Lecture 13 Electrostatic Energy and Energy Density

Size: px
Start display at page:

Download "Lecture 13 Electrostatic Energy and Energy Density"

Transcription

1 Lecture 13 Electrostatic Energy and Energy Density Sections: 4.8 Homework: See homework file

2 Energy of System of Point Charges 1 any system of charged bodies held static in relatively close proximity contains potential energy potential energy is the work done to build the system, i.e., to bring the charges together against the Coulomb forces if the charges of the system were set free, this energy would set them into motion and would be converted into kinetic energy z P the potential of a point charge Q 1 R1 Q1 V1 ( P) = = E dl= E dl, V Q 1 4πε R1 R1 x is the work done to bring a unit positive charge from infinity to a point which is R 1 (meters) away from Q 1 R 1 y LECTURE 13 slide

3 Energy of System of Point Charges if a charge Q is brought at a distance R,1 from the first charge Q 1 the energy spent is Q1 W,1 = Q = QV,1, J=C V 4πε R,1 it does not matter which charge is brought close to which W = W,1 1, as long as Q 1 and Q are held apart at a distance R 1, the system holds W,1 =W 1, energy LECTURE 13 slide 3

4 Energy of System of Point Charges 3 the potential of the (Q 1,Q ) system is now z P V 1& ( P) Q1 Q = + 4πε R 4πε R 1 the work to bring over a third charge Q 3 is x Q Q W + W = Q + = Q ( V + V ) = W + W 1 3,1 3, 3 3 3,1 3, 1,3,3 4πε R3,1 4πε R 3, the total energy spent to built the system of three charges is 1 QQ 1 QQ 3 1 QQ 3 W,1 + W3,1 + W3, = + + = 4πε R,1 R3,1 R 3, QV + QV + QV = W + W + W Q 1,1 3 3,1 3 3, 1, 1,3,3 R 1 R LECTURE 13 slide 4 Q y

5 Energy of System of Point Charges 4 for a system of N charges We = ( QV,1 + QV 3 3,1 + + QNVN,1) + ( QV 3 3, + + QNVN, ) + work to bring charges,, N close to charge 1 charges 3,, N close to charge + ( Q V + QV ) + QV N 1 N 1, N N NN, N N, N 1 charges N 1 and N close to charge N charge N close to charge N 1 an alternative expression (due to the reciprocal nature of the energy) We = ( QV 1 1, + QV 1 1,3 + + QV 1 1, N) + ( QV,3 + + QV, N) + bring charge 1 close to charges,, N charge close to charges 3,, N ( QN VN, N 1 QN VN, N) + QN 1VN 1, N + + charge N close to charges N 1 and N charge N 1 close to charge N add both expressions to obtain N N N 1 W = Q V + Q V + + Q V e 1 1, n, n N Nn, n= n= 1 n= 1 n LECTURE 13 slide 5

6 Energy of System of Charges N 1 W = QV where V = V e n n n nk, n= 1 k= 1 k n N The total electrostatic energy W e of a system of discrete charges is the sum of the energies of all possible pairs of charges. if charge is distributed in a volume W e 1 = ρ v v Vdv LECTURE 13 slide 6

7 Energy of System of Charges: Example (a) Find the energy of a system of two charges Q 1 = Q = 10 1 C in vacuum located at P 1 ( 1,0,0) mm and P (1,0,0) mm, respectively. (b) What is the work necessary to bring over a third charge Q 3 = 10 1 C from infinity to P 3 (0,0,0)? (c) What is the energy stored in the system of 3 charges? LECTURE 13 slide 7

8 Energy Density We = V Ddv = [ ( VD) D V ] dv v ρv v ( VD) = V D+ V D 1 1 We = ( VD) ds ( D V ) dv S [ v] v to account for all energy allow the volume v to expand to infinity D 1/ R, V 1/ R, ds R lim ( VD) ds= 0 E R S [ v] W e 1 = ( ) dv, J DE v energy density w e LECTURE 13 slide 8

9 Energy Density energy integral in an isotropic medium where D = εe W e 1 v ε = E dv W energy density and the field vectors w e = 1 DE e 1 ε = D, J/m v energy density in an isotropic medium we 1 = ε E w e = 3 1 D ε dv LECTURE 13 slide 9

10 Energy Density: Example The plates of a parallel-plate capacitor have an area A = 10 cm. The distance between the plates is d = 1 mm. The relative permittivity of the insulator is ε r = 10. Find the stored electrical energy W e in the capacitor and its density w e if the voltage is V = 100 V. LECTURE 13 slide 10

11 Did You Know? A typical AA battery has a capacity of about 500 mah (or.5 Ah). With a cell voltage of 1.5 V, this corresponds to about 3.75 Wh. What is then the energy in joules stored in the AA battery? LECTURE 13 slide 11

12 Technology Brief: Energy Storage Devices energy density of storage devices (aka specific energy) is defined as stored energy per unit mass energy [J] [Wh] 3600 W = = mass [kg] [kg] SOME ELECTRIC ENERGY STORAGE DEVICES [Ulaby&Ravaioli, Fundamentals of Applied Electromagnetics, 7 th ed.] Compare with other sources of energy: gasoline ~46.4 MJ/kg ~1,900 Wh/kg coal ~4.0 MJ/kg ~6,700 Wh/kg uranium (nuclear fission) ~80,60,000 MJ/kg ~, Wh/kg LECTURE 13 slide 1

13 Illustration of Energy Density: Coaxial Line LECTURE 13 slide 13

14 Illustration of Energy Density: Parallel-plate Line LECTURE 13 slide 14

15 Illustration of Energy Density: Twin-lead Line LECTURE 13 slide 15

16 You have learned: that the total electrostatic energy of a system of point charges is the sum of the potential energy of all charge pairs in the system how to calculate the total electrostatic energy from the field vectors E and D what energy density is and how to compute it from E and D the energy density is proportional to the square of the field magnitude LECTURE 13 slide 16

Lecture 18 Capacitance and Conductance

Lecture 18 Capacitance and Conductance Lecture 18 Capacitance and Conductance Sections: 6.3, 6.4, 6.5 Homework: See homework file Definition of Capacitance capacitance is a measure of the ability of the physical structure to accumulate electrical

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information

Lecture 14 Current Density Ohm s Law in Differential Form

Lecture 14 Current Density Ohm s Law in Differential Form Lecture 14 Current Density Ohm s Law in Differential Form Sections: 5.1, 5.2, 5.3 Homework: See homework file Direct Electric Current Review DC is the flow of charge under electrostatic forces in conductors

More information

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor Physics 24100 Electricity & Op-cs Lecture 8 Chapter 24 sec. 1-2 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

Electric Potential. 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1

Electric Potential. 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1 Electric Potential 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1 Announcements! First exam is next Tuesday, January 28 45 minute exam during lecture time You can bring a 5 by 8 size cheat

More information

Potentials and Fields

Potentials and Fields Potentials and Fields Review: Definition of Potential Potential is defined as potential energy per unit charge. Since change in potential energy is work done, this means V E x dx and E x dv dx etc. The

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

(3.5.1) V E x, E, (3.5.2)

(3.5.1) V E x, E, (3.5.2) Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 4.1 Capacitors A capacitor is a system of two conductors that carries equal and opposite charges A capacitor stores charge and energy in the

More information

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form ections: 3.1, 3.2, 3.3 Homework: ee homework file Faraday s Experiment (1837), Electric Flux ΨΨ charge transfer from inner to outer sphere

More information

Handout 3: Electric potential and electric potential energy. Electric potential

Handout 3: Electric potential and electric potential energy. Electric potential Handout 3: Electric potential and electric potential energy Electric potential Consider a charge + fixed in space as in Figure. Electric potential V at any point in space is defined as the work done by

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Lecture 15 Perfect Conductors, Boundary Conditions, Method of Images

Lecture 15 Perfect Conductors, Boundary Conditions, Method of Images Lecture 15 Perfect Conductors, Boundary Conditions, Method of Images Sections: 5.4, 5.5 Homework: See homework file Perfect Conductors 1 metals such as Cu, Ag, Al are closely approximated by the concept

More information

PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2

PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2 PH 1120 Electricity and Magnetism Term B, 2009 STUDY GUIDE #2 In this part of the course we will study the following topics: Electric potential difference and electric potential for a uniform field Electric

More information

Preview of Period 10: Electric Charge and Force

Preview of Period 10: Electric Charge and Force Preview of Period 10: Electric Charge and Force 10.1 Electric Charge and Forces What happens when you place a negatively charged rod near an object? How do charges cause objects to move? 10.2 Conductors,

More information

Electricity. Revision Notes. R.D.Pilkington

Electricity. Revision Notes. R.D.Pilkington Electricity Revision Notes R.D.Pilkington DIRECT CURRENTS Introduction Current: Rate of charge flow, I = dq/dt Units: amps Potential and potential difference: work done to move unit +ve charge from point

More information

Review of EM Basics (from Phys1E03)

Review of EM Basics (from Phys1E03) Lecture 2 Review of EM Basics (from Phys1E03) Sections: 2.1, 2.2, 8.1, 8.2, 8.5 Homework: See homework file LECTURE 2 slide 1 [istockphoto.com] ELECTRICITY LECTURE 2 slide 2 fundamental property of matter

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

AP Physics C Electricity & Magnetism Mid Term Review

AP Physics C Electricity & Magnetism Mid Term Review AP Physics C Electricity & Magnetism Mid Term Review 1984 37. When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to (A) 10-2 Ω (B) 10-1 Ω (C) 1 Ω (D)

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Review from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A

Review from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A Review from yesterday Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A to B 1 Review from yesterday Please answer PROBLEM 17 in

More information

Solution to Quiz 2. April 18, 2010

Solution to Quiz 2. April 18, 2010 Solution to Quiz April 8, 00 Four capacitors are connected as shown below What is the equivalent capacitance of the combination between points a and b? a µf b 50 µf c 0 µf d 5 µf e 34 µf Answer: b (A lazy

More information

LESSON 2 PHYSICS NOTES

LESSON 2 PHYSICS NOTES LESSON 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE SECTION I ELECTROSTATIC POTENTIAL ELECTRIC FIELD IS CONSERVATIVE In an electric field work done by the electric field in moving a unit positive charge from

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 21-24) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

Potential from a distribution of charges = 1

Potential from a distribution of charges = 1 Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

More information

12 Electrostatics. Target Publications Pvt. Ltd (1) Chapter 12: Electrostatics. q E = Hints to Problems for Practice

12 Electrostatics. Target Publications Pvt. Ltd (1) Chapter 12: Electrostatics. q E = Hints to Problems for Practice hapter : Electrostatics Electrostatics Hints to Problems for Practice q. N or q N ε ε q 8. 5 8.85 5 µ q q. N or k εk NK 8 7.7 k 5 8.85 8. q 8.85 µ 8.85, l cm m, ε 8.85 /Nm q φ ε 8.85 8.85 Nm /. q µ, r

More information

Capacitance and capacitors. Dr. Loai Afana

Capacitance and capacitors. Dr. Loai Afana apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

More information

Electrostatics: Electric Potential

Electrostatics: Electric Potential Electrostatics: EE3321 Electromagnetic Field Theory Outline Concept of electric potential V Potential difference V Electric potential due to charge Relationship between E and V Electric potential example

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics Lecture by Dr. Hebin Li Goals for Chapter 24 To understand capacitors and calculate capacitance To analyze networks of capacitors To calculate the energy stored in

More information

Capacitors And Dielectrics

Capacitors And Dielectrics 1 In this small e-book we ll learn about capacitors and dielectrics in short and then we ll have some questions discussed along with their solutions. I ll also give you a practices test series which you

More information

The Capacitor. +q -q

The Capacitor. +q -q The Capacitor I. INTRODUCTION A simple capacitor consists of two parallel plates separated by air or other insulation, and is useful for storing a charge. If a potential difference is placed across the

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field In this chapter, you will learn: Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field 2.1 Electric potential energy When a charged particle

More information

Sharpen thinking about connections among electric field, electric potential difference, potential energy

Sharpen thinking about connections among electric field, electric potential difference, potential energy PHYS 2015 -- Week 6 Sharpen thinking about connections among electric field, electric potential difference, potential energy Apply the ideas to capacitance and the parallel plate capacitor For exclusive

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

Chapter 2. Electric Fields Field Intensity Due to a Point Charge

Chapter 2. Electric Fields Field Intensity Due to a Point Charge Chapter 2 Electric Fields An electric field exists in a region if electrical forces are exerted on charged bodies in that region. The direction of an electric field at a point is the direction in which

More information

Capacitors (Chapter 26)

Capacitors (Chapter 26) Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device

More information

Electrostatics: Energy in Electrostatic Fields

Electrostatics: Energy in Electrostatic Fields 7/4/08 Electrostatics: Energy in Electrostatic Fields EE33 Electromagnetic Field Theory Outline Energy in terms of potential Energy in terms of the field Power and energy in conductors Electrostatics --

More information

Electrostatics Notes 2 Electric Field on a Single Charge

Electrostatics Notes 2 Electric Field on a Single Charge Electrostatics Notes 2 Electric Field on a Single Charge There are many similarities between gravitational and electrostatic forces. One such similarity is that both forces can be exerted on objects that

More information

Physics 102, Learning Guide 1, Spring Learning Guide 1

Physics 102, Learning Guide 1, Spring Learning Guide 1 Physics 102, Learning Guide 1, Spring 2002 1 The following formulae may be useful: Learning Guide 1 F = k Q 1Q 2 = 1 Q 1 Q 2 r 2 4πε 0 r 2 k =9.0 10 9 Nm 2 C 2 F = qe e =1.6 10 19 C PE = qv ba 1V = 1J/C

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 24 To understand capacitors

More information

10th week Lectures March Chapter 12

10th week Lectures March Chapter 12 Electric charge. 10th week Lectures March 20. 2017. Chapter 12 Conductors and Insulators Coulomb law Electric field Electric Potential 3/20/2017 Physics 214 Spring 2017 1 Electric charge an atom has a

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Chapter 17. Potential and Capacitance

Chapter 17. Potential and Capacitance Chapter 17 Potential and Capacitance Potential Voltage (potential) is the analogue of water pressure while current is the analogue of flow of water in say gal/min or Kg/s Think of a potential as the words

More information

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2 19.4 19.6 Electrostatic Forces; Coulomb s Law Electrostatic Forces from multiple charges Electric Fields: point charges Electric Fields: multiple point charges, continuous charge distributions Electric

More information

Electrostatics: Electrostatic Devices

Electrostatics: Electrostatic Devices Electrostatics: Electrostatic Devices EE331 Electromagnetic Field Theory Outline Laplace s Equation Derivation Meaning Solving Laplace s equation Resistors Capacitors Electrostatics -- Devices Slide 1

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics (Chapters 21-24.6) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential. Interaction

More information

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages

Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages Lecture 0 March /4 th, 005 Capacitance (Part I) Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 10.1-6, Pages 8-94 Assignment: Assignment #10 Due: March 31 st, 005 Preamble: Capacitance

More information

PHYSICS - CLUTCH CH 24: CAPACITORS & DIELECTRICS.

PHYSICS - CLUTCH CH 24: CAPACITORS & DIELECTRICS. !! www.clutchprep.com CONCEPT: CAPACITORS AND CAPACITANCE A CAPACITOR is formed by two surfaces of equal/opposite charge brought close together - Separation of charge potential energy stored Connecting

More information

Lecture contents Review: Few concepts from physics Electric field

Lecture contents Review: Few concepts from physics Electric field 1 Lecture contents Review: Few concepts from physics Electric field Coulomb law, Gauss law, Poisson equation, dipole, capacitor Conductors and isolators 1 Electric current Dielectric constant Overview

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Chapter 16. Electric Energy and Capacitance

Chapter 16. Electric Energy and Capacitance Chapter 16 Electric Energy and Capacitance Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical potential energy function with this force Work

More information

Transformed E&M I homework. Work and Energy (Griffiths Chapter 2)

Transformed E&M I homework. Work and Energy (Griffiths Chapter 2) Transformed E&M I homework Work and Energy (Griffiths Chapter 2) Work & Energy Question 1. Energy of point charge distribution Imagine a small square (side "a") with four point charges +q, one on each

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

University Physics 227N/232N Old Dominion University

University Physics 227N/232N Old Dominion University University Physics 227N/232N Old Dominion University (More) Chapter 23, Capacitors Lab deferred to Fri Feb 28 Exam Solutions will be posted Tuesday PM QUIZ this Fri (Feb 21), Fred lectures Mon (Feb 24)

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

r where the electric constant

r where the electric constant 1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

More information

PHYS 1441 Section 002 Lecture #7

PHYS 1441 Section 002 Lecture #7 PHYS 1441 Section 002 Lecture #7 Monday, Sept. 25, 2017 Chapter 22 One last Gauss Law Example Chapter 23 Electric Potential Electric Potential Energy Electric Potential due to Point Charges Shape of the

More information

Electric Potential. Capacitors (Chapters 28, 29)

Electric Potential. Capacitors (Chapters 28, 29) Electric Potential. Capacitors (Chapters 28, 29) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength

More information

EXAM REVIEW ON MONDAY

EXAM REVIEW ON MONDAY EXAM REVIEW ON MONDAY 6:5 8:5 PM McCarty A Room G86 By JJ Stankowicz Also, formula sheet has been posted. PHY049: Chapter 5 Capacitance calculation review +q q Why do we always consider only +q and q pairs?

More information

Lecture 11 Electrostatic Potential

Lecture 11 Electrostatic Potential Lecture 11 Electrostatic Potential Sections: 4.1, 4.2, 4.3, 4.4 Homework: See homework file differential work Work: Definition W = F L dw = F dl= FdLcosα total work done from to W = F d L, J dl α L F α

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

EX. Potential for uniformly charged thin ring

EX. Potential for uniformly charged thin ring EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly

More information

For more info

For more info Electrostatic:- It is a branch of physics that deals with the phenomena and properties of stationary or slow-moving electric charges with no acceleration. Coulomb s Law:- It states that the electro-static

More information

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents)

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Higher'Physics'1B Electricity) Electrostatics)) Introduction) Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Properties)of)Electric)Charges)

More information

Validity of expressions

Validity of expressions E&M Lecture 8 Topics: (1)Validity of expressions ()Electrostatic energy (in a capacitor?) (3)Collection of point charges (4)Continuous charge distribution (5)Energy in terms of electric field (6)Energy

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *3828804905* PHYSICS 9702/42 Paper 4 A Level Structured Questions May/June 2017 2 hours Candidates answer

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

Physics Electrostatics

Physics Electrostatics Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

More information

d) (6) If a third charge q = 2.0 µc is now placed 12.0 cm to the left of Q 1, what magnitude electric force will it experience?

d) (6) If a third charge q = 2.0 µc is now placed 12.0 cm to the left of Q 1, what magnitude electric force will it experience? Gen. Phys. II Exam 1 - Chs. 16,17,18A - Electric Fields, Potential, Current Sep. 12, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa Capacitors II Physics 2415 Lecture 9 Michael Fowler, UVa Today s Topics First, some review then Storing energy in a capacitor How energy is stored in the electric field Dielectrics: why they strengthen

More information

Physics 219 Question 1 January

Physics 219 Question 1 January Lecture 6-16 Physics 219 Question 1 January 30. 2012. A (non-ideal) battery of emf 1.5 V and internal resistance 5 Ω is connected to a light bulb of resistance 50 Ω. How much power is delivered to the

More information

and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 17 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C k = 9 "10 9 Nm 2 C 2 $ 0

More information

Physics 12 ELECTROSTATICS

Physics 12 ELECTROSTATICS Physics 12 ELECTROSTATICS F = kq 1Q 2 r2 E = V d V = kq r E p = kq 1Q 2 r F = qe V = E p Q 1 000 000 Volts 1 000 000 Volts NAME: Block: Text References 3 rd Ed. Giancolli Pg. 416-30 4 th Ed. Giancolli

More information

Chapter 5 Electric Fields in Material Space

Chapter 5 Electric Fields in Material Space Chapter 5 Electric Fields in Material Space Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Introduction In chapter 4, Electrostatic fields in free space were considered.

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

26 Capacitance and Dielectrics

26 Capacitance and Dielectrics Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 26 Capacitance and Dielectrics 26.1 Definition of Capacitance 26.2 Calculating

More information

Prof. Kwang-Chun Ho.

Prof. Kwang-Chun Ho. Electromagnetic Field Theory [Chapter 4: Electrostatic Fields] Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Outline What is electrostatics? Coulomb s law and electric field

More information

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT 9 Dielectrics 9.1 INTRODUCTION A dielectric is an insulating material in which all the electrons are tightly bound to the nuclei of the atoms and there are no free electrons available for the conduction

More information

Chapter 11. Electricity. Electric Charge Atoms and Ions Coulomb s Law Electric Field Electric Field Lines Potential Difference

Chapter 11. Electricity. Electric Charge Atoms and Ions Coulomb s Law Electric Field Electric Field Lines Potential Difference Chapter 11 Electricity In This Chapter: Electric Charge Atoms and Ions Coulomb s Law Electric ield Electric ield Lines Potential Difference Electric Charge Electric charge, like mass, is one of the basic

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed?

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? 1 iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? q A: C->2 C0 B: C-> C0 C: C-> C0/2 D: C->- C0 E: C->-2 C0 2 iclicker A metal ball of

More information

Chapter 10. Electrostatics

Chapter 10. Electrostatics Chapter 10 Electrostatics 3 4 AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A solid conducting sphere

More information

in series Devices connected in series will have the same amount of charge deposited on each capacitor. But different potential difference. That means

in series Devices connected in series will have the same amount of charge deposited on each capacitor. But different potential difference. That means Electric Field Electricity Lecture Series Electric Field: Field an area where any charged object will experience an electric force Kirchoff s Laws The electric field lines around a pair of point charges

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29. Homework Reading: Chap. 29, Chap. 31 and Chap. 32 Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.32 Problems: 29.49, 29.51, 29.52, 29.57, 29.58, 29.59, 29.63,

More information