Computation of the cycle index polynomial of a Permutation Group CS497-report

Size: px
Start display at page:

Download "Computation of the cycle index polynomial of a Permutation Group CS497-report"

Transcription

1 Computation of the cycle index polynomial of a Permutation Group CS497-report Rohit Gurjar Y5383 Supervisor: Prof Piyush P. Kurur Dept. Of Computer Science and Engineering, IIT Kanpur November 3, 2008 Abstract Computing cycle index polynomial of a permutation group is known to be #P -complete. In this report we give some introduction to the problem and describe some permutation groups for which the computation of cycle index polynomial is easy. Introduction Definition. Cycle index polynomial of a group G of degree n is defined as P G (z, z 2... z n ) = z c(g) z c2(g) where c i (g) represents the number of cycles of length i in the disjoint cycle decomposition of g.. Application Let G be a permutation group acting on X = {0,,... n } and Ω = {f : f is a function from X to C}, where C be a finite set of alphabet of cardinality k. We define a group action on the set Ω by g(φ)(x) = φ(g (x)) for each φ Ω The action of G partitions Ω into a number of orbits, being the equivalence classes of Ω under the equivalence relation that identifies α and β whenever there exists g G mapping α to β. Then we know the following theorem.

2 Theorem. Let C, X and G be defined as above. Then the number of orbits of Ω under the action of G is P G (k, k,... k). C can be a set of colors. Then the expression P G (k, k,... k) gives the number of different color patterns of X. Definition 2. Let w : C R be a map which assigns a weight from R (or any ring) to each element of C. Then the weight of φ Ω, with respect to the weight function w is given by, w(φ) = x X w(φ(x)). Now, for each g G and φ Ω, w (g(φ)) = x X w (g(φ)(x)) = x X w ( φ(g (x)) ) = x X w (φ(x)) = w(φ) So, the elements of Ω in the same orbit, under the action of G, will have same weight. So we can define the following. Definition 3. Suppose Ω be an orbit under the action of G. Then the weight of, denoted w( ), is defined to be equal to w(φ) for any φ. Theorem 2 (Polya s Enumeration Theorem). With the above definitions and notations I = w( ) = P G (x, x 2... x n ), where the summation goes over distinct orbits of Ω under the action of G and x i = c C w(c)i. We can see that cycle index polynomial of a permutation group G may be computed at a specified point, directly from definition() by explicit enumeration of the elements of G. In general, however, the order of G is exponentially larger than its input size, say a list of generators. Generally, degree n of the permutation group G is taken as the measure of input size. So, we want to compute the cycle index polynomial at a specified point in the time polynomial in degree n. It is known that the problem of computing cycle index polynomial for a group is #P -complete. The proof (given in []) involves a polynomial-time reduction from finding number of independent sets in a graph(a #P -complete problem) to computing cycle index polynomial of a permutation group. The proof suggests that that the problem of computing cycle index polynomial is #P -complete even for abelian groups. Here we describe some special permutation groups for which the computation of cycle index polynomial is easy (can be computed in polynomial time). 2

3 2 Special Permutation Groups Notation. Let G be a permutation group with degree n. Consider the permutation g G, if g is the product of a cycle of length l, a cycle of length l 2 and so on till cycle of length l k, then we say g has a cycle struture P (g) = z l z l2... z lk. Notation 2. Let G be a permutation group with degree n. Consider a set of permutations H G, then we say P (H) = g H P (g) 2. Cyclic Groups Suppose the cyclic group G with degree n acting on Ω = {, 2,... n}, is generated by g having cycle structure P (g) = z l z l2... z lk where l i n i. It is easy to see that = lcm{l, l 2... l k } which can be exponential in n. In general we do not see any easy way to compute cycle index polynomial for cyclic groups. But it is easy in some special cases given below. Case When k = i.e., g = (, 2, 3... n) and = n. So, the cycle index polynomial can be computed very easily. It is given by. Case 2 n P (G) = n d n φ(d)z n/d d = p m, where p is a prime, this case is also easy. Because = lcm{l, l 2... l k } = p m so, l i s.t. l i = p m. Hence = p m n. The cycle index polynomial is given by p m P (G) = m p m φ(p m i )P (g pi ) i=. Case 3 If l i l j then gcd{l i, l j } = i, j {, 2... k}, i.e., distinct l i s are pairwise relatively prime. Let us assume that all l i s are distinct. The results can be easily generalised to the other case. Let S i Ω be the set of elements in the l i -cycle of g. Consider the subgroup H 0 = g l of group G. This is the subgroup of all permutations in G, which fixes all elements in S. Let right cosets of H 0 in G be {H 0, H,... H l } and 3

4 the corresponding representatives are {g 0, g... g l }. It is easy to see that P (G) = l i=0 P (H i) Let G and G be permutation groups acting on S and Ω\S respectively and for every h G we can write h = h h where, h G and h G, s.t. h (i) = h(i) i S and h (i) = h(i) i Ω\S. Let g = g g, where g G and g G. Now, we can see that H 0 = g l g l. Now, because j {, 2,... k} l and l j are relatively prime, g l = G. So, G H 0. Now, H i = g i H 0 g i G, so g i G = G. Hence, H i = (g i g i )H0 H i = (g i g i )G So, P (G) = H i = g i G ( l i=0 P (g i ) ) P (G ) P (G) = P (G ) P (G ) Inductively, P (G) = P (G ) P (G 2 ) P (G k ), where for every j {, 2... k}, G j be permutation group acting on S j, and for every h G we can write h = h h 2 h k where, h j G j s.t. h j (i) = h(i) i S j. Now, G j = l j n, so P (G j ) can be computed easily for all j {, 2... k}. Then the cycle index polynomial will be given by 2.2 Symmetric Group P (G) = (P (G ) P (G 2 ) P (G k )) Computing cycle index polynomial for symmetric group(whole permutation group) can be done easily because of its symmetry. Let G be the symmetric group acting on Ω = {a, a 2,... a n }. Consider the following definition for group G i {, 2,... n}, P i (G) = P (g) a n is in a i cycle in g We can see that P (G) = n i= P i(g). Consider the subgroup H 0 of all permutations in G which fixes a n. Consider H H 0 as acting on Ω\{a n }. For H, 4

5 P i (H), would be defined like this, P i (H) = g H a n is in a i cycle in g P (g) Note that P n (H) = 0. Because in any g H maximum length of a cycle can be n. We give the following recursive algorithm for computing cycle index polynomial for a symmetric group at the point (z, z 2... z n ). Algorithm cycle-index(g) Require: A symmetric group G with degree n. Ensure: P (G) and P i (G) i {, 2,... n} at the point (z, z 2... z n ) : if n == then 2: return {z, z } 3: else 4: {P (H), P (H), P 2 (H)... P n (H)} cycle-index(h) 5: P (G) z P (H) 6: for i 2 to n do 7: P i (G) (n ) ( z i ) P i (H) 8: end for 9: P (G) P (G) + P 2 (G) + P n (G) 0: return {P (G), P (G), P 2 (G)... P n (G)} : end if Then the cycle index polynomial of G will be given by n! P (G). We can see that the algorithm takes O(n 2 ) time. Theorem ( 3. ) With the notations given above, P (G) = z P (H) and P i (G) = (n ) P i (H) i {2, 3,... n}. And hence, the algorithm is correct. z i Proof. Consider the case when i =. Note that, {g G a n is in a cycle in g} = {g G g fixes a n } = H 0. So, P (G) = P (H 0 ) = z P (H). Now, when i 2, let us say the right cosets of H 0 in G are {H 0, H, H 2... H n } and the corresponding representatives are {I, (a n, a ), (a n, a 2 )... (a n, a n )}, where I is the identity element of G. Now, we can see that, P (G) = n j=0 P (H j). We can also write that n P i (G) = P i (H j ) () where P i (H j ) = g H j a n is in a i cycle in g P (g). j=0 5

6 We know that H n = H 0 g n, where g n = (a n, a n ). We can easily see that (b, c, d, e... ).(a, b) = (a, b, c, d, e... ) So, suppose h H 0 s.t. P (h) = z z l z l2... z lk, and a n is in l -cycle. Then P (hg n ) = z l+z l2... z lk. So, it is clear that i 2 ( ) P i (H 0 g n ) = P i (H) P i (H n ) = ( z i z i ) P i (H) (2) Notation 3. For any g G, let { P (g) if a n is in a i-cycle in g P i (g) = 0 otherwise. So, we can say that P i (H j ) = P i (g). g H j Let h H n, consider the function f s.t. f(h) = (a j, a n )h(a j, a n ) for some j {, 2... n 2}. For some h 0 H 0, we can write h = h 0 (a n, a n ), and so f(h) = (a j, a n )h 0 (a n, a n )(a j, a n ) = (a j, a n )h 0 (a j, a n )(a n, a j ) = h 0(a n, a j ). It is easy to see that h 0 = (a j, a n )h 0 (a j, a n ) H 0. So, f(h) H j. The cycle structures of h and f(h) are same, except that the positions of a n and a j are swapped. So, we can say that P i (h) = P i (f(h)) i {, 2,... n}. Also, it is easy to see that f : H n H j is a bijection. So, P i (H n ) = P i (h) h H n = P i (f(h)) h H n = P i (h ) h H j From (), P i (G) = = = P i (H j ) j {, 2,... n 2} (3) n P i (H j ) j=0 n P i (H j ) j= { H 0 fixes a n = (n )P i (H n ) {from (3) ( ) = (n ) P i (H) {from (2) z i 6

7 2.3 Alternating Group Let G be a permutation group with degree n and H be a subset of G such that H = {g g G and g is an even permutation}. It is easy to see that H is a subgroup of G. So, consider the following Lemma. = 2 H Proof. Let the left cosets of H in G be {H, H, H 2... H k } and their representatives are {I, a, a 2... a k } respectively. It is easy to see that a i is an odd permutation for all i k. So, for all i, j k, the element a i a j, will be an even permutation and so a i a j H. Hence a i and a j are in same coset. And this is true for all i, j k. So k =, and there are only two left cosets of H in G. Hence, = 2 H. Theorem 4. where x i = ( ) i z i. Proof. where P H (z, z 2... z n ) = P G (z, z 2... z n ) + P G (x, x 2... x n ) P G (x, x 2... x n ) = sgn(g) = Now, it is easy to see that = = x c(g) x c2(g) 2... x n P i ( ) ci(g)(i ) z c(g) z c2(g) sgn(g)z c(g) z c2(g) { if g is an even permutation, if g is an odd permutation. P G (x, x 2... x n ) + P G (z, z 2... z n ) = 2 = H g H g H = P H (z, z 2... z n ) z c(g) z c2(g) z c(g) z c2(g) So, cycle index polynomial at any point for the alternating group can be computed by computing the cycle index polynomial for the symmetric group at two points. 7

8 3 Another Approach The problem of counting the number of matchings in a graph is also known to be #P -complete. Another version of this problem is to find the sum of weights of all matchings of a weighted graph, where weight of a matching is the product of weights of edges in the matching. In the special case, when the graph is planar, the problem is easy and known to be in class NC. Now, computing the sum of weights of all matchings of a weighted graph and computing cycle index polynomial of a permutation group can be reduced to each other. So, the idea is to see for which groups the cycle index problem reduces to the matching problem with the planar graph case. For those groups computing cycle index polynomial will be easy. For example consider the graph G with vertex set V = {v, v 2... v 2n }, and edge set E = {(v i, v n+i ) i n}, with all the weights z. It is easy to see that computing cycle index polynomial for the trivial group reduces to the matching problem for G. However the reduction does not look easy for any nontrivial group even in very simple cases. And any such nontrivial groups could not be found. 4 Acknowledgements I would like to sincerely thank Prof. Piyush P. Kurur, for his constant encouragement and guidance throughout this work. References [] Mark Jerrum, Computational Pólya Theory, In Surveys in combinatorics (995), [2] A.K. Lal, Lecture Notes on Discrete Mathematics, available at home.iitk.ac.in/ arlal/book/mth202.pdf [3] Peter J. Cameron, Notes on Counting, available at ac.uk/ pjc/notes/counting.pdf 8

The cycle polynomial of a permutation group

The cycle polynomial of a permutation group The cycle polynomial of a permutation group Peter J. Cameron School of Mathematics and Statistics University of St Andrews North Haugh St Andrews, Fife, U.K. pjc0@st-andrews.ac.uk Jason Semeraro Department

More information

Enumerative Combinatorics 7: Group actions

Enumerative Combinatorics 7: Group actions Enumerative Combinatorics 7: Group actions Peter J. Cameron Autumn 2013 How many ways can you colour the faces of a cube with three colours? Clearly the answer is 3 6 = 729. But what if we regard two colourings

More information

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is

More information

Group Theory

Group Theory Group Theory 2014 2015 Solutions to the exam of 4 November 2014 13 November 2014 Question 1 (a) For every number n in the set {1, 2,..., 2013} there is exactly one transposition (n n + 1) in σ, so σ is

More information

How to count - an exposition of Polya s theory of enumeration

How to count - an exposition of Polya s theory of enumeration How to count - an exposition of Polya s theory of enumeration Shriya Anand Published in Resonance, September 2002 P.19-35. Shriya Anand is a BA Honours Mathematics III year student from St. Stephens College,

More information

Cosets. gh = {gh h H}. Hg = {hg h H}.

Cosets. gh = {gh h H}. Hg = {hg h H}. Cosets 10-4-2006 If H is a subgroup of a group G, a left coset of H in G is a subset of the form gh = {gh h H}. A right coset of H in G is a subset of the form Hg = {hg h H}. The collection of left cosets

More information

SF2729 GROUPS AND RINGS LECTURE NOTES

SF2729 GROUPS AND RINGS LECTURE NOTES SF2729 GROUPS AND RINGS LECTURE NOTES 2011-03-01 MATS BOIJ 6. THE SIXTH LECTURE - GROUP ACTIONS In the sixth lecture we study what happens when groups acts on sets. 1 Recall that we have already when looking

More information

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract Permutation groups Whatever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms... You can expect to gain a deep insight into the constitution of Σ in this way.

More information

120A LECTURE OUTLINES

120A LECTURE OUTLINES 120A LECTURE OUTLINES RUI WANG CONTENTS 1. Lecture 1. Introduction 1 2 1.1. An algebraic object to study 2 1.2. Group 2 1.3. Isomorphic binary operations 2 2. Lecture 2. Introduction 2 3 2.1. The multiplication

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Permutation groups and the graph isomorphism problem

Permutation groups and the graph isomorphism problem Permutation groups and the graph isomorphism problem Sumanta Ghosh and Piyush P Kurur Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

More information

POLYA S ENUMERATION ALEC ZHANG

POLYA S ENUMERATION ALEC ZHANG POLYA S ENUMERATION ALEC ZHANG Abstract. We explore Polya s theory of counting from first principles, first building up the necessary algebra and group theory before proving Polya s Enumeration Theorem

More information

Combining the cycle index and the Tutte polynomial?

Combining the cycle index and the Tutte polynomial? Combining the cycle index and the Tutte polynomial? Peter J. Cameron University of St Andrews Combinatorics Seminar University of Vienna 23 March 2017 Selections Students often meet the following table

More information

Finding a derangement

Finding a derangement Finding a derangement Peter J. Cameron, CSG, January 203 Derangements A derangement, or fixed-point-free permutation, is a permutation on a set Ω which leaves no point fixed. Dante Alighieri, in the Inferno

More information

Modern Algebra I. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

Modern Algebra I. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1 2 3 style total Math 415 Please print your name: Answer Key 1 True/false Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1. Every group of order 6

More information

On cycle index and orbit stabilizer of Symmetric group

On cycle index and orbit stabilizer of Symmetric group The International Journal Of Engineering And Science (IJES) Volume 3 Issue 1 Pages 18-26 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 On cycle index and orbit stabilizer of Symmetric group 1 Mogbonju M.

More information

What is a semigroup? What is a group? What is the difference between a semigroup and a group?

What is a semigroup? What is a group? What is the difference between a semigroup and a group? The second exam will be on Thursday, July 5, 2012. The syllabus will be Sections IV.5 (RSA Encryption), III.1, III.2, III.3, III.4 and III.8, III.9, plus the handout on Burnside coloring arguments. Of

More information

18. Counting Patterns

18. Counting Patterns 18.1 The Problem of Counting Patterns 18. Counting Patterns For this discussion, consider a collection of objects and a group of permutation symmetries (G) that can act on the objects. An object is not

More information

Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying:

Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying: Group Actions 8-26-202 Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying: (a) θ(g,θ(g 2,x)) = θ(g g 2,x) for all g,g 2 G and x X. (b) θ(,x) =

More information

Lecture 8: Finite fields

Lecture 8: Finite fields Lecture 8: Finite fields Rajat Mittal IIT Kanpur We have learnt about groups, rings, integral domains and fields till now. Fields have the maximum required properties and hence many nice theorems can be

More information

The Graph Structure of Chebyshev Polynomials over Finite Fields and Applications

The Graph Structure of Chebyshev Polynomials over Finite Fields and Applications The Graph Structure of Chebyshev Polynomials over Finite Fields and Applications Claudio Qureshi and Daniel Panario arxiv:803.06539v [cs.dm] 7 Mar 08 Abstract We completely describe the functional graph

More information

SUPPLEMENT ON THE SYMMETRIC GROUP

SUPPLEMENT ON THE SYMMETRIC GROUP SUPPLEMENT ON THE SYMMETRIC GROUP RUSS WOODROOFE I presented a couple of aspects of the theory of the symmetric group S n differently than what is in Herstein. These notes will sketch this material. You

More information

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that MATH 402A - Solutions for the suggested problems. A. (Groups of order 8. (a Which of the five groups G (as specified in the question have the following property: G has a normal subgroup N such that N =

More information

Exercises MAT2200 spring 2013 Ark 3 Cosets, Direct products and Abelian groups

Exercises MAT2200 spring 2013 Ark 3 Cosets, Direct products and Abelian groups Exercises MAT2200 spring 2013 Ark 3 Cosets, Direct products and Abelian groups This Ark concerns the weeks No. (Feb ) andno. (Feb Mar ). The plans for those two weeks are as follows: On Wednesday Feb I

More information

Partitions and permutations

Partitions and permutations Partitions and permutations Peter J. Cameron School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK Abstract With any permutation g of a set Ω is associated

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

Permutation Group Algorithms

Permutation Group Algorithms Permutation Group Algorithms 2016 1 / 32 Permutation Group Algorithms Zoltán Halasi Eötvös Loránd University 2016 More group theory Permutation Group Algorithms 2016 2 / 32 Going into deeper to the structure

More information

HAMILTONICITY IN CAYLEY GRAPHS AND DIGRAPHS OF FINITE ABELIAN GROUPS.

HAMILTONICITY IN CAYLEY GRAPHS AND DIGRAPHS OF FINITE ABELIAN GROUPS. HAMILTONICITY IN CAYLEY GRAPHS AND DIGRAPHS OF FINITE ABELIAN GROUPS. MARY STELOW Abstract. Cayley graphs and digraphs are introduced, and their importance and utility in group theory is formally shown.

More information

Math 120. Groups and Rings Midterm Exam (November 8, 2017) 2 Hours

Math 120. Groups and Rings Midterm Exam (November 8, 2017) 2 Hours Math 120. Groups and Rings Midterm Exam (November 8, 2017) 2 Hours Name: Please read the questions carefully. You will not be given partial credit on the basis of having misunderstood a question, and please

More information

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur Lecture 4: Orbits Rajat Mittal IIT Kanpur In the beginning of the course we asked a question. How many different necklaces can we form using 2 black beads and 10 white beads? In the question, the numbers

More information

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 14, 2011 Problem: Let Z = {a G ax = xa, x G} be the center of a group G. Prove that Z is a normal subgroup of G. Solution: First we prove Z is

More information

Section 10: Counting the Elements of a Finite Group

Section 10: Counting the Elements of a Finite Group Section 10: Counting the Elements of a Finite Group Let G be a group and H a subgroup. Because the right cosets are the family of equivalence classes with respect to an equivalence relation on G, it follows

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson On almost every Friday of the semester, we will have a brief quiz to make sure you have memorized the definitions encountered in our studies.

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

Lecture 5.6: The Sylow theorems

Lecture 5.6: The Sylow theorems Lecture 5.6: The Sylow theorems Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 5.6:

More information

Algebras with finite descriptions

Algebras with finite descriptions Algebras with finite descriptions André Nies The University of Auckland July 19, 2005 Part 1: FA-presentability A countable structure in a finite signature is finite-automaton presentable (or automatic)

More information

Zero sum partition of Abelian groups into sets of the same order and its applications

Zero sum partition of Abelian groups into sets of the same order and its applications Zero sum partition of Abelian groups into sets of the same order and its applications Sylwia Cichacz Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków,

More information

Name: Solutions - AI FINAL EXAM

Name: Solutions - AI FINAL EXAM 1 2 3 4 5 6 7 8 9 10 11 12 13 total Name: Solutions - AI FINAL EXAM The first 7 problems will each count 10 points. The best 3 of # 8-13 will count 10 points each. Total is 100 points. A 4th problem from

More information

Solving an arbitrary permutation puzzle

Solving an arbitrary permutation puzzle T.C. Brouwer Solving an arbitrary permutation puzzle Bachelor thesis, June 18, 2016 Supervisor: Dr. R.M. van Luijk Mathematisch Instituut, Universiteit Leiden Contents 1 Introduction 2 Mathematical formulation

More information

Chapter 5 Groups of permutations (bijections) Basic notation and ideas We study the most general type of groups - groups of permutations

Chapter 5 Groups of permutations (bijections) Basic notation and ideas We study the most general type of groups - groups of permutations Chapter 5 Groups of permutations (bijections) Basic notation and ideas We study the most general type of groups - groups of permutations (bijections). Definition A bijection from a set A to itself is also

More information

Cosets, factor groups, direct products, homomorphisms, isomorphisms

Cosets, factor groups, direct products, homomorphisms, isomorphisms Cosets, factor groups, direct products, homomorphisms, isomorphisms Sergei Silvestrov Spring term 2011, Lecture 11 Contents of the lecture Cosets and the theorem of Lagrange. Direct products and finitely

More information

ORBIT-HOMOGENEITY IN PERMUTATION GROUPS

ORBIT-HOMOGENEITY IN PERMUTATION GROUPS Submitted exclusively to the London Mathematical Society DOI: 10.1112/S0000000000000000 ORBIT-HOMOGENEITY IN PERMUTATION GROUPS PETER J. CAMERON and ALEXANDER W. DENT Abstract This paper introduces the

More information

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno 3.1. The denition. 3. G Groups, as men, will be known by their actions. - Guillermo Moreno D 3.1. An action of a group G on a set X is a function from : G X! X such that the following hold for all g, h

More information

Introduction to finite fields

Introduction to finite fields Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

REU 2007 Discrete Math Lecture 2

REU 2007 Discrete Math Lecture 2 REU 2007 Discrete Math Lecture 2 Instructor: László Babai Scribe: Shawn Drenning June 19, 2007. Proofread by instructor. Last updated June 20, 1 a.m. Exercise 2.0.1. Let G be an abelian group and A G be

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Lecture 11: Cantor-Zassenhaus Algorithm

Lecture 11: Cantor-Zassenhaus Algorithm CS681 Computational Number Theory Lecture 11: Cantor-Zassenhaus Algorithm Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview In this class, we shall look at the Cantor-Zassenhaus randomized

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

S11MTH 3175 Group Theory (Prof.Todorov) Final (Practice Some Solutions) 2 BASIC PROPERTIES

S11MTH 3175 Group Theory (Prof.Todorov) Final (Practice Some Solutions) 2 BASIC PROPERTIES S11MTH 3175 Group Theory (Prof.Todorov) Final (Practice Some Solutions) 2 BASIC PROPERTIES 1 Some Definitions For your convenience, we recall some of the definitions: A group G is called simple if it has

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] All of

More information

Math 430 Final Exam, Fall 2008

Math 430 Final Exam, Fall 2008 IIT Dept. Applied Mathematics, December 9, 2008 1 PRINT Last name: Signature: First name: Student ID: Math 430 Final Exam, Fall 2008 Grades should be posted Friday 12/12. Have a good break, and don t forget

More information

The Class Equation X = Gx. x X/G

The Class Equation X = Gx. x X/G The Class Equation 9-9-2012 If X is a G-set, X is partitioned by the G-orbits. So if X is finite, X = x X/G ( x X/G means you should take one representative x from each orbit, and sum over the set of representatives.

More information

MA441: Algebraic Structures I. Lecture 18

MA441: Algebraic Structures I. Lecture 18 MA441: Algebraic Structures I Lecture 18 5 November 2003 1 Review from Lecture 17: Theorem 6.5: Aut(Z/nZ) U(n) For every positive integer n, Aut(Z/nZ) is isomorphic to U(n). The proof used the map T :

More information

We begin with some definitions which apply to sets in general, not just groups.

We begin with some definitions which apply to sets in general, not just groups. Chapter 8 Cosets In this chapter, we develop new tools which will allow us to extend to every finite group some of the results we already know for cyclic groups. More specifically, we will be able to generalize

More information

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld.

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld. ENTRY GROUP THEORY [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld Group theory [Group theory] is studies algebraic objects called groups.

More information

The number 6. Gabriel Coutinho 2013

The number 6. Gabriel Coutinho 2013 The number 6 Gabriel Coutinho 2013 Abstract The number 6 has a unique and distinguished property. It is the only natural number n for which there is a construction of n isomorphic objects on a set with

More information

Regular and synchronizing transformation monoids

Regular and synchronizing transformation monoids Regular and synchronizing transformation monoids Peter J. Cameron NBSAN, York 23 November 2011 Mathematics may be defined as the subject in which we never know what we are talking about, nor whether what

More information

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Modern Algebra June 22, 2017 Midterm Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

Rohit Garg Roll no Dr. Deepak Gumber

Rohit Garg Roll no Dr. Deepak Gumber FINITE -GROUPS IN WHICH EACH CENTRAL AUTOMORPHISM FIXES THE CENTER ELEMENTWISE Thesis submitted in partial fulfillment of the requirement for the award of the degree of Masters of Science In Mathematics

More information

Graph Isomorphism is in SPP

Graph Isomorphism is in SPP Graph Isomorphism is in SPP V. Arvind and Piyush P Kurur Institute of Mathematical Sciences, C.I.T Campus Chennai 600113, India email: {arvind,ppk}@imsc.ernet.in Abstract We show that Graph Isomorphism

More information

Proof. Right multiplication of a permutation by a transposition of neighbors either creates a new inversion or kills an existing one.

Proof. Right multiplication of a permutation by a transposition of neighbors either creates a new inversion or kills an existing one. GROUPS AROUND US Pavel Etingof Introduction These are notes of a mini-course of group theory for high school students that I gave in the Summer of 2009. This mini-course covers the most basic parts of

More information

Abstract Algebra Study Sheet

Abstract Algebra Study Sheet Abstract Algebra Study Sheet This study sheet should serve as a guide to which sections of Artin will be most relevant to the final exam. When you study, you may find it productive to prioritize the definitions,

More information

Math 430 Exam 2, Fall 2008

Math 430 Exam 2, Fall 2008 Do not distribute. IIT Dept. Applied Mathematics, February 16, 2009 1 PRINT Last name: Signature: First name: Student ID: Math 430 Exam 2, Fall 2008 These theorems may be cited at any time during the test

More information

q xk y n k. , provided k < n. (This does not hold for k n.) Give a combinatorial proof of this recurrence by means of a bijective transformation.

q xk y n k. , provided k < n. (This does not hold for k n.) Give a combinatorial proof of this recurrence by means of a bijective transformation. Math 880 Alternative Challenge Problems Fall 2016 A1. Given, n 1, show that: m1 m 2 m = ( ) n+ 1 2 1, where the sum ranges over all positive integer solutions (m 1,..., m ) of m 1 + + m = n. Give both

More information

Local finiteness, distinguishing numbers, and Tucker s conjecture

Local finiteness, distinguishing numbers, and Tucker s conjecture Local finiteness, distinguishing numbers, and Tucker s conjecture Florian Lehner Department of Mathematics University of Hamburg Hamburg, Germany mail@florian-lehner.net Rögnvaldur G. Möller School of

More information

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation Peter J. Cameron University of St Andrews Shanghai Jiao Tong University November 2017 Idempotent generation We are interested

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Section III.15. Factor-Group Computations and Simple Groups

Section III.15. Factor-Group Computations and Simple Groups III.15 Factor-Group Computations 1 Section III.15. Factor-Group Computations and Simple Groups Note. In this section, we try to extract information about a group G by considering properties of the factor

More information

Groups and Symmetries

Groups and Symmetries Groups and Symmetries Definition: Symmetry A symmetry of a shape is a rigid motion that takes vertices to vertices, edges to edges. Note: A rigid motion preserves angles and distances. Definition: Group

More information

Tiling problems in music theory

Tiling problems in music theory Tiling problems in music theory Harald Fripertinger Abstract In mathematical music theory we often come across various constructions on Z n, the set of residues modulo n for n 2. Different objects constructed

More information

INFINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS

INFINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS INFINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS YONGWEI YAO Abstract. For any commutative ring R that is not a domain, there is a zerodivisor graph, denoted Γ(R), in which the vertices are the nonzero zero-divisors

More information

Isomorphisms between pattern classes

Isomorphisms between pattern classes Journal of Combinatorics olume 0, Number 0, 1 8, 0000 Isomorphisms between pattern classes M. H. Albert, M. D. Atkinson and Anders Claesson Isomorphisms φ : A B between pattern classes are considered.

More information

Introduction to Groups

Introduction to Groups Introduction to Groups Hong-Jian Lai August 2000 1. Basic Concepts and Facts (1.1) A semigroup is an ordered pair (G, ) where G is a nonempty set and is a binary operation on G satisfying: (G1) a (b c)

More information

May 6, Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work.

May 6, Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work. Math 236H May 6, 2008 Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work. 1. (15 points) Prove that the symmetric group S 4 is generated

More information

CONSEQUENCES OF THE SYLOW THEOREMS

CONSEQUENCES OF THE SYLOW THEOREMS CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.

More information

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups Journal of Algebraic Combinatorics 12 (2000), 123 130 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Tactical Decompositions of Steiner Systems and Orbits of Projective Groups KELDON

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

HW2 Solutions Problem 1: 2.22 Find the sign and inverse of the permutation shown in the book (and below).

HW2 Solutions Problem 1: 2.22 Find the sign and inverse of the permutation shown in the book (and below). Teddy Einstein Math 430 HW Solutions Problem 1:. Find the sign and inverse of the permutation shown in the book (and below). Proof. Its disjoint cycle decomposition is: (19)(8)(37)(46) which immediately

More information

Lecture 2: Groups. Rajat Mittal. IIT Kanpur

Lecture 2: Groups. Rajat Mittal. IIT Kanpur Lecture 2: Groups Rajat Mittal IIT Kanpur These notes are about the first abstract mathematical structure we are going to study, groups. You are already familiar with set, which is just a collection of

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP Quantum algorithms (CO 78, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP So far, we have considered the hidden subgroup problem in abelian groups.

More information

Irredundant generating sets and dimension-like invariants of the finite group arxiv: v2 [math.gr] 13 Dec 2017

Irredundant generating sets and dimension-like invariants of the finite group arxiv: v2 [math.gr] 13 Dec 2017 Irredundant generating sets and dimension-like invariants of the finite group arxiv:1712.03923v2 [math.gr] 13 Dec 2017 Minh Nguyen April 9, 2018 Abstract Whiston proved that the maximum size of an irredundant

More information

THE SYLOW THEOREMS AND THEIR APPLICATIONS

THE SYLOW THEOREMS AND THEIR APPLICATIONS THE SYLOW THEOREMS AND THEIR APPLICATIONS AMIN IDELHAJ Abstract. This paper begins with an introduction into the concept of group actions, along with the associated notions of orbits and stabilizers, culminating

More information

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions. D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

More information

MA441: Algebraic Structures I. Lecture 26

MA441: Algebraic Structures I. Lecture 26 MA441: Algebraic Structures I Lecture 26 10 December 2003 1 (page 179) Example 13: A 4 has no subgroup of order 6. BWOC, suppose H < A 4 has order 6. Then H A 4, since it has index 2. Thus A 4 /H has order

More information

Section 13 Homomorphisms

Section 13 Homomorphisms Section 13 Homomorphisms Instructor: Yifan Yang Fall 2006 Homomorphisms Definition A map φ of a group G into a group G is a homomorphism if for all a, b G. φ(ab) = φ(a)φ(b) Examples 1. Let φ : G G be defined

More information

PÓLYA S ENUMERATION THEOREM AND ITS APPLICATIONS. Master s Thesis December 2015

PÓLYA S ENUMERATION THEOREM AND ITS APPLICATIONS. Master s Thesis December 2015 PÓLYA S ENUMERATION THEOREM AND ITS APPLICATIONS Master s Thesis December 205 Author: Matias von Bell Primary Supervisor: Anne-Maria Ernvall-Hytönen Secondary Supervisor: Erik Elfving DEPARTMENT OF MATHEMATICS

More information

Lecture 15: The Hidden Subgroup Problem

Lecture 15: The Hidden Subgroup Problem CS 880: Quantum Information Processing 10/7/2010 Lecture 15: The Hidden Subgroup Problem Instructor: Dieter van Melkebeek Scribe: Hesam Dashti The Hidden Subgroup Problem is a particular type of symmetry

More information

Regular permutation groups. and Cayley graphs. Cheryl E Praeger. University of Western Australia

Regular permutation groups. and Cayley graphs. Cheryl E Praeger. University of Western Australia Regular permutation groups and Cayley graphs Cheryl E Praeger University of Western Australia 1 What are Cayley graphs? Group : G with generating set S = {s, t, u,... } Group elements: words in S stu 1

More information

Edge colored complete bipartite graphs with trivial automorphism groups

Edge colored complete bipartite graphs with trivial automorphism groups Edge colored complete bipartite graphs with trivial automorphism groups Michael J. Fisher Garth Isaak Abstract We determine the values of s and t for which there is a coloring of the edges of the complete

More information

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

More information

Quizzes for Math 401

Quizzes for Math 401 Quizzes for Math 401 QUIZ 1. a) Let a,b be integers such that λa+µb = 1 for some inetegrs λ,µ. Prove that gcd(a,b) = 1. b) Use Euclid s algorithm to compute gcd(803, 154) and find integers λ,µ such that

More information

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation MRQ 2009 School of Mathematics and Statistics MT5824 Topics in Groups Problem Sheet I: Revision and Re-Activation 1. Let H and K be subgroups of a group G. Define HK = {hk h H, k K }. (a) Show that HK

More information

TC10 / 3. Finite fields S. Xambó

TC10 / 3. Finite fields S. Xambó TC10 / 3. Finite fields S. Xambó The ring Construction of finite fields The Frobenius automorphism Splitting field of a polynomial Structure of the multiplicative group of a finite field Structure of the

More information

The Symmetric Groups

The Symmetric Groups Chapter 7 The Symmetric Groups 7. Introduction In the investigation of finite groups the symmetric groups play an important role. Often we are able to achieve a better understanding of a group if we can

More information

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall I. Take-Home Portion: Math 350 Final Exam Due by 5:00pm on Tues. 5/12/15 No resources/devices other than our class textbook and class notes/handouts may be used. You must work alone. Choose any 5 problems

More information

The Möbius function of the small Ree groups

The Möbius function of the small Ree groups The Möbius function of the small Ree groups Emilio Pierro Fakultät für Mathematik, Universität Bielefeld, 3360, Bielefeld, Germany and Department of Economics, Mathematics and Statistics, Birkbeck, University

More information