies (see TAN integration workshop as last example)

34 Effect of LHCf on BRAN measurement The effect of LHCf on BRAN measurements has been studied in the last months by simulation Reduction of shower particles at BRAN Position dependence on beam displacement (question from machine peoples: if we shift by 1 mm the real beam, does the center of the measured neutral energy shifts by 1 mm?) Answer: If beam displacement is < a few mm, difference is < 10% LHCf itself can provide the center of neutral flux LHCf can give some info on Luminosity measurement

35 BRAN response vs beam position reduction factor for BRAN: # of neutral hadrons in the LHCf aperture / Typical reduction factor: 0.3 # of neutral hadrons in the whole aperture (inelastic interactions generated with DPMJET3 model) Arm #1 Arm #2 H.Menjo

36 BRAN response vs beam position (2) Relative change of the reduction factors for BRAN with respect to the nominal value (center of the beam: nominal one) If the position of beam center stays within a few mm from the beam-pipe center, the reduction factors do not change more than 10% Arm #1 Arm #2 1 x 1 cm 2 1 x 1 cm 2 H.Menjo

37 Determination of neutral flux center by LHCf LHCf can measure (and provide to LHC) the center of neutral flux from the collisions particles Position sensitive layers Beam test result If the center of the neutral flux hits LHCf << 1 mm resolution σ ~ 200µm

38 Summary 2 LHCf can do the proposed physics measurements (background is under control) Integration with CERN infrastructures and other groups involved is well established The interference with BRAN/LUMI measurement is under study; a smooth solution seems to be feasible LHCf can provide on-line useful information to machine people (Relative luminosity, beam position, beam-gas rate etc.) Important issue to be considered in detail from now on

39 Optimal LHCf run conditions Beam parameter Value # of bunches 43 Bunch separation > 2 µsec Beam parameters used for commissioning are good for LHCf!!! Crossing angle Luminosity per bunch 0 rad 140 µrad downward < 2 x cm -2 s -1 Luminosity < 0.8 x cm -2 s -1 Bunch intensity 4x10 10 ppb (β*=18m) 1x10 10 ppb (β*= 1m) ( No radiation problem for 10kGy by a year operation with this luminosity )

40 From H. Burkhardt TAN workshop presentation

41 LHCf possible running scenario Phase-I Parasite running during the early stage of LHC commissioning in 2007 Remove the detector when luminosity reaches cm -2 s -1 level for radiation reason and reinstall the 3 Cu bars (no activation problems) Phase-II Re-install the detector at the next opportunity of low luminosity run after removal of Cu bars (activated to 10-1 msv/hr, manipulator?) Phase-III Future extension for p-a, A-A run with upgraded detectors. Detailed running scenario should be discussed and agreed with LHCC, Machine people, Atlas people.

42 Detector # 1 Detector#2 Tungsten Japan Japan Mechanics Japan Japan Plastic Scintillators Japan Japan Scintillating fibers Japan Silicon sensors INFN Photomultipliers for scintillator Japan Japan Multianode photomultipliers for fibers Japan Preamplifiers for silicon INFN Hybrid and Kapton for silicon INFN Readout electronics for fibers (VA based) Japan Readout electronics for silicon INFN VME Interface board for fibers Japan VME Interface board for silicon INFN VME ADC boards for scintillators Japan/INFN Japan/INFN VME crate Japan INFN Low voltage Power Supply Japan INFN High voltage Power Supply for scintillators Japan Japan/INFN High voltage Power Supply for fibers Japan Budget share table Contributions from different countries Japan: Italy: 600KCHF 300KCHF France: under negotiation

43 Concluding Remarks LHCf physics measurements are extremely useful for cosmic ray physics (see LOI 2004) A huge work has been done to complete the TDR, answering to the LHCC and referees comments The detectors have been carefully optimized The integration with other activities possibly interfering with LHCf is well established (ATLAS, BRAN/LUMI, TAN related experiment, safety, cabling etc.) ECR has been approved last week LHCf will be ready to take the first LHC data

The LHCf experiment at LHC

The LHCf experiment at LHC The LHCf experiment at LHC CALOR 2006 Chicago, 5-9 June 2006 University and INFN Firenze On behalf of the LHCf Collaboration The LHCf collaboration O. Adriani,, L. Bonechi, M. Bongi, P. Papini,, R. D AlessandroD

More information

The LHCf experiment at LHC

The LHCf experiment at LHC The LHCf experiment at LHC Measurement of π 0 production cross section in the very forward region at LHC Equivalent laboratory energy 10 17 ev LHCf physics Description of the experiment Some results on

More information

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Raffaello D Alessandro 1 Department of Physics Università di Firenze and INFN-Firenze I-50019 Sesto

More information

CERN Council - Open Session 18 December Lorenzo Bonechi - INFN Firenze, Italy On behalf of the LHCf Collaboration

CERN Council - Open Session 18 December Lorenzo Bonechi - INFN Firenze, Italy On behalf of the LHCf Collaboration CERN Council - Open Session 18 December 2015 Lorenzo Bonechi - INFN Firenze, Italy On behalf of the LHCf Collaboration LHC and cosmic rays Cosmic rays: flux of charged particles hitting the Earth atmosphere

More information

Forward photon energy spectrum at LHC 7TeV p-p collisions measured by LHCf

Forward photon energy spectrum at LHC 7TeV p-p collisions measured by LHCf Forward photon energy spectrum at LHC 7TeV p-p collisions measured by LHCf Hiroaki MENJO (KMI, Nagoya University, Japan) On the held of the LHCf collaboration RICAP 2011, Roma, Italy, 25-27 May 2011 Contents

More information

arxiv: v1 [physics.ins-det] 20 Dec 2013

arxiv: v1 [physics.ins-det] 20 Dec 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:32.595v [physics.ins-det] 2 Dec 23 The performance of the LHCf detector for hadronic showers K. Kawade, O. Adriani 2,3, L. Bonechi 2, M. Bongi 2,3,

More information

Hiroaki MENJO (KMI, Nagoya University, Japan) On behalf of the LHCf collaboration

Hiroaki MENJO (KMI, Nagoya University, Japan) On behalf of the LHCf collaboration Forward photon energy spectrum at 7TeV p-p collisions measured by the LHCf experiment Hiroaki MENJO (KMI, Nagoya University, Japan) On behalf of the LHCf collaboration ISMD 2011, Hiroshima, Japan, 26-30

More information

Correction for PMT temperature dependence of the LHCf calorimeters

Correction for PMT temperature dependence of the LHCf calorimeters Journal of Physics: Conference Series OPEN ACCESS Correction for PMT temperature dependence of the LHCf calorimeters To cite this article: Eri Matsubayashi and the LHCf collaboration 2015 J. Phys.: Conf.

More information

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington University of Texas, Arlington E-mail: brandta@uta.edu A brief description of the ATLAS forward detectors is given. XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects April

More information

Physics motivations Ultra High Energy Cosmic Rays open issues How LHCf can contribute in this field. Overview of the LHCf experiment

Physics motivations Ultra High Energy Cosmic Rays open issues How LHCf can contribute in this field. Overview of the LHCf experiment Physics motivations Ultra High Energy Cosmic Rays open issues How LHCf can contribute in this field Overview of the LHCf experiment Forward photon energy spectrum at s = 7eV proton-proton collisions Summary

More information

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision Zero degree neutron energy spectra measured by LHCf at s = TeV proton-proton collision Nagoya university, ISEE E-mail: ueno.mana@isee.nagoya-u.ac.jp The Large Hadron Collider forward (LHCf) experiment

More information

The LHCf detector at the CERN Large Hadron Collider

The LHCf detector at the CERN Large Hadron Collider Journal of Instrumentation OPEN ACCESS The LHCf detector at the CERN Large Hadron Collider To cite this article: The LHCf Collaboration et al View the article online for updates and enhancements. Related

More information

arxiv: v2 [hep-ex] 24 Nov 2017

arxiv: v2 [hep-ex] 24 Nov 2017 Measurement of forward photon production cross-section in proton proton collisions at s = 13 TeV with the LHCf detector arxiv:1703.07678v2 [hep-ex] 24 Nov 2017 O. Adriani a,b, E. Berti a,b, L. Bonechi

More information

LHCf. Study of forward physics in p snn =8.1 TeV proton-lead ion. collisions with the LHCf detector at. the LHC

LHCf. Study of forward physics in p snn =8.1 TeV proton-lead ion. collisions with the LHCf detector at. the LHC LHCf Letter of Intent for a p-pb run in 2016 CERN-LHCC-2016-003 / LHCC-I-027 01/03/2016 Study of forward physics in p snn =8.1 TeV proton-lead ion collisions with the LHCf detector at the LHC The LHCf

More information

The first result of the CERN LHCf experiment

The first result of the CERN LHCf experiment The first result of the CERN LHCf experiment K.Kasahara for the LHCf collaboration. Waseda Univ. For details: P.L to be published TeVPA @Stockholm: Aug.1, 2011 Purpose of LHCf (=LHC forward experiment)

More information

Preliminary analysis of p-pb data update n. 6

Preliminary analysis of p-pb data update n. 6 LHCf Catania meeting 19 December 2013 Preliminary analysis of p-pb data update n. 6 Lorenzo Bonechi 2 Data taking preliminary summary table LHCf - Summary table for data taking in 2013 Beam crossing angle

More information

First indication of LPM effect in LHCf, an LHC experiment

First indication of LPM effect in LHCf, an LHC experiment First indication of LPM effect in LHCf, an LHC experiment M. Del Prete 1,2,a on behalf of LHCf collaboration 1 INFN section of Florence, Italy 2 University of Florence, Italy Abstract. The Large Hadron

More information

Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS Jessica Leonard On behalf of CMS BRIL EPS 2015, Vienna July 24, 2015 1 CMS BRIL: Beam Radiation Instrumentation

More information

ALICE ZDC. Outline. Aim of the project Detector description Status Integration issues Installation planning

ALICE ZDC. Outline. Aim of the project Detector description Status Integration issues Installation planning ALICE ZDC Responsabilities shared by the following Institute: Universita del Piemonte Orientale, Alessandria, Italy INFN-Cagliari and Universita di Cagliari, Italy INFN-Torino and Universita di Torino,

More information

Research and Development for the ATLAS Forward Calorimetry at the Phase-II LHC

Research and Development for the ATLAS Forward Calorimetry at the Phase-II LHC 631 Proceedings of the LHCP2015 Conference, St. Petersburg, Russia, August 31 - September 5, 2015 Editors: V.T. Kim and D.E. Sosnov Research and Development for the ATLAS Forward Calorimetry at the Phase-II

More information

Lecture LHC How to measure cross sections...

Lecture LHC How to measure cross sections... Lecture 5b:Luminosity @ LHC How to measure cross sections... Cross Section & Luminosity Luminosities in run-i @ LHC How to measure luminosity Cross Section & Luminosity Methods for Luminosity Measurement

More information

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1*

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1* Chamonix XII: LHC Performance Workshop Requirements from the experiments in Year 1* 3-8 March, 2003 Experiments: Foreseen Status in April 2007 Physics Reach in the First Year Requirements from the Experiments

More information

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS October 4, 2018 3:33 ws-rv9x6 Book Title main page 1 Chapter 1 Measurement of Minimum Bias Observables with ATLAS arxiv:1706.06151v2 [hep-ex] 23 Jun 2017 Jiri Kvita Joint Laboratory for Optics, Palacky

More information

Some studies for ALICE

Some studies for ALICE Some studies for ALICE Motivations for a p-p programme in ALICE Special features of the ALICE detector Preliminary studies of Physics Performances of ALICE for the measurement of some global properties

More information

Will LHCb be running during the HL-LHC era? Burkhard Schmidt for the LHCb Collaboration

Will LHCb be running during the HL-LHC era? Burkhard Schmidt for the LHCb Collaboration Will LHCb be running during the HL-LHC era? Burkhard Schmidt for the LHCb Collaboration Helpful discussions with L. Rossi and several other colleagues from the machine acknowledged Outline: Introduction

More information

ATLAS Hadronic Calorimeters 101

ATLAS Hadronic Calorimeters 101 ATLAS Hadronic Calorimeters 101 Hadronic showers ATLAS Hadronic Calorimeters Tile Calorimeter Hadronic Endcap Calorimeter Forward Calorimeter Noise and Dead Material First ATLAS Physics Meeting of the

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector Available on CMS information server CMS CR -2009/113 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 15 May 2009 Commissioning of the CMS

More information

Measuring very forward (backward) at the LHeC

Measuring very forward (backward) at the LHeC Measuring very forward (backward) at the LHeC Armen Buniatyan DESY Detectors located outside of the main detector (~ 10 100m from the Interaction Point) Goals: Instantaneous luminosity Tag photo-production

More information

Monte Carlo study of diffraction in p-p collisions at s=13tev with the LHCf detector

Monte Carlo study of diffraction in p-p collisions at s=13tev with the LHCf detector Monte Carlo study of diffraction in p-p collisions at s=tev with the LHCf detector Qi-Dong Zhou Nagoya University (JP) on behalf of the LHCf collaboration Low-X 26, Gyongyos, Hungary, 6- Jun 26 The LHCf

More information

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN AB DIVISION CERN-AB-2003-003 BDI Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC E. Gschwendtner; M. Placidi; H. Schmickler Abstract The

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

EDMS No: Revision: Pages: Date: Addendum to IT-3036/EP/CMS

EDMS No: Revision: Pages: Date: Addendum to IT-3036/EP/CMS EDMS No: Revision: Pages: Date: CMS-IZ-CI-0003 draft Page 1 of 45 15.11.02 EDMS No: Revision: Pages: Date: 396215 1.1 6 09.09.2003 Addendum to IT-3036/EP/CMS Technical Specification for Supply and Installation

More information

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS L. E. PRICE Bldg 362, Argonne National Laboratory, Argonne, IL 60439, USA E-mail: lprice@anl.gov (For the ATLAS Tile Calorimeter Collaboration)

More information

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration LHCb Overview Barbara Storaci on behalf of the LHCb Collaboration CERN Council, December 14 th, 2012 Overview Introduction Collaboration Type of physics considered Detector Detector performances Selection

More information

Commissioning and Calibration of the Zero Degree Calorimeters for the ALICE experiment

Commissioning and Calibration of the Zero Degree Calorimeters for the ALICE experiment Commissioning and Calibration of the Zero Degree Calorimeters for the ALICE experiment Roberto Gemme Università del Piemonte Orientale A. Avogadro (Alessandria) on behalf of the ALICE Collaboration Outline

More information

Physics results of the LHCf experiment

Physics results of the LHCf experiment Univesity & INFN Catania Physics motivation and the LHCf detector Forward spectra at s = 7 TeV and 900 GeV p-p collisions p-pb run Detector upgrade Prospects for new data taking EPS-HEP 2013, July 18-24

More information

XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/ v1 31 Oct 2005

XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/ v1 31 Oct 2005 XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/0510078v1 31 Oct 2005 Elastic Cross-Section and Luminosity Measurement in ATLAS

More information

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Camilla Vittori Department of Physics, University of Bologna, Italy Summer Student Program 2014 Supervisor

More information

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Identifying Particle Trajectories in CMS using the Long Barrel Geometry Identifying Particle Trajectories in CMS using the Long Barrel Geometry Angela Galvez 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Kevin Lannon Abstract The Compact Muon Solenoid

More information

PoS(Vertex 2016)004. ATLAS IBL operational experience

PoS(Vertex 2016)004. ATLAS IBL operational experience ATLAS IBL operational experience High Energy Accelerator Research Organization (KEK) - Oho Tsukuba Ibaraki, 0-080, Japan E-mail: yosuke.takubo@kek.jp The Insertable B-Layer (IBL) is the inner most pixel

More information

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays PAMELA scientific objectives Detector s overview Subsystems description PAMELA status Massimo Bongi Universita degli Studi di

More information

Radiation damage in diamond sensors at the CMS experiment of the LHC

Radiation damage in diamond sensors at the CMS experiment of the LHC Radiation damage in diamond sensors at the CMS experiment of the LHC Moritz Guthoff on behalf of the CMS beam monitoring group ADAMAS Workshop 2012, GSI, Germany IEKP-KIT / CERN KIT University of the State

More information

LHCb Calorimetry Impact

LHCb Calorimetry Impact LHCb Calorimetry Impact Preema Pais! On behalf of the LHCb Collaboration! Workshop on the physics of HL-LHC, and perspectives at HE-LHC! November 1, 2017! THE LHCb DETECTOR Calorimetry! Located ~12.5 m

More information

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC WDS'12 Proceedings of Contributed Papers, Part III, 142 146, 212. ISBN 978-8-7378-226-9 MATFYZPRESS Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC I. Chalupková, Z.

More information

Luminosity measurements and diffractive physics in ATLAS

Luminosity measurements and diffractive physics in ATLAS Luminosity measurements and diffractive physics in ATLAS DAPNIA-SPP, CEA Saclay, F91191 Gif-sur-Yvette, France E-mail: royon@hep.saclay.cea.fr We first describe the measurement of the elastic scattering

More information

Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2 Prepared for submission to JINST Calorimetry for the High Energy Frontier -6 October 17 Lyon (France) Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run Leonor Cerda Alberich,

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Physics potential of ATLAS upgrades at HL-LHC

Physics potential of ATLAS upgrades at HL-LHC M.Testa on behalf of the ATLAS Collaboration INFN LNF, Italy E-mail: marianna.testa@lnf.infn.it ATL-PHYS-PROC-207-50 22 September 207 The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start

More information

Forward detectors at ATLAS

Forward detectors at ATLAS Forward Physics at LHC Manchester 12 14 December 2010 Forward detectors at ATLAS Sara Valentinetti University of Bologna & INFN On behalf of the ATLAS collaboration 1 Summary Why Forward Detectors: Forward

More information

The TIC project: tracking gamma rays with a calorimeter

The TIC project: tracking gamma rays with a calorimeter The TIC project: tracking gamma rays with a calorimeter Nicola Mori INFN sezione di Firenze 5th HERD workshop CERN - 12th October 2017 Future cosmic-ray experiments Requirements for the high-energy frontier:

More information

Validation of Geant4 Physics Models Using Collision Data from the LHC

Validation of Geant4 Physics Models Using Collision Data from the LHC Journal of Physics: Conference Series Validation of Geant4 Physics Models Using Collision from the LHC To cite this article: S Banerjee and CMS Experiment 20 J. Phys.: Conf. Ser. 33 032003 Related content

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

Year- 1 (Heavy- Ion) Physics with CMS at the LHC Year- 1 (Heavy- Ion) Physics with CMS at the LHC Edwin Norbeck and Yasar Onel (for the CMS collaboration) University of Iowa For the 26 th Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica 8 January

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS Available on CMS information server CMS CR -2009/034 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 04 February 2009 First Physics at CMS

More information

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006 The LHCb Experiment II Detector XXXIV SLAC Summer Institute, 17-28 July, 2006 Tatsuya NAKADA CERN and Ecole Polytechnique Fédérale de Lausanne (EPFL) 1) Introduction Physics requirements for the detector

More information

READINESS OF THE CMS DETECTOR FOR FIRST DATA

READINESS OF THE CMS DETECTOR FOR FIRST DATA READINESS OF THE CMS DETECTOR FOR FIRST DATA E. MESCHI for the CMS Collaboration CERN - CH1211 Geneva 23 - Switzerland The Compact Muon Solenoid Detector (CMS) completed the first phase of commissioning

More information

Simulation and validation of the ATLAS Tile Calorimeter response

Simulation and validation of the ATLAS Tile Calorimeter response Home Search Collections Journals About Contact us My IOPscience Simulation and validation of the ATLAS Tile Calorimeter response This content has been downloaded from IOPscience. Please scroll down to

More information

Review of accelerator data of relevance to air shower simulations

Review of accelerator data of relevance to air shower simulations Y.Itow, Review of Accelerator data UHECR2012@ 14Feb2012 Review of accelerator data of relevance to air shower simulations Yoshitaka Itow STE Lab / Kobayashi-Maskawa Inst. Nagoya University UHECR 2012 Feb

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group Introduction Construction, Integration and Commissioning on the Surface Installation

More information

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration:

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration: Elastic scattering, total cross-section and charged particle pseudorapidity density in 7 TeV pp reactions measured by the TOTEM Experiment at the LHC János Sziklai WIGNER RCP On behalf of the TOTEM Collaboration:

More information

Spacal alignment and calibration

Spacal alignment and calibration Spacal alignment and calibration Sebastian Piec AGH University of Science and Technology Al. Mickiewicza 3, Cracow, Poland Email: sepiec@poczta.onet.pl The main purpose of my work was alignment and calibration

More information

Luminosity determination in pp collisions using the ATLAS detector at the LHC

Luminosity determination in pp collisions using the ATLAS detector at the LHC Luminosity determination in pp collisions using the ATLAS detector at the LHC Peilian LIU Lawrence Berkeley National Laboratory March 23, 2017 1 OutLine ATLAS experiment at LHC The past, present and future

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

ALICE Commissioning: Getting ready for Physics

ALICE Commissioning: Getting ready for Physics ALICE Commissioning: Getting ready for Physics Christian Lippmann, CERN for the ALICE Collaboration Moriond QCD and High Energy Interactions March 14th - March 21st 2009 1 Outline Introduction to ALICE

More information

Results and Perspectives in Forward Physics with ATLAS

Results and Perspectives in Forward Physics with ATLAS Nuclear Physics B Proceedings Supplement 00 (2015) 1 9 Nuclear Physics B Proceedings Supplement Results and Perspectives in Forward Physics with ATLAS B. Giacobbe on behalf of the ATLAS Collaboration Istituto

More information

Luminosity measurement in ATLAS with Diamond Beam Monitor

Luminosity measurement in ATLAS with Diamond Beam Monitor University of Ljubljana Faculty of Mathematics and Physics Luminosity measurement in ATLAS with Diamond Beam Monitor PhD topic defense Supervisor Candidate Prof. dr. Marko Mikuž Luka Kanjir October 14th,

More information

Design of Beam Halo Monitor for CMS

Design of Beam Halo Monitor for CMS 1 CERN Geneva, Switzerland National Technical University of Athens Athens, Greece E-mail: styliani.orfanelli@cern.ch Anne Dabrowski, Rob Loos CERN Geneva, Switzerland E-mail: anne.evelyn.dabrowski@cern.ch,

More information

TOTEM Update BSM? Fredrik Oljemark (Helsinki Univ. & HIP) On behalf of the TOTEM Collaboration Jyväskylä, TOTEM p. 1

TOTEM Update BSM? Fredrik Oljemark (Helsinki Univ. & HIP) On behalf of the TOTEM Collaboration Jyväskylä, TOTEM p. 1 TOTEM Update Fredrik Oljemark (Helsinki Univ. & HIP) b BSM? On behalf of the TOTEM Collaboration Jyväskylä, 25.11.2016 TOTEM p. 1 TOTEM Physics Overview Total cross-section Elastic Scattering b Forward

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

AFP - TCL collimator studies

AFP - TCL collimator studies AFP - TCL collimator studies LHC Collimation Study Group, 24-Aug-2009 F. Roncarolo The University of Manchester/Cockcroft Institute CERN BE/ABP/LCU Many thanks to C. Bracco, K.Potter, R.Appleby and R.

More information

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Christof Roland/ MIT For the CMS Collaboration Rencontres de Moriond QCD Session 14 th March, 2010 Moriond

More information

PAMELA satellite: fragmentation in the instrument

PAMELA satellite: fragmentation in the instrument PAMELA satellite: fragmentation in the instrument Alessandro Bruno INFN, Bari (Italy) for the PAMELA collaboration Nuclear Physics for Galactic CRs in the AMS-02 era 3-4 Dec 2012 LPSC, Grenoble The PAMELA

More information

Interface with Experimental Detector in the High Luminosity Run

Interface with Experimental Detector in the High Luminosity Run Chapter 5 Interface with Experimental Detector in the High Luminosity Run H. Burkhardt CERN, BE Department, Genève 23, CH-1211, Switzerland This chapter describes the upgrade of the interaction regions

More information

Digital Hadron Calorimetry for the Linear Collider using GEM Technology

Digital Hadron Calorimetry for the Linear Collider using GEM Technology Digital Hadron Calorimetry for the Linear Collider using GEM Technology University of Texas at Arlington Andrew Brandt, Kaushik De, Shahnoor Habib, Venkat Kaushik, Jia Li, Mark Sosebee, Andy White* 1,

More information

Status and Performance of the ATLAS Experiment

Status and Performance of the ATLAS Experiment Status and Performance of the ATLAS Experiment P. Iengo To cite this version: P. Iengo. Status and Performance of the ATLAS Experiment. 15th International QCD Conference (QCD 10), Jun 2010, Montpellier,

More information

Recent results from the LHCf experiment

Recent results from the LHCf experiment Recent results from the LHCf experiment Gaku Mitsuka (Nagoya University) on behalf of the LHCf Collaboration ISMD 6- September, Jan Kochanowski University, Kielce Outline Keywords: (Ultra high energy)

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1996/005 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Performance of the Silicon Detectors for the

More information

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720 Brief Report from the Lawrence Berkeley National Laboratory Berkeley, California 9472 1 Introduction It might appear surprising to include a report from the Fermilab, a proton-antiproton collider, in a

More information

Measuring very forward (backward) at the LHeC

Measuring very forward (backward) at the LHeC POETIC IV Physics Opportunities at an Electron-Ion Collider September 2-5, 2013 Jyväskylä, Finland Measuring very forward (backward) at the LHeC Armen Buniatyan Physikalisches Institut Ruprecht-Karls-Universität

More information

ALICE status and first results

ALICE status and first results ALICE status and first results for the ALICE collaboration Paul Kuijer, NIKHEF Data taking February May 2010 Detector status and performance Physics analyses IPRD10-07/06/2010, ALICE status and first results,

More information

PREX Background Simulation Update

PREX Background Simulation Update PREX Background Simulation Update Rakitha Beminiwattha Syracuse University rakithab@jlab.org 1 Outline PREX-II Collimator Plastic Shielding for Neutrons PREX-II Background Radiation Activation Studies

More information

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Motivation Measurements of the total and inelastic cross sections and their energy evolution probe the non-perturbative

More information

LHC. Jim Bensinger Brandeis University New England Particle Physics Student Retreat August 26, 2004

LHC. Jim Bensinger Brandeis University New England Particle Physics Student Retreat August 26, 2004 Experiments @ LHC Jim Bensinger Brandeis University New England Particle Physics Student Retreat August 26, 2004 Outline of Presentation Existing Spectrometers A Certain Sameness The Basic Interaction

More information

MDI and detector modeling

MDI and detector modeling MDI and detector modeling Nikolai Terentiev (Carnegie Mellon U./Fermilab) On behalf of N. Mokhov, S. Striganov (Fermilab), C. Gatto, A. Mazzacane, V. Di Benedetto (INFN/Fermilab/INFN Lecce and Università

More information

Performance of the ALICE Muon Trigger system in Pb Pb collisions

Performance of the ALICE Muon Trigger system in Pb Pb collisions Performance of the ALICE Muon Trigger system in Pb Pb collisions, for the ALICE collaboration Dipartimento di Fisica Sperimentale dell Università di Torino and Sezione INFN di Torino, Turin, Italy Laboratoire

More information

ATLAS: Status and First Results

ATLAS: Status and First Results ATLAS: Status and First Results, University of Sheffield, on behalf of the ATLAS Collaboration 1 Overview of the ATLAS detector Status of the experiment Performance and physics results in the first six

More information

PERFORMANCE OF THE ATLAS LIQUID ARGON FORWARD CALORIMETER IN BEAM TESTS

PERFORMANCE OF THE ATLAS LIQUID ARGON FORWARD CALORIMETER IN BEAM TESTS 1 PERFORMANCE OF THE ATLAS LIQUID ARGON FORWARD CALORIMETER IN BEAM TESTS P.KRIEGER Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada E-mail: krieger@physics.utoronto.ca A

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

2008 JINST 3 S Outlook. Chapter 11

2008 JINST 3 S Outlook. Chapter 11 Chapter 11 Outlook The broad range of physics opportunities and the demanding experimental environment of highluminosity 14 TeV proton-proton collisions have led to unprecedented performance requirements

More information

Mini-Bias and Underlying Event Studies at CMS

Mini-Bias and Underlying Event Studies at CMS Yuan Chao Department of Physics National Taiwan University 1617 Taipei, TAIWAN 1 Introduction The Tevatron experiments provide us very good information for the quantum chromodynamics (QCD) modelings of

More information

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron Outline of the presentation: 1. Introduction to LHCb physics and LHCb detector 2. RIVET plug-in for Z e+e- channel

More information

ATLAS Tile Calorimeter Calibration and Monitoring Systems

ATLAS Tile Calorimeter Calibration and Monitoring Systems ATLAS Calibration and Monitoring Systems June 19 th -23 rd, 217 Arely Cortes-Gonzalez (CERN) On behalf of the ATLAS Collaboration ATLAS Detector Trigger Hardware based L1 ~1kHz Software based HLT ~1kHz

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB Journal of Instrumentation OPEN ACCESS A detailed study on Gd 2 SiO 5 scintillators: recovery from increased photon yield following irradiation To cite this article: T. Sako et al 2015 JINST P06015 View

More information

Chapter 2 The CMS Experiment at the LHC

Chapter 2 The CMS Experiment at the LHC Chapter 2 The CMS Experiment at the LHC The Large Hadron Collider (LHC) [1] is designed to collide proton beams at a center-of-mass energy of s = 14 TeV and a nominal instantaneous luminosity of L = 10

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University for the PRad collaboration Outline PRad Physics goals ep-scattering and the proton radius PRad experiment experimental setup development

More information