A two-phase sampling scheme and πps designs

Size: px
Start display at page:

Download "A two-phase sampling scheme and πps designs"

Transcription

1 p. 1/2 A two-phase sampling scheme and πps designs Thomas Laitila 1 and Jens Olofsson 2 thomas.laitila@esi.oru.se and jens.olofsson@oru.se 1 Statistics Sweden and Örebro University, Sweden 2 Örebro University, Sweden

2 p. 2/2 The problem Assume the population total on the variable y is of interest, i.e. t y = U y k k =1, 2,...,N

3 p. 2/2 The problem Assume the population total on the variable y is of interest, i.e. t y = U y k k =1, 2,...,N An estimator of the population total, t y, is given by ˆt y = s w ky k where w k is the design weight. If w k =1/π k, then ˆt y is unbiased, otherwise it is, more or less, biased.

4 p. 3/2 The problem The precision of the survey, i.e the precision of ˆt y could be increased by using a design with unequal inclusion probabilities compared to using a design were π k = π for all k U.

5 p. 3/2 The problem The precision of the survey, i.e the precision of ˆt y could be increased by using a design with unequal inclusion probabilities compared to using a design were π k = π for all k U. A simple family of designs with unequal first-order inclusion probabilities is the family of PO designs.

6 p. 3/2 The problem The precision of the survey, i.e the precision of ˆt y could be increased by using a design with unequal inclusion probabilities compared to using a design were π k = π for all k U. A simple family of designs with unequal first-order inclusion probabilities is the family of PO designs. An optimal choice of π k is π k y k

7 p. 4/2 The problem If a fixed-size design and w k =1/π k, the variance of ˆt y is V(ˆt π )= 1 2 U (π kl π k π l ) ( yk y ) 2 l π k π l

8 p. 4/2 The problem If a fixed-size design and w k =1/π k, the variance of ˆt y is V(ˆt π )= 1 2 U (π kl π k π l ) ( yk y ) 2 l π k π l It is easily seen that the variance is zero if π k y k (2)

9 p. 4/2 The problem If a fixed-size design and w k =1/π k, the variance of ˆt y is V(ˆt π )= 1 2 U (π kl π k π l ) ( yk y ) 2 l π k π l It is easily seen that the variance is zero if π k y k (3) If the design is not a fixed-size design as the PO design with π k y k, the variation of ˆt y would solely be due to the variation in the sample size.

10 p. 5/2 The problem Letting π k y k is impossible in practise.

11 p. 5/2 The problem Letting π k y k is impossible in practise. In some cases, however, there exits some positive variable x that co-varies positively with y and whose value is known for all k U.

12 p. 5/2 The problem Letting π k y k is impossible in practise. In some cases, however, there exits some positive variable x that co-varies positively with y and whose value is known for all k U. Using auxiliary information the πps rule is defined as π k x k

13 p. 5/2 The problem Letting π k y k is impossible in practise. In some cases, however, there exits some positive variable x that co-varies positively with y and whose value is known for all k U. Using auxiliary information the πps rule is defined as π k x k With-out replacement (wor) designs complying with the πps rule are said to be πps designs.

14 p. 6/2 The problem In literature different fixed-size designs that comply more or less with the πps rule have been proposed.

15 p. 6/2 The problem In literature different fixed-size designs that comply more or less with the πps rule have been proposed. Most of the designs are not easy to implement in practise.

16 p. 6/2 The problem In literature different fixed-size designs that comply more or less with the πps rule have been proposed. Most of the designs are not easy to implement in practise. Instead of rejective designs or designs that utilize order sampling we suggest a scheme that is based on a two-phase sampling design.

17 Two-phase sampling design p. 7/2

18 Two-phase sampling design p. 7/2

19 p. 8/2 Proposed scheme Let n be the pre-determined sample size and assume target first-order inclusion probabilities to be proportional to a size variable known for all k U, i.e. λ k x k.

20 p. 8/2 Proposed scheme Let n be the pre-determined sample size and assume target first-order inclusion probabilities to be proportional to a size variable known for all k U, i.e. λ k x k. Proposed scheme:

21 p. 8/2 Proposed scheme Let n be the pre-determined sample size and assume target first-order inclusion probabilities to be proportional to a size variable known for all k U, i.e. λ k x k. Proposed scheme: 1. Draw a sample using a PO design, where π ak x k, with expected sample size m n.

22 p. 8/2 Proposed scheme Let n be the pre-determined sample size and assume target first-order inclusion probabilities to be proportional to a size variable known for all k U, i.e. λ k x k. Proposed scheme: 1. Draw a sample using a PO design, where π ak x k, with expected sample size m n. 2. If the the size of the sampled set, s a is smaller than the pre-determined sample size, i.e. n sa <n, repeat step 1. If not, proceed to the next step.

23 p. 8/2 Proposed scheme Let n be the pre-determined sample size and assume target first-order inclusion probabilities to be proportional to a size variable known for all k U, i.e. λ k x k. Proposed scheme: 1. Draw a sample using a PO design, where π ak x k, with expected sample size m n. 2. If the the size of the sampled set, s a is smaller than the pre-determined sample size, i.e. n sa <n, repeat step 1. If not, proceed to the next step. 3. From the sampled set, s a, draw a sample of size n using a SI design.

24 p. 9/2 2Pπps design The proposed scheme correponds to a sampling design, here called the 2Pπps design, with first- and second order inclusion probabilities given by

25 p. 9/2 2Pπps design The proposed scheme correponds to a sampling design, here called the 2Pπps design, with first- and second order inclusion probabilities given by ( ) n π k = π ak E pa k s a,n sa n n sa

26 p. 9/2 2Pπps design The proposed scheme correponds to a sampling design, here called the 2Pπps design, with first- and second order inclusion probabilities given by ( ) n π k = π ak E pa k s a,n sa n n sa ( ) n(n 1) π kl = π akl E pa n sa (n sa 1) k&l s a,n sa n

27 p. 10/2 Estimation Using the proposed scheme and implied design population parameters could be estimated using standard two-phase theory. An unbiased estimator of t y is given by ˆt π = s y k π = s y k π ak π k sa

28 p. 10/2 Estimation Using the proposed scheme and implied design population parameters could be estimated using standard two-phase theory. An unbiased estimator of t y is given by ˆt π = s y k π = s y k π ak π k sa An alternative is to regard the sample as a true πps and use ˆt 2Pπps = s y k λ k as an estimator of y y. This will result in some bias, since π k λ k.

29 p. 11/2 Simulation The proposed design has been evaluated by means of a Monte Carlo simulation with replicates.

30 p. 11/2 Simulation The proposed design has been evaluated by means of a Monte Carlo simulation with replicates. The MU284 population was used and it was multiplied with 10 to the power of z, where z = {0, 1, 2, 3}, in order to also have larger populations.

31 p. 12/2 Simulation U i N m n U U , 50 U , 50, 500 U , 50, 500, 5000 Table 1: Descriptives on the populations and simulation setup

32 p. 13/2 Simulation For comparision, the Pareto πps design was included with as an estimator of t y. ˆt PAR,λ = s y k/λ k

33 p. 13/2 Simulation For comparision, the Pareto πps design was included with as an estimator of t y. ˆt PAR,λ = s y k/λ k The other estimators are ˆt 2Pπps,λ and ˆt π.

34 p. 14/2 Simulation The relative empirical bias is definied as REB = Ê(θ) θ θ 100 where Ê(θ) is MC estimated.

35 Results ˆt PAR,λ ˆt 2Pπps,λ ˆt 2P,π U n =5 U U U U n =50 U U U U n = 5000 U Table 2: Relative empirical bias for ˆt PAR,λ, ˆt 2Pπps,λ and ˆt π p. 15/2

36 Table 3: Empirical design effect of Pareto πps, 2Pπps and 2P PO,SI p. 16/2 Results ˆt PAR,λ ˆt 2Pπps,λ ˆt 2P,π U n =5 U U U U n =50 U U U U n = 5000 U

37 Table 4: Empirical design effect of Pareto πps, 2Pπps and 2P PO,SI p. 16/2 Results ˆt PAR,λ ˆt 2Pπps,λ ˆt 2P,π U n =5 U U U U n =50 U U U U n = 5000 U

38 Table 5: Empirical design effect of Pareto πps, 2Pπps and 2P PO,SI p. 16/2 Results ˆt PAR,λ ˆt 2Pπps,λ ˆt 2P,π U n =5 U U U U n =50 U U U U n = 5000 U

39 p. 17/2 Variances A variance estimator for the 2Pπps design has not yet been derived.

40 p. 17/2 Variances A variance estimator for the 2Pπps design has not yet been derived. An option is to use the variance estimator derived for the Pareto πps design, i.e. ˆV(ˆt PAR,λ )= n n 1 ( (1 λ k ) s ( yk λ k s y ) ) 2 k(1 λ k )/λ k s (1 λ k)

41 p. 18/2 Results ˆt PAR,λ ˆt 2Pπps,λ ˆt 2P,π U n =5 U U U n = 5000 U Table 6: Relative empirical bias for ˆV(ˆt PAR,λ ), ˆV(ˆt 2Pπps,λ )andˆv(ˆt π )

42 p. 19/2 Conluding remarks A two-phase fixed-size sampling scheme with unequal first-order inclusion probabilities has been proposed to generate a sample where the first-order inclusion probabilities comply with the πps rule.

43 p. 19/2 Conluding remarks A two-phase fixed-size sampling scheme with unequal first-order inclusion probabilities has been proposed to generate a sample where the first-order inclusion probabilities comply with the πps rule. The proposed algorithm facilitates unbiased estimation by using the standard two-phase theory and it is more efficient, in terms of precision than using a SI design coupled with the π-estimator.

44 p. 19/2 Conluding remarks A two-phase fixed-size sampling scheme with unequal first-order inclusion probabilities has been proposed to generate a sample where the first-order inclusion probabilities comply with the πps rule. The proposed algorithm facilitates unbiased estimation by using the standard two-phase theory and it is more efficient, in terms of precision than using a SI design coupled with the π-estimator. Viewing the sample as a true πps sample, using the 2Pπps design, works well with respect to empirical bias and precision.

45 p. 20/2 Concluding remarks When using the 2Pπps design, the empirical bias of the point estimator is on a par with the empirical bias using standard two-phase estimation.

46 p. 20/2 Concluding remarks When using the 2Pπps design, the empirical bias of the point estimator is on a par with the empirical bias using standard two-phase estimation. In terms of precision, the precision is on a par with using the Pareto πps design.

47 p. 20/2 Concluding remarks When using the 2Pπps design, the empirical bias of the point estimator is on a par with the empirical bias using standard two-phase estimation. In terms of precision, the precision is on a par with using the Pareto πps design. The proposed scheme is easier theoretically to grasp than many of the other fixed-size schemes suggested for a πps design and it is also easy to use since the designs used are implementet in most statistical softwares.

48 First-order inclusion probabilities p. 21/2

Cluster Sampling 2. Chapter Introduction

Cluster Sampling 2. Chapter Introduction Chapter 7 Cluster Sampling 7.1 Introduction In this chapter, we consider two-stage cluster sampling where the sample clusters are selected in the first stage and the sample elements are selected in the

More information

Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate πps Sampling Design

Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate πps Sampling Design Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 127 a 140 Algorithms to Calculate Exact Inclusion Probabilities for a Non-Rejective Approximate πps Sampling Design Algoritmos para

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

The Central Limit Theorem

The Central Limit Theorem Introductory Statistics Lectures The Central Limit Theorem Sampling distributions Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission

More information

A comparison of stratified simple random sampling and sampling with probability proportional to size

A comparison of stratified simple random sampling and sampling with probability proportional to size A comparison of stratified simple random sampling and sampling with probability proportional to size Edgar Bueno Dan Hedlin Per Gösta Andersson Department of Statistics Stockholm University Introduction

More information

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator by Emmanuel Flachaire Eurequa, University Paris I Panthéon-Sorbonne December 2001 Abstract Recent results of Cribari-Neto and Zarkos

More information

Estimation of change in a rotation panel design

Estimation of change in a rotation panel design Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS028) p.4520 Estimation of change in a rotation panel design Andersson, Claes Statistics Sweden S-701 89 Örebro, Sweden

More information

Two Different Shrinkage Estimator Classes for the Shape Parameter of Classical Pareto Distribution

Two Different Shrinkage Estimator Classes for the Shape Parameter of Classical Pareto Distribution Two Different Shrinkage Estimator Classes for the Shape Parameter of Classical Pareto Distribution Meral EBEGIL and Senay OZDEMIR Abstract In this study, biased estimators for the shape parameter of a

More information

Chapter 8: Estimation 1

Chapter 8: Estimation 1 Chapter 8: Estimation 1 Jae-Kwang Kim Iowa State University Fall, 2014 Kim (ISU) Ch. 8: Estimation 1 Fall, 2014 1 / 33 Introduction 1 Introduction 2 Ratio estimation 3 Regression estimator Kim (ISU) Ch.

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Section 8.1: Interval Estimation

Section 8.1: Interval Estimation Section 8.1: Interval Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 8.1: Interval Estimation 1/ 35 Section

More information

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017 Chalmers April 6, 2017 Bayesian philosophy Bayesian philosophy Bayesian statistics versus classical statistics: War or co-existence? Classical statistics: Models have variables and parameters; these are

More information

Estimation of Some Proportion in a Clustered Population

Estimation of Some Proportion in a Clustered Population Nonlinear Analysis: Modelling and Control, 2009, Vol. 14, No. 4, 473 487 Estimation of Some Proportion in a Clustered Population D. Krapavicaitė Institute of Mathematics and Informatics Aademijos str.

More information

Calibration to Deal with Nonresponse Comparing Different Sampling Designs

Calibration to Deal with Nonresponse Comparing Different Sampling Designs Örebro University Örebro University School of Business Master Program of Applied Statistics Supervisor: Per-Gösta Andersson Examiner: Panagiotis Mantalos 2013/05/27 Calibration to Deal with Nonresponse

More information

Chapter 3: Element sampling design: Part 1

Chapter 3: Element sampling design: Part 1 Chapter 3: Element sampling design: Part 1 Jae-Kwang Kim Fall, 2014 Simple random sampling 1 Simple random sampling 2 SRS with replacement 3 Systematic sampling Kim Ch. 3: Element sampling design: Part

More information

Indirect Sampling in Case of Asymmetrical Link Structures

Indirect Sampling in Case of Asymmetrical Link Structures Indirect Sampling in Case of Asymmetrical Link Structures Torsten Harms Abstract Estimation in case of indirect sampling as introduced by Huang (1984) and Ernst (1989) and developed by Lavalle (1995) Deville

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling

Rejection sampling - Acceptance probability. Review: How to sample from a multivariate normal in R. Review: Rejection sampling. Weighted resampling Rejection sampling - Acceptance probability Review: How to sample from a multivariate normal in R Goal: Simulate from N d (µ,σ)? Note: For c to be small, g() must be similar to f(). The art of rejection

More information

Bias Correction in the Balanced-half-sample Method if the Number of Sampled Units in Some Strata Is Odd

Bias Correction in the Balanced-half-sample Method if the Number of Sampled Units in Some Strata Is Odd Journal of Of cial Statistics, Vol. 14, No. 2, 1998, pp. 181±188 Bias Correction in the Balanced-half-sample Method if the Number of Sampled Units in Some Strata Is Odd Ger T. Slootbee 1 The balanced-half-sample

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Application of Variance Homogeneity Tests Under Violation of Normality Assumption

Application of Variance Homogeneity Tests Under Violation of Normality Assumption Application of Variance Homogeneity Tests Under Violation of Normality Assumption Alisa A. Gorbunova, Boris Yu. Lemeshko Novosibirsk State Technical University Novosibirsk, Russia e-mail: gorbunova.alisa@gmail.com

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

A comparison of stratified simple random sampling and sampling with probability proportional to size

A comparison of stratified simple random sampling and sampling with probability proportional to size A comparison of stratified simple random sampling and sampling with probability proportional to size Edgar Bueno Dan Hedlin Per Gösta Andersson 1 Introduction When planning the sampling strategy (i.e.

More information

Estimation of Parameters

Estimation of Parameters CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists FUNDAMENTALS OF STATISTICAL ANALYSIS Second Edition A. J. Clark School of Engineering Department of Civil and Environmental

More information

Estimation of Parameters and Variance

Estimation of Parameters and Variance Estimation of Parameters and Variance Dr. A.C. Kulshreshtha U.N. Statistical Institute for Asia and the Pacific (SIAP) Second RAP Regional Workshop on Building Training Resources for Improving Agricultural

More information

6. Fractional Imputation in Survey Sampling

6. Fractional Imputation in Survey Sampling 6. Fractional Imputation in Survey Sampling 1 Introduction Consider a finite population of N units identified by a set of indices U = {1, 2,, N} with N known. Associated with each unit i in the population

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

STATISTICS 4, S4 (4769) A2

STATISTICS 4, S4 (4769) A2 (4769) A2 Objectives To provide students with the opportunity to explore ideas in more advanced statistics to a greater depth. Assessment Examination (72 marks) 1 hour 30 minutes There are four options

More information

Figure Figure

Figure Figure Figure 4-12. Equal probability of selection with simple random sampling of equal-sized clusters at first stage and simple random sampling of equal number at second stage. The next sampling approach, shown

More information

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy.

of being selected and varying such probability across strata under optimal allocation leads to increased accuracy. 5 Sampling with Unequal Probabilities Simple random sampling and systematic sampling are schemes where every unit in the population has the same chance of being selected We will now consider unequal probability

More information

The exact bootstrap method shown on the example of the mean and variance estimation

The exact bootstrap method shown on the example of the mean and variance estimation Comput Stat (2013) 28:1061 1077 DOI 10.1007/s00180-012-0350-0 ORIGINAL PAPER The exact bootstrap method shown on the example of the mean and variance estimation Joanna Kisielinska Received: 21 May 2011

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

A comparison of pivotal sampling and unequal. probability sampling with replacement

A comparison of pivotal sampling and unequal. probability sampling with replacement arxiv:1609.02688v2 [math.st] 13 Sep 2016 A comparison of pivotal sampling and unequal probability sampling with replacement Guillaume Chauvet 1 and Anne Ruiz-Gazen 2 1 ENSAI/IRMAR, Campus de Ker Lann,

More information

ADJUSTED POWER ESTIMATES IN. Ji Zhang. Biostatistics and Research Data Systems. Merck Research Laboratories. Rahway, NJ

ADJUSTED POWER ESTIMATES IN. Ji Zhang. Biostatistics and Research Data Systems. Merck Research Laboratories. Rahway, NJ ADJUSTED POWER ESTIMATES IN MONTE CARLO EXPERIMENTS Ji Zhang Biostatistics and Research Data Systems Merck Research Laboratories Rahway, NJ 07065-0914 and Dennis D. Boos Department of Statistics, North

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

EE/PEP 345. Modeling and Simulation. Spring Class 11

EE/PEP 345. Modeling and Simulation. Spring Class 11 EE/PEP 345 Modeling and Simulation Class 11 11-1 Output Analysis for a Single Model Performance measures System being simulated Output Output analysis Stochastic character Types of simulations Output analysis

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Nonresponse weighting adjustment using estimated response probability

Nonresponse weighting adjustment using estimated response probability Nonresponse weighting adjustment using estimated response probability Jae-kwang Kim Yonsei University, Seoul, Korea December 26, 2006 Introduction Nonresponse Unit nonresponse Item nonresponse Basic strategy

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

Statistical Education - The Teaching Concept of Pseudo-Populations

Statistical Education - The Teaching Concept of Pseudo-Populations Statistical Education - The Teaching Concept of Pseudo-Populations Andreas Quatember Johannes Kepler University Linz, Austria Department of Applied Statistics, Johannes Kepler University Linz, Altenberger

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

Monte Carlo (MC) Simulation Methods. Elisa Fadda

Monte Carlo (MC) Simulation Methods. Elisa Fadda Monte Carlo (MC) Simulation Methods Elisa Fadda 1011-CH328, Molecular Modelling & Drug Design 2011 Experimental Observables A system observable is a property of the system state. The system state i is

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap Patrick Breheny December 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/21 The empirical distribution function Suppose X F, where F (x) = Pr(X x) is a distribution function, and we wish to estimate

More information

14 : Approximate Inference Monte Carlo Methods

14 : Approximate Inference Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2018 14 : Approximate Inference Monte Carlo Methods Lecturer: Kayhan Batmanghelich Scribes: Biswajit Paria, Prerna Chiersal 1 Introduction We have

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VII (26.11.07) Contents: Maximum Likelihood (II) Exercise: Quality of Estimators Assume hight of students is Gaussian distributed. You measure the size of N students.

More information

1 of 7 7/16/2009 6:12 AM Virtual Laboratories > 7. Point Estimation > 1 2 3 4 5 6 1. Estimators The Basic Statistical Model As usual, our starting point is a random experiment with an underlying sample

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Parameter Estimation, Sampling Distributions & Hypothesis Testing

Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation & Hypothesis Testing In doing research, we are usually interested in some feature of a population distribution (which

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Essential Statistics Chapter 4

Essential Statistics Chapter 4 1 Essential Statistics Chapter 4 By Navidi and Monk Copyright 2016 Mark A. Thomas. All rights reserved. 2 Probability the probability of an event is a measure of how often a particular event will happen

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

STA304H1F/1003HF Summer 2015: Lecture 11

STA304H1F/1003HF Summer 2015: Lecture 11 STA304H1F/1003HF Summer 2015: Lecture 11 You should know... What is one-stage vs two-stage cluster sampling? What are primary and secondary sampling units? What are the two types of estimation in cluster

More information

Non-parametric bootstrap and small area estimation to mitigate bias in crowdsourced data Simulation study and application to perceived safety

Non-parametric bootstrap and small area estimation to mitigate bias in crowdsourced data Simulation study and application to perceived safety Non-parametric bootstrap and small area estimation to mitigate bias in crowdsourced data Simulation study and application to perceived safety David Buil-Gil, Reka Solymosi Centre for Criminology and Criminal

More information

Improved Liu Estimators for the Poisson Regression Model

Improved Liu Estimators for the Poisson Regression Model www.ccsenet.org/isp International Journal of Statistics and Probability Vol., No. ; May 202 Improved Liu Estimators for the Poisson Regression Model Kristofer Mansson B. M. Golam Kibria Corresponding author

More information

Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis

Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis Michael P. Babington and Javier Cano-Urbina August 31, 2018 Abstract Duration data obtained from a given stock of individuals

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract Efficiency radeoffs in Estimating the Linear rend Plus Noise Model Barry Falk Department of Economics, Iowa State University Anindya Roy University of Maryland Baltimore County Abstract his paper presents

More information

The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing

The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing 1 The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing Greene Ch 4, Kennedy Ch. R script mod1s3 To assess the quality and appropriateness of econometric estimators, we

More information

2009 GCE A Level H1 Mathematics Solution

2009 GCE A Level H1 Mathematics Solution 2009 GCE A Level H1 Mathematics Solution 1) x + 2y = 3 x = 3 2y Substitute x = 3 2y into x 2 + xy = 2: (3 2y) 2 + (3 2y)y = 2 9 12y + 4y 2 + 3y 2y 2 = 2 2y 2 9y + 7 = 0 (2y 7)(y 1) = 0 y = 7 2, 1 x = 4,

More information

Chapter 6: Sampling with Unequal Probability

Chapter 6: Sampling with Unequal Probability Chapter 6: Sampling with Unequal Probability 1 Introduction This chapter is the concluding chapter to an introduction to Survey Sampling and Design. Topics beyond this one are, for the most part standalone.

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 1 The General Bootstrap This is a computer-intensive resampling algorithm for estimating the empirical

More information

Variational sampling approaches to word confusability

Variational sampling approaches to word confusability Variational sampling approaches to word confusability John R. Hershey, Peder A. Olsen and Ramesh A. Gopinath {jrhershe,pederao,rameshg}@us.ibm.com IBM, T. J. Watson Research Center Information Theory and

More information

INLEDNING TILL. U/ADB / Statistics Sweden. Stockholm : Statistiska centralbyrån, Nr E24- E26

INLEDNING TILL. U/ADB / Statistics Sweden. Stockholm : Statistiska centralbyrån, Nr E24- E26 INLEDNING TILL R & D report : research, methods, development / Statistics Sweden. Stockholm : Statistiska centralbyrån, 1988-2004. Nr. 1988:1-2004:2. Häri ingår Abstracts : sammanfattningar av metodrapporter

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Conservative variance estimation for sampling designs with zero pairwise inclusion probabilities

Conservative variance estimation for sampling designs with zero pairwise inclusion probabilities Conservative variance estimation for sampling designs with zero pairwise inclusion probabilities Peter M. Aronow and Cyrus Samii Forthcoming at Survey Methodology Abstract We consider conservative variance

More information

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level A Monte Carlo Simulation to Test the Tenability of the SuperMatrix Approach Kyle M Lang Quantitative Psychology

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

Advanced Survey Sampling

Advanced Survey Sampling Lecture materials Advanced Survey Sampling Statistical methods for sample surveys Imbi Traat niversity of Tartu 2007 Statistical methods for sample surveys Lecture 1, Imbi Traat 2 1 Introduction Sample

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics KTH Royal Institute of Technology jimmyol@kth.se Lecture 2 Random number generation 27 March 2014 Computer Intensive Methods

More information

11. Bootstrap Methods

11. Bootstrap Methods 11. Bootstrap Methods c A. Colin Cameron & Pravin K. Trivedi 2006 These transparencies were prepared in 20043. They can be used as an adjunct to Chapter 11 of our subsequent book Microeconometrics: Methods

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS A. J. Clark School of Engineering Department of Civil and Environmental Engineering by Dr. Ibrahim A. Assakkaf Spring 1 ENCE 3 - Computation in Civil Engineering

More information

Monte Carlo Methods for Stochastic Programming

Monte Carlo Methods for Stochastic Programming IE 495 Lecture 16 Monte Carlo Methods for Stochastic Programming Prof. Jeff Linderoth March 17, 2003 March 17, 2003 Stochastic Programming Lecture 16 Slide 1 Outline Review Jensen's Inequality Edmundson-Madansky

More information

Monte Carlo Simulations and the PcNaive Software

Monte Carlo Simulations and the PcNaive Software Econometrics 2 Monte Carlo Simulations and the PcNaive Software Heino Bohn Nielsen 1of21 Monte Carlo Simulations MC simulations were introduced in Econometrics 1. Formalizing the thought experiment underlying

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Chapter 5: Models used in conjunction with sampling. J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70

Chapter 5: Models used in conjunction with sampling. J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70 Chapter 5: Models used in conjunction with sampling J. Kim, W. Fuller (ISU) Chapter 5: Models used in conjunction with sampling 1 / 70 Nonresponse Unit Nonresponse: weight adjustment Item Nonresponse:

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

The New sampling Procedure for Unequal Probability Sampling of Sample Size 2.

The New sampling Procedure for Unequal Probability Sampling of Sample Size 2. . The New sampling Procedure for Unequal Probability Sampling of Sample Size. Introduction :- It is a well known fact that in simple random sampling, the probability selecting the unit at any given draw

More information

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b)

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b) LECTURE 5 NOTES 1. Bayesian point estimators. In the conventional (frequentist) approach to statistical inference, the parameter θ Θ is considered a fixed quantity. In the Bayesian approach, it is considered

More information

A Note on Bootstraps and Robustness. Tony Lancaster, Brown University, December 2003.

A Note on Bootstraps and Robustness. Tony Lancaster, Brown University, December 2003. A Note on Bootstraps and Robustness Tony Lancaster, Brown University, December 2003. In this note we consider several versions of the bootstrap and argue that it is helpful in explaining and thinking about

More information

2009 GCE A Level Solution Paper 1

2009 GCE A Level Solution Paper 1 2009 GCE A Level Solution Paper i) Let u n = an 2 + bn + c. u = a + b + c = 0 u 2 = 4a + 2b + c = 6 u 3 = 9a + 3b + c = 5 Using GC, a =.5, b = 8.5, c = 7. u n =.5n 2 8.5n + 7. (ii) Let y =.5n 2 8.5n +

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

Statistica Sinica Preprint No: SS R2

Statistica Sinica Preprint No: SS R2 Statistica Sinica Preprint No: SS-13-244R2 Title Examining some aspects of balanced sampling in surveys Manuscript ID SS-13-244R2 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.2013.244 Complete

More information

Investigation of Possible Biases in Tau Neutrino Mass Limits

Investigation of Possible Biases in Tau Neutrino Mass Limits Investigation of Possible Biases in Tau Neutrino Mass Limits Kyle Armour Departments of Physics and Mathematics, University of California, San Diego, La Jolla, CA 92093 (Dated: August 8, 2003) We study

More information

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION INTRODUCTION Statistical disclosure control part of preparations for disseminating microdata. Data perturbation techniques: Methods assuring

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

On Efficiency of Midzuno-Sen Strategy under Two-phase Sampling

On Efficiency of Midzuno-Sen Strategy under Two-phase Sampling International Journal of Statistics and Analysis. ISSN 2248-9959 Volume 7, Number 1 (2017), pp. 19-26 Research India Publications http://www.ripublication.com On Efficiency of Midzuno-Sen Strategy under

More information

E 31501/4150 Properties of OLS estimators (Monte Carlo Analysis)

E 31501/4150 Properties of OLS estimators (Monte Carlo Analysis) E 31501/4150 Properties of OLS estimators (Monte Carlo Analysis) Ragnar Nymoen 10 February 2011 Repeated sampling Section 2.4.3 of the HGL book is called Repeated sampling The point is that by drawing

More information

Non-uniform coverage estimators for distance sampling

Non-uniform coverage estimators for distance sampling Abstract Non-uniform coverage estimators for distance sampling CREEM Technical report 2007-01 Eric Rexstad Centre for Research into Ecological and Environmental Modelling Research Unit for Wildlife Population

More information

Cross-sectional variance estimation for the French Labour Force Survey

Cross-sectional variance estimation for the French Labour Force Survey Survey Research Methods (007 Vol., o., pp. 75-83 ISS 864-336 http://www.surveymethods.org c European Survey Research Association Cross-sectional variance estimation for the French Labour Force Survey Pascal

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium

Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium Preventing xenon oscillations in Monte Carlo burnup calculations by forcing equilibrium Aarno Isotaloa), Jaakko Leppänenb), Jan Dufekcc) a) Aalto University, Finland b) VTT Technical Research Centrte of

More information