( ) κ ( f j +1. ( ) 1 + κ ( f j +2. ( ) j +1/ 2 ) = Uf j +1/ 2. = r j +1/ 2. Ψ( r) = r + r 1 + r. Ψ( r) = minmod(r,1) j 1/ 2 ( F n +1/ 2 F n

Size: px
Start display at page:

Download "( ) κ ( f j +1. ( ) 1 + κ ( f j +2. ( ) j +1/ 2 ) = Uf j +1/ 2. = r j +1/ 2. Ψ( r) = r + r 1 + r. Ψ( r) = minmod(r,1) j 1/ 2 ( F n +1/ 2 F n"

Transcription

1 ttp://users.wpi.edu/~gretar/me6.tml! Numerical Metods! or Hyperbolic! Equatios VIII! Grétar Tryggvaso! Sprig! Upwid or oliear systems:!!flux vector splittig!!goduovʼs metod! Higer Order Metod!!Higer order upwid!!higer order Goduov metods! Higer Resolutio mootoic scemes!!basic Idea!!Flux Limiters! To prevet oscillatios ear socks we usig ig order scemes, we ave already talked about artiicial viscosity were we attempt to smoot out oscillatios aroud te socks.! Te more moder approac is to prevet te apparece o oscillatios by eiter:! Limit te slopes we te variables are extrapolated to te cell boudaries! Limit te luxes ear socks to prevet uder or over soot! Higer Order Upwid! Near socks te liear recostructio leads to over ad udersoots.! To prevet oscillatios, apply LIMITERS! + + -!! +! +! May possible limiters ca be desiged! Limitig te variables:! Predictor step! L Variables! +/ Fid:! Fial step! +/ = Δt F +/ F / +/ = + ΨL +/ +/ ( ) R +/ +/ = + ΨR +/ +/ + F +/ +/ = F ( L ) +/, R +/ ( +/ +/ ) + = Δt F +/ +/ ( +/ F / ) κ = Limitig te Fluxes! Predictor step! Variables! Fid:! Fial step! +/ = Δt F +/ F / L +/ F +/ +/ = F + = +/ = + +/ ( L ) +/, R +/ ( +/ +/ ) ([ F +/ + Ψ L +/ ( F +/ F +/ )] +/ [ F / + Ψ L / ( F +/ F / )]) / Δt +/ R +/ +/ = + +/ +/ + κ =

2 It is possible to derive a umber o properties tat te limiters sould satisy, bot to preserve secod order accuracy i smoot parts o te low ad to satisy te etropy coditios.! Va Leer Limiter! Ψ( r) = r + r + r Ψ( r) Ψ = r Ψ = r Witi tose limitatios, owever, several limiters are possible:! Ψ( r) Ψ = r Ψ = r 3 r Te limiters must lie i te saded area! Lax-Wedro! Beam-Warmig! r = + Mimod limiter! mi(r,) i r > Ψ( r) = i r or! Ψ( r) = mimod(r,) were! x i x < y ad xy > mimod(x,y) = y i x > y ad xy > i xy < 3 r Example: Liear Advectio Equatio! + U x = F = U L F +/ = U +/ r +/ = r +/ = + Ψ( r) = r + r + r Ψ = i + = -! +! +! Predictor step! +/ = Δt F +/ F / Variables! Fid! + = L +/ R +/ = + κ = + κ + F +/ Δt +/ = F + + κ ( + ) + κ ( + + ) ( L ) +/, R +/ ( +/ +/ ) ([ F +/ + Ψ L +/ ( F +/ F +/ )] +/ [ F / + Ψ L / ( F +/ F / )]) /.5 upwid! Secod order! It ca be sow tat or a airly large class o metods lux limiters ad slope limiters are essetially te same. Limiters ave also bee used to derive artiicial viscosity.!.5 Limited! Tus, altoug limiters are peraps ot as artiicial as addig artiicial viscosity, tey are basically te same remedy, amely we add selective dissipatio aroud socks.!

3 Te moder discussio o ig resolutio scemes is ote based o te cocept o Total Variatio Dimiisig (TVD) Scemes sice it ca be sow tat te Total Variatio sould dimiis or yperbolic systems! TV = dx x Flux Vector Splittig! For a more extesive discussio see! Hirsc, Volume, Capter! Wesselig, Capter 9! For upwid scemes, it is ecessary to determie te upstream directio. For systems wit may caracteristics ruig bot let ad rigt, tere is ot oe upstream directio! Upwid Sceme - Revisited! Geeralized Upwid Sceme (or bot U > ad U < )! Deie! UΔt ( ), U > UΔt ( ), U < + = + = + U + = ( U + U ), U = ( U U ) Te two cases ca be combied ito a sigle expressio:! [ ] + = Δt U + ( ) + U ( + ) Flux Splittig! Flux Splittig! A system o yperbolic equatios! For a system o equatios tere are geerally waves ruig i bot directios. To apply upwidig, te luxes must be decomposed ito let ad rigt ruig waves! + F x = ca be writte i te orm! + [ A] x = ; Te system is yperbolic i! Steger-Warmig (979)! [ A] = F [ T ] [ A] [ T] = [ λ]; [ T ] = T q T q N

4 Flux Splittig! F = [ A] = T Te matrix o eigevalues Hece! [ A] = A + [ ][ λ] [ T] [ λ] [ λ] = [ λ + ] + [ λ ] [ ] + [ A ] = [ T ][ λ + ] T is divided ito two matrices! [ ] T [ ] + [ T] λ [ ] Deie! F = F + + F F + = [ A + ], F = [ A ] Coservatio law becomes! + F + x + F x = Flux Splittig! Example: -D Hyperbolic Equatio! Leadig to! v t w t + c c x = v x w x = = v w ; F = c w v ; v = ; w = x [ A] = F = c Flux Splittig! [ T ] = q T = c T λ + q c ; [ ] = c [ A + ] = [ T ] [ λ + ][ T] ; [ A ] = [ T] [ λ ][ T ] F + = [ A + ]; F = [ A ] Leadig to:! F + = cv c w ; F = cv c w v + cw v cw c [ λ ] = For a oliear system o equatios suc as te Euler equatios, tere is some arbitrariess i ow te system is split! ttp://users.wpi.edu/~gretar/me6.tml! Numerical Metods! or te! Euler Equatios! Grétar Tryggvaso! Sprig! Te Euler Equatios! Te Euler Equatios! Caracteristics! Oe dimesioal sock tube-exact solutio! For te Euler equatios:! ρ ρu ρu + ρu + p = x ( / ) ρe ρu E + p ρ Numerical solutios! Upwid/lux splittig! Lax-Wedro/artiicial viscosity! were! Deie! E = e + u / H = + u /; = e + p/ρ Two dimesioal problems! Ideal Gas:! p = ρrt; e = e( T ); c v = de /dt = ( T); c p = d /dt R = c p c v ; γ = c p /c v ; p = ( γ )ρe

5 Te Euler Equatios! Te Euler Equatios! ρ ρu ρu + ρu + p = x ( / ) ρe ρu E + p ρ p = ( γ )ρe c = γp/ρ Expadig te derivative ad rearragig te equatios! ρ u ρ ρ u + u /ρ u p ρc x = + A or! x = u p Te Caracteristics or te Euler Equatios are oud by idig te eigevalues or A T! det(a T λi) = Fid! det(a T λi) = or:! Te Euler Equatios! or! ( c ) = ( u λ) u λ ( u λ) = λ = u (( u λ) c ) = u λ = ±c λ = u ± c u λ det ρ u λ ρc = /ρ u λ Tereore! λ = u c; λ = u + c; λ 3 = u Te Rakie-Hugoiot coditios! For a yperbolic system! + F x = Te speed o a discotiuity (sock) is oud by movig to a rame were a sock movig wit speed s is statioary!! s x + F x = Itegratig across te sock yields! [ ] = [ F] s For te Euler equatios:! ρ ρu ρu + ρu + p = x ( / ) ρe ρu E + p ρ Te Rakie-Hugoiot coditios are:! s( ρ L ρ R ) = (( ρu) L ( ρu) R ) s( ( ρu) L ( ρu) R ) = (( ρu + p) L ( ρu + p) R ) s( ( ρe ) L ρe ) = (( ρu(e + p /ρ)) L ρu(e + p/ρ) ) R R Te sock tube problem! u L,, ρ L! u R, p R, ρ R! Desity! L! 5! 3!! R! Pressure! Expasio Fa! Cotact! Sock! Expasio Fa! Cotact! Sock!

6 Te Sock-Tube Problem! Exact Solutio!! 3!! give:!, ρ L, u L, p R, ρ R, u R c L = γ ρ L c R = γ p R ρ R α = γ + γ Cosider te case > p R :!!Sock separates R ad!!cotact discotiuity separates ad 3!!Expasio a separates 3 ad R!! 3!! give:!, ρ L, u L, p R, ρ R, u R Te Rakie-Hugoiot coditios give a oliear P = p relatio or te pressure ump across te sock! P = p L ( γ ) ( c R / c L )(P ) p R γ ( γ + ( γ + ) ( P ) ) wic ca be solved by iteratio! γ /( γ ) p R Te speed o te sock is! γ + ( γ +)P s sock = u R + c R γ /! 3!! x sock = x + s sock t Te speed o te cotact is! s cotact = u 3 = u = u L + c γ L γ P p γ R x cotact = x + s cotact t Te let ad side o te a moves wit speed! s L = c L x L = x + s L t Te rigt ad side o te a moves wit speed! s R = u c L x R = x + s R t! 3!!! 3!! α = γ + γ Let uiorm state! give:!, ρ L, u L, c L = γ ρ L I te expasio a ()! γ + (s x) γ ρ = ρ c L α t u = u L + s x γ + t + (s x) p = p c L α t γ γ Beid te cotact (3)! p 3 = p u 3 = u ρ 3 = ρ L P p R /γ Beid te cotact (3)! p 3 = p u 3 = u ρ 3 = ρ L P p R /γ Beid te sock ()! + αp ρ = α + P ρ R p = P p R u = u L + c L γ P p R γ γ Rigt uiorm state! give:! p R, ρ R, u R c R = γ p R ρ R

7 Te speed o soud is give by! c = γ p ρ Te Mac umber is deied as te ratio o te local velocity over te speed o soud! Ma = u c Ma < subsoic! Ma > supersoic! Test case:! Socktube problem o G.A. Sod, JCP 7:, 978! = 5 ; ρ L =.; u L = p R = ; ρ R =.5; u R = t ial =.5 x =.5 Subsoic case! x 3 5 velocity t=.5! Velocity! Pressure! Desity! Mac umber 3 5 Mac Number! 3 5 desity x pressure Test case:! Pressure! Socktube problem o G.A. Sod, JCP 7:, 978! Desity! velocity Mac umber 3 5 = 5 ; ρ L =.; u L = p R = ; ρ R =.; u R = t ial =.5 x =.5 Supersoic case! Velocity! Mac Number! Solve usig irst order upwidig wit lux splittig! Here we solve te oe-dimesioal Euler equatio usig te va Leer vector lux splittig! Va Leer! F + = ρ (γ )u + c (u + c) c γ [(γ )u + c] (γ ) F = ρ (γ )u c (u c) c γ [ c (γ )u ] (γ )

8 va Leer vector lux splittig! ρu ρu + p = ρ (γ )u + c (u + c) ρu(e + p ρ ) c γ ρ (γ )u c (u c) c γ [(γ )u + c] [ c (γ )u ] (γ ) (γ ) For example, te mass lux:! ρ c (u + c) ρ (u c) c = ρ c = ρ c u + uc + c u + uc c uc = ρu Several oter splittig scemes are possible, suc as:! Steger-Warmig! F + = ρ γ (γ )u + c (γ )u + (u + c) (γ )u 3 + (u + c)3 + 3 γ (u + c)c (γ ) F = ρ (u c) u c γ (u c) + 3 γ c γ Rewrite te lux terms i terms o Mac umber:! ρ (γ )u + c (u + c) c γ = ρc u c + c γ + γ u c [(γ )u + c ] c (γ ) γ + γ u c = ρc c (M +) γ + γ M c γ + γ M + F + x + F - x = ρ ρu + ρc c (M +) x γ + γ M + x ρc c (M ) + γ γ M ρe c γ + γ M c γ γ M + F+ x + F- x = Solve by! + = Δt F + + F - F + Were! Δt - - F + F = ρc c (M +) γ + γ M ; F = ρc c (M ) + γ γ M c γ + γ M c γ γ M or istep=:maxstep or i=:x,c(i)=sqrt( gg*(gg-)*(re(i)-.5*(ru(i)^/r(i)))/r(i) );ed or i=:x,u(i)=ru(i)/r(i);ed; or i=:x,m(i)=u(i)/c(i);ed or i=:x- %upwid r(i)=r(i)-(dt/)*(... (.5*r(i)*c(i)*(m(i)+)^) - (.5*r(i-)*c(i-)*(m(i-)+)^)+... (-.5*r(i+)*c(i+)*(m(i+)-)^) - (-.5*r(i)*c(i)*(m(i)-)^) ); ru(i)=ru(i)-(dt/)*(... (.5*r(i)*c(i) *(m(i)+)^) *(( +.5*(gg-)*m(i)) **c(i) /gg) -... (.5*r(i-)*c(i-)*(m(i-)+)^)*(( +.5*(gg-)*m(i-))**c(i-)/gg) +... (-.5*r(i+)*c(i+)*(m(i+)-)^)*((-+.5*(gg-)*m(i+))**c(i+)/gg) -... (-.5*r(i)*c(i) *(m(i)-)^) *((-+.5*(gg-)*m(i)) **c(i) /gg) ); re(i)=re(i)-(dt/)*(... (.5*r(i)*c(i) *(m(i)+)^) *((+.5*(gg-)*m(i))^ **c(i)^ /(gg^-)) -... (.5*r(i-)*c(i-)*(m(i-)+)^)*((+.5*(gg-)*m(i-))^**c(i-)^/(gg^-)) +... (-.5*r(i+)*c(i+)*(m(i+)-)^)*((-.5*(gg-)*m(i+))^**c(i+)^/(gg^-)) -... (-.5*r(i)*c(i) *(m(i)-)^) *((-.5*(gg-)*m(i))^ **c(i)^ /(gg^-)) ); ed

9 Eect o resolutio! Socktube problem o G.A. = 5 ; ρ L =.; u L = Sod, JCP 7:, 978! p R = ; ρ R =.5; u R = x Pressure 8 6 Fial time:.5! Desity.8.6 Solve usig secod order Lax-Wedro! x=6; maxstep=3! x=56; maxstep=8! 6 8. x=6; maxstep=3! x=8; maxstep=6!. x=56; maxstep=8! x=5; maxstep=56! 6 8 For te luid-dyamic system o equatios (Euler equatios):! ρ ρu ρu + ρu + p = x ( / ) ρe ρu E + p ρ were! E = e + u / ; Add te artiicial viscosity to RHS:! p = ( γ ) ρe u u = α ρ Proect #3! x x x u Solutios o te D Euler equatio usig Lax-Wedro! * +.5 Δt ( F ) = = Δt F * * + F F' = F α ρ u F + Wit a artiicial viscosity term added to te corrector step! u u x x Test case:! Eect o α! Socktube problem o G.A. Sod, JCP 7:, 978! = 5 ; ρ L =.; u L = p R = ; ρ R =.5; u R = Fial time:.5! x=8; α =.5 desity x=8; desity α =.5 α =. α =.5 α = x pressure α =.5 α =. α =.5 α =

10 8 6 x=6; x=8; x=56; time=.5 x pressure Eect o resolutio! α = desity Outlie o L-W program! or istep=:! or i=:x,p(i)=..; ed! or i=:x-!!!%predictio step! r(i)=..! ru(i)=..! re(i)=..! ed! or i=:x,p(i)=..; ed! or i=:x-!!!%correctio step! r(i)=..! ru(i)=..! re(i)=..! ed! or i=:x,u(i)=ru(i)/r(i);ed! or i=:x-!!!%artiicial viscosity! ru(i)=..! re(i)=..! ed! time=time+dt,istep! ed! Summary! ttp://users.wpi.edu/~gretar/me6.tml! Numerical solutios o te oedimesioal Euler equatios! Upwid/lux splittig! Lax-Wedro/artiicial viscosity! Multi-dimesioal low! Grétar Tryggvaso! Sprig! Multidimesioal yperbolic problems are geerally doe usig SPLITTING, were eac coordiate directio is treated separately! Split versus usplit advectio! + u x + v y = Usplit! + i, = i, + uδt ( i, i, ) + vδt i, ( i, )

11 Split versus usplit advectio! (-v)δt! vδt! uδt! (-u) Δt! + i, = i, + uvδt = i, + ( vδt) uδt + uδt + uvδt + u x + v y = Fully usplit! ( i, i, ) ( i, i, ) + ( uδt) vδt ( i, i, ) ( i, i, ) + vδt ( i, i, ) i, i, ( i, + i, ) + u x + v y = Time splittig! First! te! * i, = i, + uδt + i, = * i, + vδt ( i, i, ) * * ( i, i, ) 3 5 % two-dimesioal timesplit advectio usig irst order upwid % =3;m=3;step=35;legt=.;=legt/(-); dt=.3*;=zeros(,m);o=zeros(,m);=zeros(,m);time=.; u=.; v=.; cx=.35;cy=.35; 5 5 or i=:-, or =:m- r=sqrt((cx-*(i-))^+(cy-*(-))^); i(r <.) (i,)=.;ed ed,ed Time-split! Usplit! or l=:step,l,time old o;mes(); axis([ m.5]);pause; o=; or i=:-, or =:m- (i,)=o(i,)-(dt*u/)*(o(i,)-o(i-,)); ed,ed or i=:-, or =:m- (i,)=(i,)-(dt*v/)*((i,)-(i,-)); ed,ed time=time+dt; ed; =igure; cotour(,);axis square; Te Euler Equatios i twodimesios! For te Euler equatios:! ρ ρu ρv ρu + ρu + p + ρuv = ρv x ρuv y ρv + p ρe ρu(e + p /ρ) ρv(e + p/ρ) were! E = e + (u + v ) /; p = (γ )ρe I vector orm! + F x + G y =

12 Two-dimesioal problems are early exclusively solved by splittig were we apply oe-dimesioal metods to eac directio i sequece! Flux vector splittig! F ± = ± ρ c u ± c ( γ )u ± c γ v v [ + ( γ )u ± c ] ( γ ) + F + x + F x + G + y + G y = G ± = ± ρ c v ± c u ( γ )v ± c γ u [ + ( γ )v ± c ] ( γ ) Results rom a review paper:! P. Woodward ad P. Colella:! Computatioal domai! Sock! =/3 Te Numerical Simulatio o two- Dimesioal Fluid Flow wit Strog Socks.! J. Comput. Pys. 5 (98), 5-73.! Give ilow! 3! wall!! Outlow! =/6 =/ Goduovʼs metod! MacCormacʼs metod! =/3 =/6 =/ Eormous progress as bee made i solutio teciques or yperbolic systems wit socks i te last twety years. Advaced metods are ow able to resolve complex socks witi a grid space or two, eve i multidimesioal situatios or a large rage o goverig parameters ad pysical complexity.! Here, we ave oly examied relatively elemetary aspects o metods or yperbolic systems, but tis sort itroductio sould ave taugt you metods to solve suc systems ad itroduced you to literature.! MUSCL! PPM!

The Euler Equations! Advection! λ 1. λ 2. λ 3. ρ ρu. c 2 = γp/ρ. E = e + u 2 /2 H = h + u 2 /2; h = e + p/ρ. 0 u 1/ρ. u p. t + A f.

The Euler Equations! Advection! λ 1. λ 2. λ 3. ρ ρu. c 2 = γp/ρ. E = e + u 2 /2 H = h + u 2 /2; h = e + p/ρ. 0 u 1/ρ. u p. t + A f. http://www.nd.edu/~gtryggva/cfd-course/! Advection! Grétar Tryggvason! Spring! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = x ( / ) ρe ρu E + p ρ E = e + u / H = h + u

More information

The Advection-Diffusion equation!

The Advection-Diffusion equation! ttp://www.d.edu/~gtryggva/cf-course/! Te Advectio-iffusio equatio! Grétar Tryggvaso! Sprig 3! Navier-Stokes equatios! Summary! u t + u u x + v u y = P ρ x + µ u + u ρ y Hyperbolic part! u x + v y = Elliptic

More information

More Elementary Aspects of Numerical Solutions of PDEs!

More Elementary Aspects of Numerical Solutions of PDEs! ttp://www.d.edu/~gtryggva/cfd-course/ Outlie More Elemetary Aspects o Numerical Solutios o PDEs I tis lecture we cotiue to examie te elemetary aspects o umerical solutios o partial dieretial equatios.

More information

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx umerical Solutio o Ordiar Dieretial Equatios Cosider te st order ordiar dieretial equatio ODE d. d Te iitial coditio ca be tae as. Te we could use a Talor series about ad obtai te complete solutio or......!!!

More information

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics http://www.d.edu/~gtryggva/cfd-course/ Computatioal Fluid Dyamics Lecture Jauary 3, 7 Grétar Tryggvaso It is clear that although the umerical solutio is qualitatively similar to the aalytical solutio,

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

Stability analysis of numerical methods for stochastic systems with additive noise

Stability analysis of numerical methods for stochastic systems with additive noise Stability aalysis of umerical metods for stoctic systems wit additive oise Yosiiro SAITO Abstract Stoctic differetial equatios (SDEs) represet pysical peomea domiated by stoctic processes As for determiistic

More information

Numerical Methods! for! Elliptic Equations-II! Multigrid! Methods! f Analytic Solution of! g = bk. da k dt. = α. ( t)

Numerical Methods! for! Elliptic Equations-II! Multigrid! Methods! f Analytic Solution of! g = bk. da k dt. = α. ( t) http://www.d.edu/~gtryggva/cfd-course/! Numerical Methods! or! Elliptic Equatios-II! Grétar Tryggvaso! Sprig! Examples o elliptic equatios! Direct Methods or D problems! Elemetary Iterative Methods! Note

More information

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM ALLOCATING SAPLE TO STRATA PROPORTIONAL TO AGGREGATE EASURE OF SIZE WIT BOT UPPER AND LOWER BOUNDS ON TE NUBER OF UNITS IN EAC STRATU Lawrece R. Erst ad Cristoper J. Guciardo Erst_L@bls.gov, Guciardo_C@bls.gov

More information

AE/ME 339 Computational Fluid Dynamics (CFD)

AE/ME 339 Computational Fluid Dynamics (CFD) AE/ME 339 Computatioal Fluid Dyamics (CFD 0//004 Topic0_PresCorr_ Computatioal Fluid Dyamics (AE/ME 339 Pressure Correctio Method The pressure correctio formula (6.8.4 Calculatio of p. Coservatio form

More information

Finite Dierence Schemes

Finite Dierence Schemes MATH-459 Numerical Methods for Coservatio Laws by Prof. Ja S. Hesthave Solutio set 2: Fiite Dierece Schemes Exercise 2. Cosistecy A method is cosistet if its local trucatio error T k satises T k (x, t)

More information

Hydro code II. Simone Recchi

Hydro code II. Simone Recchi Hydro code II Simoe Recchi 16.06.2011 Literature E.F. Toro: Riema Solvers ad Numerical Methods for Fluid Dyamics, Spriger R.J. LeVeque: Fiite Volume Methods for Hyperbolic Problems, Cambridge Uiversity

More information

Lecture 7 Testing Nonlinear Inequality Restrictions 1

Lecture 7 Testing Nonlinear Inequality Restrictions 1 Eco 75 Lecture 7 Testig Noliear Iequality Restrictios I Lecture 6, we discussed te testig problems were te ull ypotesis is de ed by oliear equality restrictios: H : ( ) = versus H : ( ) 6= : () We sowed

More information

DEGENERACY AND ALL THAT

DEGENERACY AND ALL THAT DEGENERACY AND ALL THAT Te Nature of Termodyamics, Statistical Mecaics ad Classical Mecaics Termodyamics Te study of te equilibrium bulk properties of matter witi te cotext of four laws or facts of experiece

More information

Differentiation Techniques 1: Power, Constant Multiple, Sum and Difference Rules

Differentiation Techniques 1: Power, Constant Multiple, Sum and Difference Rules Differetiatio Teciques : Power, Costat Multiple, Sum ad Differece Rules 97 Differetiatio Teciques : Power, Costat Multiple, Sum ad Differece Rules Model : Fidig te Equatio of f '() from a Grap of f ()

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Accurac, Stabilit ad Sstems of Equatios November 0, 07 Numerical Solutios of Ordiar Differetial Equatios Accurac, Stabilit ad Sstems of Equatios Larr Caretto Mecaical Egieerig 0AB Semiar i Egieerig Aalsis

More information

Solving third order boundary value problem with fifth order block method

Solving third order boundary value problem with fifth order block method Matematical Metods i Egieerig ad Ecoomics Solvig tird order boudary value problem wit it order bloc metod A. S. Abdulla, Z. A. Majid, ad N. Seu Abstract We develop a it order two poit bloc metod or te

More information

Analysis of a Numerical Scheme An Example

Analysis of a Numerical Scheme An Example http://www.d.edu/~gtryggva/cfd-course/ Computatioal Fluid Dyamics Lecture 3 Jauary 5, 7 Aalysis of a Numerical Scheme A Example Grétar Tryggvaso Numerical Aalysis Example Use the leap-frog method (cetered

More information

A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation

A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation Joural of Matematics ad Statistics 4 (: 7-, 008 ISSN 549-3644 008 Sciece Publicatios A Pseudo Splie Metods for Solvig a Iitial Value Problem of Ordiary Differetial Equatio B.S. Ogudare ad G.E. Okeca Departmet

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

Computation of Hahn Moments for Large Size Images

Computation of Hahn Moments for Large Size Images Joural of Computer Sciece 6 (9): 37-4, ISSN 549-3636 Sciece Publicatios Computatio of Ha Momets for Large Size Images A. Vekataramaa ad P. Aat Raj Departmet of Electroics ad Commuicatio Egieerig, Quli

More information

Numerical Astrophysics: hydrodynamics

Numerical Astrophysics: hydrodynamics Numerical Astrophysics: hydrodyamics Part 1: Numerical solutios to the Euler Equatios Outlie Numerical eperimets are a valuable tool to study astrophysical objects (where we ca rarely do direct eperimets).

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway?

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway? Where do eigevalues/eigevectors/eigeuctios come rom, ad why are they importat ayway? I. Bacgroud (rom Ordiary Dieretial Equatios} Cosider the simplest example o a harmoic oscillator (thi o a vibratig strig)

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

PARALEL PREDICTOR-CORRECTOR SCHEMES FOR PARABOLIC PROBLEMS ON GRAPHS

PARALEL PREDICTOR-CORRECTOR SCHEMES FOR PARABOLIC PROBLEMS ON GRAPHS COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol. 10(2010, No. 3, pp. 275 282 c 2010 Istitute of Matematics of te Natioal Academy of Scieces of Belarus PARALEL PREDICTOR-CORRECTOR SCHEMES FOR PARABOLIC

More information

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15.

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15. TARGET IIT-JEE t [ACCELERATION] V0 to V BATCH ADVANCED TEST DATE : - 09-06 ANSWER KEY WITH SOLUTION PAPER - MATHEMATICS SECTION A. B. B. D. C 5. B 6. C 7. C 8. B 9. B 0. D. C. C. A. B 5. C 6. D 7. A 8.

More information

NUMERICAL DIFFERENTIAL 1

NUMERICAL DIFFERENTIAL 1 NUMERICAL DIFFERENTIAL Ruge-Kutta Metods Ruge-Kutta metods are ver popular ecause o teir good eiciec; ad are used i most computer programs or dieretial equatios. Te are sigle-step metods as te Euler metods.

More information

1. Introduction. 2. Numerical Methods

1. Introduction. 2. Numerical Methods America Joural o Computatioal ad Applied Matematics, (5: 9- DOI:.59/j.ajcam.5. A Stud o Numerical Solutios o Secod Order Iitial Value Problems (IVP or Ordiar Dieretial Equatios wit Fourt Order ad Butcer

More information

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION Jauary 3 07 LECTURE LEAST SQUARES CROSS-VALIDATION FOR ERNEL DENSITY ESTIMATION Noparametric kerel estimatio is extremely sesitive to te coice of badwidt as larger values of result i averagig over more

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m.

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m. Name: Date: Atomic Pysics 4 1. Te de Broglie wavelegt associated wit a car movig wit a speed of 0 m s 1 is of te order of A. 10 38 m. B. 10 4 m. C. 10 4 m. D. 10 38 m.. Te diagram below sows tree eergy

More information

Stability properties of a family of chock capturing methods for hyperbolic conservation laws

Stability properties of a family of chock capturing methods for hyperbolic conservation laws Proceedings of te 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 0-, 005 (pp48-5) Stability properties of a family of cock capturing metods for yperbolic conservation

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

1 The Euler Forward scheme (schéma d Euler explicite)

1 The Euler Forward scheme (schéma d Euler explicite) TP : Fiite differece metod for a Europea optio M2 Modélisatio aléatoire - Uiversité Deis-Diderot Cours EDP e Fiace et Métodes Numériques December 8, 2017 1 Te Euler Forward sceme (scéma d Euler explicite)

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

4 Conditional Distribution Estimation

4 Conditional Distribution Estimation 4 Coditioal Distributio Estimatio 4. Estimators Te coditioal distributio (CDF) of y i give X i = x is F (y j x) = P (y i y j X i = x) = E ( (y i y) j X i = x) : Tis is te coditioal mea of te radom variable

More information

Fourier Techniques lecture by Håkon Hoel

Fourier Techniques lecture by Håkon Hoel CSC Nada DN55 Sprig - Differetial Equatios II JOp p (7) Fourier Teciques lecture by Håo Hoel Fourier series... Applicatios to liear PDE... 3 Numerical metods...3 3. Vo Neuma aalysis...4 3. Spectral metods...6

More information

Numerical Derivatives by Symbolic Tools in MATLAB

Numerical Derivatives by Symbolic Tools in MATLAB Numerical Derivatives by Symbolic ools i MALAB Mig-Gog Lee * ad Rei-Wei Sog ad Hsuag-Ci Cag mglee@cu.edu.tw * Departmet o Applied Matematics Cug Hua Uiversity Hsicu, aiwa Abstract: Numerical approaces

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 116C. Problem Set 4. Benjamin Stahl. November 6, 2014

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 116C. Problem Set 4. Benjamin Stahl. November 6, 2014 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 6C Problem Set 4 Bejami Stahl November 6, 4 BOAS, P. 63, PROBLEM.-5 The Laguerre differetial equatio, x y + ( xy + py =, will be solved

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Numerical Methods for Ordiary Differetial Equatios Braislav K. Nikolić Departmet of Physics ad Astroomy, Uiversity of Delaware, U.S.A. PHYS 460/660: Computatioal Methods of Physics http://www.physics.udel.edu/~bikolic/teachig/phys660/phys660.html

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Streamfunction-Vorticity Formulation

Streamfunction-Vorticity Formulation Streamfuctio-Vorticity Formulatio A. Salih Departmet of Aerospace Egieerig Idia Istitute of Space Sciece ad Techology, Thiruvaathapuram March 2013 The streamfuctio-vorticity formulatio was amog the first

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Uiversity of Wasigto Departmet of Cemistry Cemistry 453 Witer Quarter 15 Lecture 14. /11/15 Recommeded Text Readig: Atkis DePaula: 9.1, 9., 9.3 A. Te Equipartitio Priciple & Eergy Quatizatio Te Equipartio

More information

Partial Differential Equations

Partial Differential Equations EE 84 Matematical Metods i Egieerig Partial Differetial Eqatios Followig are some classical partial differetial eqatios were is assmed to be a fctio of two or more variables t (time) ad y (spatial coordiates).

More information

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5!

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5! aylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. At ay poit i the eighbourhood of =0, the fuctio ca be represeted as a power series of the followig form: X 0 f(a) f() ƒ() f()= ( ) f( ) (

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES Capter LIMITS AND DERIVATIVES. Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is

More information

On Exact Finite-Difference Scheme for Numerical Solution of Initial Value Problems in Ordinary Differential Equations.

On Exact Finite-Difference Scheme for Numerical Solution of Initial Value Problems in Ordinary Differential Equations. O Exact Fiite-Differece Sceme for Numerical Solutio of Iitial Value Problems i Ordiar Differetial Equatios. Josua Suda, M.Sc. Departmet of Matematical Scieces, Adamawa State Uiversit, Mubi, Nigeria. E-mail:

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

Mathematics 3 Outcome 1. Vectors (9/10 pers) Lesson, Outline, Approach etc. This is page number 13. produced for TeeJay Publishers by Tom Strang

Mathematics 3 Outcome 1. Vectors (9/10 pers) Lesson, Outline, Approach etc. This is page number 13. produced for TeeJay Publishers by Tom Strang Vectors (9/0 pers) Mathematics 3 Outcome / Revise positio vector, PQ = q p, commuicative, associative, zero vector, multiplicatio by a scalar k, compoets, magitude, uit vector, (i, j, ad k) as well as

More information

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH Taylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. A ay poit i the eighbourhood of 0, the fuctio ƒ() ca be represeted by a power series of the followig form: X 0 f(a) f() f() ( ) f( ) ( )

More information

Beyond simple iteration of a single function, or even a finite sequence of functions, results

Beyond simple iteration of a single function, or even a finite sequence of functions, results A Primer o the Elemetary Theory of Ifiite Compositios of Complex Fuctios Joh Gill Sprig 07 Abstract: Elemetary meas ot requirig the complex fuctios be holomorphic Theorem proofs are fairly simple ad are

More information

Further Methods for Advanced Mathematics (FP2) WEDNESDAY 9 JANUARY 2008

Further Methods for Advanced Mathematics (FP2) WEDNESDAY 9 JANUARY 2008 ADVANCED GCE 7/ MATHEMATICS (MEI) Furter Metods for Advaced Matematics (F) WEDNESDAY 9 JANUARY 8 Additioal materials: Aswer Booklet (8 pages) Grap paper MEI Eamiatio Formulae ad Tables (MF) Afteroo Time:

More information

PC5215 Numerical Recipes with Applications - Review Problems

PC5215 Numerical Recipes with Applications - Review Problems PC55 Numerical Recipes with Applicatios - Review Problems Give the IEEE 754 sigle precisio bit patter (biary or he format) of the followig umbers: 0 0 05 00 0 00 Note that it has 8 bits for the epoet,

More information

Comparison of Finite Difference and Finite Element (Telemac) Models of Dublin Bay

Comparison of Finite Difference and Finite Element (Telemac) Models of Dublin Bay Dubli Istitute of Techology ARROW@DIT Presetatios Egieerig: Educatio ad Iovatio 2013-12-06 Compariso of Fiite Differece ad Fiite Elemet (Telemac) Models of Dubli Bay Garrett Keae Dubli Istitute of Techology,

More information

Finite Difference Method for the Estimation of a Heat Source Dependent on Time Variable ABSTRACT

Finite Difference Method for the Estimation of a Heat Source Dependent on Time Variable ABSTRACT Malaysia Joural of Matematical Scieces 6(S): 39-5 () Special Editio of Iteratioal Worsop o Matematical Aalysis (IWOMA) Fiite Differece Metod for te Estimatio of a Heat Source Depedet o Time Variable, Allabere

More information

LIMITS AND DERIVATIVES NCERT

LIMITS AND DERIVATIVES NCERT . Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is te epected value of f at a give

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Advection! Discontinuous! solutions shocks! Shock Speed! ! f. !t + U!f. ! t! x. dx dt = U; t = 0

Advection! Discontinuous! solutions shocks! Shock Speed! ! f. !t + U!f. ! t! x. dx dt = U; t = 0 p://www.d.edu/~gryggva/cfd-course/ Advecio Discoiuous soluios socks Gréar Tryggvaso Sprig Discoiuous Soluios Cosider e liear Advecio Equaio + U = Te aalyic soluio is obaied by caracerisics d d = U; d d

More information

Lecture 9: Regression: Regressogram and Kernel Regression

Lecture 9: Regression: Regressogram and Kernel Regression STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 9: Regressio: Regressogram ad erel Regressio Istructor: Ye-Ci Ce Referece: Capter 5 of All of oparametric statistics 9 Itroductio Let X,

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

Application of a Two-Step Third-Derivative Block Method for Starting Numerov Method

Application of a Two-Step Third-Derivative Block Method for Starting Numerov Method Iteratioal Joural of eoretical ad Applied Matematics 7; (: -5 ttp://wwwsciecepublisiroupcom//itam doi: 648/itam75 Applicatio of a wo-step ird-derivative Block Metod for Starti Numerov Metod Oluwaseu Adeyeye

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

This chapter describes different methods to discretize the diffusion equation. f z 2 = 0. y ) x f

This chapter describes different methods to discretize the diffusion equation. f z 2 = 0. y ) x f Chapter 8 Diusio Equatio This chapter describes dieret methods to discretize the diusio equatio 2 t α x 2 + 2 y 2 + 2 z 2 = 0 which represets a combied boudary ad iitial value problem, i.e., requires to

More information

Diagnosis of Kinematic Vertical Velocity in HYCOM. By George Halliwell, 28 November ( ) = z. v (1)

Diagnosis of Kinematic Vertical Velocity in HYCOM. By George Halliwell, 28 November ( ) = z. v (1) Diagosis of Kiematic Vertical Velocity i HYCOM By George Halliwell 28 ovember 2004 Overview The vertical velocity w i Cartesia coordiates is determied by vertically itegratig the cotiuity equatio dw (

More information

Numerical Methods! for! Elliptic Equations-II! Multigrid! Methods! f Analytic Solution of! g = bk. da k dt. = α. ( t)

Numerical Methods! for! Elliptic Equations-II! Multigrid! Methods! f Analytic Solution of! g = bk. da k dt. = α. ( t) http://www.d.edu/~gtryggva/cfd-course/! umerical Methods! or! Elliptic Equatios-II! Grétar Tryggvaso! Sprig 13! Examples o elliptic equatios! Direct Methods or 1D problems! Elemetary Iterative Methods!

More information

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c.

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c. 5.4 Applicatio of Perturbatio Methods to the Dispersio Model for Tubular Reactors The axial dispersio model for tubular reactors at steady state ca be described by the followig equatios: d c Pe dz z =

More information

FIR Filter Design: Part I

FIR Filter Design: Part I EEL3: Discrete-Time Sigals ad Systems FIR Filter Desig: Part I. Itroductio FIR Filter Desig: Part I I this set o otes, we cotiue our exploratio o the requecy respose o FIR ilters. First, we cosider some

More information

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems Essetial Microecoomics -- 5.3 EXISTENCE OF EQUILIBRIUM Core ideas: cotiuity of excess demad fuctios, Fixed oit teorems Two commodity excage ecoomy 2 Excage ecoomy wit may commodities 5 Discotiuous demad

More information

UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS HIGHER ORDER GODUNOV BLACK-OIL SIMULATIONS FOR COMPRESSIBLE FLOW IN POROUS MEDIA EDWIN MICHAEL DICKS

UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS HIGHER ORDER GODUNOV BLACK-OIL SIMULATIONS FOR COMPRESSIBLE FLOW IN POROUS MEDIA EDWIN MICHAEL DICKS UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS HIGHER ORDER GODUNOV BLACK-OIL SIMULATIONS FOR COMPRESSIBLE FLOW IN POROUS MEDIA by EDWIN MICHAEL DICKS This thesis is submitted for the degree of Doctor

More information

Inverse Nodal Problems for Differential Equation on the Half-line

Inverse Nodal Problems for Differential Equation on the Half-line Australia Joural of Basic ad Applied Scieces, 3(4): 4498-4502, 2009 ISSN 1991-8178 Iverse Nodal Problems for Differetial Equatio o the Half-lie 1 2 3 A. Dabbaghia, A. Nematy ad Sh. Akbarpoor 1 Islamic

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif. AN ALMOST LINEAR RECURRENCE Doald E. Kuth Calif. Istitute of Techology, Pasadea, Calif. form A geeral liear recurrece with costat coefficiets has the U 0 = a l* U l = a 2 " ' " U r - l = a r ; u = b, u,

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

i 0 8) If 0 < x < 1, what is the value of x n+1 as n approaches infinity? 9) Infinite Power Series Formula.

i 0 8) If 0 < x < 1, what is the value of x n+1 as n approaches infinity? 9) Infinite Power Series Formula. Discovery Seet # Series Notatio ) Expad ad te evaluate eac series. 9 a) i i 4 4 b) i 4 e) i i 4 f) 5+5i i c) i+5 g) 4+5i d) i ) 5i i i 8 ) Rewrite te series i Σ otatio, ad te evaluate. a) 5++5++5+ b) 7+++6

More information

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING Mechaical Vibratios FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING A commo dampig mechaism occurrig i machies is caused by slidig frictio or dry frictio ad is called Coulomb dampig. Coulomb dampig

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities Polyomials with Ratioal Roots that Differ by a No-zero Costat Philip Gibbs The problem of fidig two polyomials P(x) ad Q(x) of a give degree i a sigle variable x that have all ratioal roots ad differ by

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition CHAPTER 5 Wave Properties of Matter ad Quatum Mecaics I PHYS-3301 Lecture 9 Sep. 5, 018 5.1 X-Ray Scatterig 5. De Broglie Waves 5.3 Electro Scatterig 5.4 Wave Motio 5.5 Waves or Particles? 5.6 Ucertaity

More information

Wave Equation! ( ) with! b = 0; a =1; c = c 2. ( ) = det ( ) = 0. α = ±c. α = 1 2a b ± b2 4ac. c 2. u = f. v = f x ; t c v. t u. x t. t x = 2 f.

Wave Equation! ( ) with! b = 0; a =1; c = c 2. ( ) = det ( ) = 0. α = ±c. α = 1 2a b ± b2 4ac. c 2. u = f. v = f x ; t c v. t u. x t. t x = 2 f. Compuaioal Fluid Dyamics p://www.d.edu/~gryggva/cfd-course/ Compuaioal Fluid Dyamics Wave equaio Wave Equaio c Firs wrie e equaio as a sysem o irs order equaios Iroduce u ; v ; Gréar Tryggvaso Sprig yieldig

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimating the Population Mean using Stratified Double Ranked Set Sample Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

More information

Linear Complementarity Problem Simulation of The Meter Stick Trick

Linear Complementarity Problem Simulation of The Meter Stick Trick Liear Complemetarity Problem Simulatio o Te Meter Stick Trick Yoke Peg Leog, Ze Lv Abstract I tis paper, we ocus o aturally icorporatig cotact modes estimatio i a dyamical simulatio o a object wit multiple

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Double Diffusive Convection from a Permeable Horizontal Cylinder of Elliptic Cross Section in a Saturated Porous Medium

Double Diffusive Convection from a Permeable Horizontal Cylinder of Elliptic Cross Section in a Saturated Porous Medium Proceedigs o the 4th WSEAS It. Co. o HEAT TRANSFER, THERMAL ENGINEERING ad ENVIRONMENT, Elouda, Greece, August -3, 6 (pp357-36) Double Diusive Covectio rom a Permeable Horizotal Cylider o Elliptic Cross

More information

Optimal Estimator for a Sample Set with Response Error. Ed Stanek

Optimal Estimator for a Sample Set with Response Error. Ed Stanek Optial Estiator for a Saple Set wit Respose Error Ed Staek Itroductio We develop a optial estiator siilar to te FP estiator wit respose error tat was cosidered i c08ed63doc Te first 6 pages of tis docuet

More information

Linearly Independent Sets, Bases. Review. Remarks. A set of vectors,,, in a vector space is said to be linearly independent if the vector equation

Linearly Independent Sets, Bases. Review. Remarks. A set of vectors,,, in a vector space is said to be linearly independent if the vector equation Liearly Idepedet Sets Bases p p c c p Review { v v vp} A set of vectors i a vector space is said to be liearly idepedet if the vector equatio cv + c v + + c has oly the trivial solutio = = { v v vp} The

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Numerical Methods in Fourier Series Applications

Numerical Methods in Fourier Series Applications Numerical Methods i Fourier Series Applicatios Recall that the basic relatios i usig the Trigoometric Fourier Series represetatio were give by f ( x) a o ( a x cos b x si ) () where the Fourier coefficiets

More information