Numerical Methods-Lecture XIII: Dynamic Discrete Choice Estimation

Size: px
Start display at page:

Download "Numerical Methods-Lecture XIII: Dynamic Discrete Choice Estimation"

Transcription

1 Numerical Methods-Lecture XIII: Dynamic Discrete Choice Estimation (See Rust 1989) Trevor Gallen Fall / 1

2 Introduction Rust (1989) wrote a paper about Harold Zurcher s decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. 10 years of monthly data bus mileage and engine replacement 104 buses 1 Harold 2 / 1

3 Introduction Rust (1989) wrote a paper about Harold Zurcher s decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. 10 years of monthly data bus mileage and engine replacement 104 buses 1 Harold Not interested in Harold per se 3 / 1

4 Introduction Rust (1989) wrote a paper about Harold Zurcher s decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. 10 years of monthly data bus mileage and engine replacement 104 buses 1 Harold Not interested in Harold per se Interested in application of Dynamic Discrete Choice framework 4 / 1

5 Description Observe monthly bus mileage Observe maintenance diary with date, milage, and list of components repaired or replaced Three types of maintenance operations Routine adjustments (brake adjustments, tire rotation) Replacement of individual components when failed Major engine overhauls Model Zurcher s decision to replace bus engines based on observables and unobservables 5 / 1

6 Description Observe monthly bus mileage Observe maintenance diary with date, milage, and list of components repaired or replaced Three types of maintenance operations Routine adjustments (brake adjustments, tire rotation) Replacement of individual components when failed Major engine overhauls Model Zurcher s decision to replace bus engines based on observables and unobservables 6 / 1

7 Model Agent is forward looking Maximizes expected intertemporal payoff Estimate parameters of the models Test whether the agent s behavior is consistent with the model 7 / 1

8 Replacement data-i 8 / 1

9 Replacement data-ii 9 / 1

10 Replacement data-iii 10 / 1

11 Sample Focus on bus groups 1-4 Most recent acquisitions Have data on replacement costs only for this group Utilization fairly constant within each group (necessary for model) 11 / 1

12 Model - I Harold chooses {i 1, i 2,..., i t,...} to maximize his expected utility max E t β t 1 u(x t, ε t, i t ; θ) {i 1,i 2,...,i t,...} t=1 x t is the total mileage on an engine since last replacement ε t are unobservable (to the econometrician) shocks i t is an indicator of engine replacement θ is vector of parameters (to be discussed below) 12 / 1

13 Model - II Cost function c(x, θ 1 ) = m(x, θ 11 ) + µ(x, θ 12 )b(x, θ 13 ) m(x, θ 11 ) is the conditional expectation of normal maintenance and operation expenditure µ(x, θ 12 ) is the conditional probability of an unexpected engine failure b(x, θ 13 ) is the conditional expectation of towing costs, repair costs, and loss of customer goodwill costs resulting from engine failure No data on maintenance and operating costs, so only estimating the sum of costs c(x, θ 1 ) 13 / 1

14 Model - III Stochastic process governing {i t, x t } is the solution to V θ (x t ) = sup E β j t u(x Π j, f j, θ 1 ) x t j=t where utility u is { given by c(x u(x t, i t, θ 1 ) = t, θ 1 ) if i t = 0 [ P P + c(0, θ 1 ) ] if i t = 1 Π = {f t, f t+1,...} is a sequence of decision rules where each f indicates the optimal choice (replace or not) at time t given the entire history of investment i t 1,..., i 1 and mileage x t, x t 1,..., x 1 observed to date P is the scrap value of an engine P is the cost of a new engine 14 / 1

15 Model - IV Evolution of x t is given by stochastic process: p(x t+1 x t, i t, θ 2 ) θ 2 exp[θ 2 (x t+1 x t )] if i t = 0 & x t+1 x t = θ 2 exp[θ 2 (x t+1 )] if i t = 1 & 0 o/w x t+1 0 Without investment, next period mileage is drawn from exponential CDF 1 exp[θ 2 (x t+1 x t )] With investment, next period mileage is drawn from exponential CDF 1 exp[θ 2 (x t+1 0)] 15 / 1

16 Model - V Bellman: V θ (x t ) = EV θ (x t, i t ) = i t = f (x t, θ) = max u(x t, i t, θ 1 ) + βev θ (x t, i t ) i t {0,1} o V θ (y)p(dy x t, i t, θ 2 ) { 1 if xt > γ(θ 1, θ 2 ) 0 if x t γ(θ 1, θ 2 ) Where γ(θ 1, θ 2 ) is the investment cut-off ( optimal stopping barrier ) given by the unique solution to ( P P)(1 β) = γ(θ1,θ 2 ) 0 [1 β exp{ θ 2 (1 β)y}] c(y, θ 1) ydy 16 / 1

17 Model - VI Making the model stochastic: i t = f (x t, θ) + ε t ε t known to agent but unknown to the econometrician 17 / 1

18 Model - VII C(x t ) Choice set. A finite set of allowable values of the control variable i t when state variable is x t ε t = {e t (i) i C(x t )} A #C(x t )-dimensional vector of state variables observed by agent by not by the econometrician. x t = {x t (1),..., x t (K)} K dimensional vector of state variables observed by both the agent and the econometrician. u(x t, i t, θ 1 ) + ε t (i) Realized single period utility of decision i when state variable is x t, ε t ). θ 1 is a vector of unknown parameters to be estimated p(x t+1, ε t+1 x t, ε t, i t, θ 2, θ 3 ) Markov transitional denisty for state variable (x t, ε t ) when alternative i t is selected. θ 1 and θ 2 are vectors of unknown parameters to be estimated. θ = (β, θ 1, θ 2, θ 3 ) The complete 1 + K 1 + K 2 + K 3 vector of parameters to be estimated 18 / 1

19 Model - VIII Infinite horizon, discounted Harold decision problem: V θ (x t, ε t ) = sup E β j t (u(x Π j, f j, θ 1 ) + ε j (f j )) x t, ε t, θ 2, θ 3 j=t The optimal value function V θ is the unique solution to V θ (x t, ε t ) = with the decision rule i t = f (x t, ε t, θ) arg max [u(x t, i t, θ 1 ) + ε t (i) + βev θ (x t, ε t, i t )] i t C(x t) max [u(x t, i t, θ 1 ) + ε t (i t ) + βev θ (x t, ε t, i t )] i t C(x t) 19 / 1

20 Model - IX Problems: ε t appears nonlinearly. Have to integrate out over ε t to obtain choice probabilities Dimensionality: grid approach to estimating ε would still be too large to be computationally tractable (especially in 1989). 20 / 1

21 Model - X Conditional Independence Assumption: P(x t+1, ε t+1 x t, ε t, i, θ 2, θ 3 ) = q(ε t+1 x t+1, θ 2 )P(x t+1 x t, i, θ 3 ) 21 / 1

22 Estimation-I Three likelihood functions. Two partial likelihoods: T l 1 (x 1,..., x T, i 1,..., i T x 0, i 0, θ) = p(x t x t 1, i t 1, θ 3 ) l 2 (x 1,..., x T, i 1,..., i T θ) = And the full likelihood function: l f (x 1,..., x T, i 1,..., i T x 0, i 0, θ) = Three stages of estimation. t=1 T P(i t x t, θ) t=1 T P(i t x t, θ)p(x t x t 1, i t 1, θ 3 ) t=1 22 / 1

23 Estimation-II Recall, have value function which is given by the functional equation EV θ (x, i) = log exp(u(y, j, θ 1 ) + βev θ (y, j)) p(dy x, i, θ 3) y j C(y) Goal is to estimate θ using a nested fixed point algorithm: For each θ, compute EV θ using a fixed point algorithm Outer hill climbing algorithm searches for the value of θ which maximizes the likelihood function. 23 / 1

24 Estimation-III First estimate the parameters θ 3 of the transition probability { g(xt+1 x p(x t+1 x t, i t, θ 3 ) = t, θ 3 ) if i t = 1 g(x t+1 0, θ 3 ) if i t = 0 Using l 1 (x 1,..., x T, i 1,..., i T x 0, i 0 θ) = T p(x t x t 1, i t 1, θ 3 ) t=1 g is a multinomial distribution on the set {0, 1, 2} corresponding to monthly mileage intervals [0, 5000), [5000, 10000), [10000, ) so θ 3j = Pr{x t+1 = x t + j x t, i t = 0}, j = 0, 1 This first stage doesn t require estimation of EV θ! 24 / 1

25 Estimation-IV 25 / 1

26 Estimation-V 26 / 1

27 Estimation-VI Given θ 3, and using l 2 we can obtain estimates for β, θ 1, and RC (RC = P P): where with EV θ (x, i) = and l 2 (x 1,..., x T, i 1,...i, T ) θ) = T P(i t x t, θ) t=1 exp{u(x, i, θ 1 ) + βev θ (x, i)} P(i x, θ) = j C(x) exp{u(x, j, θ 1) + βev θ (x, j)} y log j C(y) u(x t, i t, θ 1 ) + ε t (i) = exp(u(y, j, θ 1 ) + βev θ (y, j)) p(dy x, i, θ 3) { RC c(0, θ1 ) + ε t (1) if i = 1 c(x t, θ 1 ) + ε t (0) if i = 0 27 / 1

28 Estimation-VII θ 1 are the parameters of the cost function Compare different (parsimonious) specifications Linear and square root forms do well 28 / 1

29 Estimation-VIII 29 / 1

30 Estimation-IX Next look at myopic replacement rule replace only when operating costs c(x t, θ 1 ) exceed current cost of replacement RC + c(0, θ 1 ) This model is rejected β =.999 produces a statistically significantly better fit of the model to the data 30 / 1

31 Estimation-VIII 31 / 1

32 Takeaways So what? Why not just do a logit? 32 / 1

33 Takeaways So what? Why not just do a logit? Rust estimates Harold s problem at a micro level 33 / 1

34 Takeaways So what? Why not just do a logit? Rust estimates Harold s problem at a micro level Changes in interest rates, costs, etc. he can still deal with 34 / 1

35 Takeaways So what? Why not just do a logit? Rust estimates Harold s problem at a micro level Changes in interest rates, costs, etc. he can still deal with Not myopic 35 / 1

36 Takeaways So what? Why not just do a logit? Rust estimates Harold s problem at a micro level Changes in interest rates, costs, etc. he can still deal with Not myopic Good example of indirectly inferring underlying parameters from agent behavior 36 / 1

Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher. John Rust

Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher. John Rust Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher John Rust 1987 Top down approach to investment: estimate investment function that is based on variables that are aggregated

More information

Lecture notes: Rust (1987) Economics : M. Shum 1

Lecture notes: Rust (1987) Economics : M. Shum 1 Economics 180.672: M. Shum 1 Estimate the parameters of a dynamic optimization problem: when to replace engine of a bus? This is a another practical example of an optimal stopping problem, which is easily

More information

MONTE CARLO SIMULATIONS OF THE NESTED FIXED-POINT ALGORITHM. Erik P. Johnson. Working Paper # WP October 2010

MONTE CARLO SIMULATIONS OF THE NESTED FIXED-POINT ALGORITHM. Erik P. Johnson. Working Paper # WP October 2010 MONTE CARLO SIMULATIONS OF THE NESTED FIXED-POINT ALGORITHM Erik P. Johnson Working Paper # WP2011-011 October 2010 http://www.econ.gatech.edu/research/wokingpapers School of Economics Georgia Institute

More information

Constrained Optimization Approaches to Estimation of Structural Models: Comment

Constrained Optimization Approaches to Estimation of Structural Models: Comment Constrained Optimization Approaches to Estimation of Structural Models: Comment Fedor Iskhakov, University of New South Wales Jinhyuk Lee, Ulsan National Institute of Science and Technology John Rust,

More information

Estimating Single-Agent Dynamic Models

Estimating Single-Agent Dynamic Models Estimating Single-Agent Dynamic Models Paul T. Scott Empirical IO Fall, 2013 1 / 49 Why are dynamics important? The motivation for using dynamics is usually external validity: we want to simulate counterfactuals

More information

Estimating Single-Agent Dynamic Models

Estimating Single-Agent Dynamic Models Estimating Single-Agent Dynamic Models Paul T. Scott New York University Empirical IO Course Fall 2016 1 / 34 Introduction Why dynamic estimation? External validity Famous example: Hendel and Nevo s (2006)

More information

1 Hotz-Miller approach: avoid numeric dynamic programming

1 Hotz-Miller approach: avoid numeric dynamic programming 1 Hotz-Miller approach: avoid numeric dynamic programming Rust, Pakes approach to estimating dynamic discrete-choice model very computer intensive. Requires using numeric dynamic programming to compute

More information

Econometrics III: Problem Set # 2 Single Agent Dynamic Discrete Choice

Econometrics III: Problem Set # 2 Single Agent Dynamic Discrete Choice Holger Sieg Carnegie Mellon University Econometrics III: Problem Set # 2 Single Agent Dynamic Discrete Choice INSTRUCTIONS: This problem set was originally created by Ron Goettler. The objective of this

More information

Estimating Dynamic Programming Models

Estimating Dynamic Programming Models Estimating Dynamic Programming Models Katsumi Shimotsu 1 Ken Yamada 2 1 Department of Economics Hitotsubashi University 2 School of Economics Singapore Management University Katsumi Shimotsu, Ken Yamada

More information

Lecture Notes: Estimation of dynamic discrete choice models

Lecture Notes: Estimation of dynamic discrete choice models Lecture Notes: Estimation of dynamic discrete choice models Jean-François Houde Cornell University November 7, 2016 These lectures notes incorporate material from Victor Agguirregabiria s graduate IO slides

More information

A Model of Human Capital Accumulation and Occupational Choices. A simplified version of Keane and Wolpin (JPE, 1997)

A Model of Human Capital Accumulation and Occupational Choices. A simplified version of Keane and Wolpin (JPE, 1997) A Model of Human Capital Accumulation and Occupational Choices A simplified version of Keane and Wolpin (JPE, 1997) We have here three, mutually exclusive decisions in each period: 1. Attend school. 2.

More information

Lecture 14 More on structural estimation

Lecture 14 More on structural estimation Lecture 14 More on structural estimation Economics 8379 George Washington University Instructor: Prof. Ben Williams traditional MLE and GMM MLE requires a full specification of a model for the distribution

More information

MARKOV DECISION PROCESSES WITH SET-VALUED TRANSITIONS: A CASE STUDY IN AUTOMATED REPLACEMENT MODELS

MARKOV DECISION PROCESSES WITH SET-VALUED TRANSITIONS: A CASE STUDY IN AUTOMATED REPLACEMENT MODELS MARKOV DECISION PROCESSES WITH SET-VALUED TRANSITIONS: A CASE STUDY IN AUTOMATED REPLACEMENT MODELS Ricardo Shirota Filho, Fabio Gagliardi Cozman Escola Politécnica, Universidade de São Paulo Av. Prof.

More information

exp(v j=) k exp(v k =)

exp(v j=) k exp(v k =) Economics 250c Dynamic Discrete Choice, continued This lecture will continue the presentation of dynamic discrete choice problems with extreme value errors. We will discuss: 1. Ebenstein s model of sex

More information

Implementation of Bayesian Inference in Dynamic Discrete Choice Models

Implementation of Bayesian Inference in Dynamic Discrete Choice Models Implementation of Bayesian Inference in Dynamic Discrete Choice Models Andriy Norets anorets@princeton.edu Department of Economics, Princeton University August 30, 2009 Abstract This paper experimentally

More information

Dynamic Discrete Choice Structural Models in Empirical IO

Dynamic Discrete Choice Structural Models in Empirical IO Dynamic Discrete Choice Structural Models in Empirical IO Lecture 4: Euler Equations and Finite Dependence in Dynamic Discrete Choice Models Victor Aguirregabiria (University of Toronto) Carlos III, Madrid

More information

Three essays in computational economics

Three essays in computational economics Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Three essays in computational economics Reich, Gregor Philipp Abstract:

More information

Ergodicity and Non-Ergodicity in Economics

Ergodicity and Non-Ergodicity in Economics Abstract An stochastic system is called ergodic if it tends in probability to a limiting form that is independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence. We illustrate

More information

Dynamic and Stochastic Model of Industry. Class: Work through Pakes, Ostrovsky, and Berry

Dynamic and Stochastic Model of Industry. Class: Work through Pakes, Ostrovsky, and Berry Dynamic and Stochastic Model of Industry Class: Work through Pakes, Ostrovsky, and Berry Reading: Recommend working through Doraszelski and Pakes handbook chapter Recall model from last class Deterministic

More information

Dynamic Models with Serial Correlation: Particle Filter Based Estimation

Dynamic Models with Serial Correlation: Particle Filter Based Estimation Dynamic Models with Serial Correlation: Particle Filter Based Estimation April 6, 04 Guest Instructor: Nathan Yang nathan.yang@yale.edu Class Overview ( of ) Questions we will answer in today s class:

More information

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists 1 of 63 University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming Peter J. Hammond Autumn 2013, revised 2014 University of

More information

Revisiting the Nested Fixed-Point Algorithm in BLP Random Coeffi cients Demand Estimation

Revisiting the Nested Fixed-Point Algorithm in BLP Random Coeffi cients Demand Estimation Revisiting the Nested Fixed-Point Algorithm in BLP Random Coeffi cients Demand Estimation Jinhyuk Lee Kyoungwon Seo September 9, 016 Abstract This paper examines the numerical properties of the nested

More information

Dynamic stochastic game and macroeconomic equilibrium

Dynamic stochastic game and macroeconomic equilibrium Dynamic stochastic game and macroeconomic equilibrium Tianxiao Zheng SAIF 1. Introduction We have studied single agent problems. However, macro-economy consists of a large number of agents including individuals/households,

More information

Dynamic and Stochastic Model of Industry. Class: Work through Pakes, Ostrovsky, and Berry

Dynamic and Stochastic Model of Industry. Class: Work through Pakes, Ostrovsky, and Berry Dynamic and Stochastic Model of Industry Class: Work through Pakes, Ostrovsky, and Berry Reading: Recommend working through Doraszelski and Pakes handbook chapter Recall model from last class Deterministic

More information

Lecture Notes 10: Dynamic Programming

Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 81 Lecture Notes 10: Dynamic Programming Peter J. Hammond 2018 September 28th University of Warwick, EC9A0 Maths for Economists Peter

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

AM 121: Intro to Optimization Models and Methods: Fall 2018

AM 121: Intro to Optimization Models and Methods: Fall 2018 AM 11: Intro to Optimization Models and Methods: Fall 018 Lecture 18: Markov Decision Processes Yiling Chen Lesson Plan Markov decision processes Policies and value functions Solving: average reward, discounted

More information

A Computational Method for Multidimensional Continuous-choice. Dynamic Problems

A Computational Method for Multidimensional Continuous-choice. Dynamic Problems A Computational Method for Multidimensional Continuous-choice Dynamic Problems (Preliminary) Xiaolu Zhou School of Economics & Wangyannan Institution for Studies in Economics Xiamen University April 9,

More information

Identification of the Distribution of Random Coefficients in Static and Dynamic Discrete Choice Models

Identification of the Distribution of Random Coefficients in Static and Dynamic Discrete Choice Models Identification of the Distribution of Random Coefficients in Static and Dynamic Discrete Choice Models Kyoo il Kim University of Minnesota May 2014 Abstract We show that the distributions of random coefficients

More information

Abstract Dynamic Programming

Abstract Dynamic Programming Abstract Dynamic Programming Dimitri P. Bertsekas Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Overview of the Research Monograph Abstract Dynamic Programming"

More information

Lecture Pakes, Ostrovsky, and Berry. Dynamic and Stochastic Model of Industry

Lecture Pakes, Ostrovsky, and Berry. Dynamic and Stochastic Model of Industry Lecture Pakes, Ostrovsky, and Berry Dynamic and Stochastic Model of Industry Let π n be flow profit of incumbant firms when n firms are in the industry. π 1 > 0, 0 π 2

More information

Estimating Dynamic Discrete-Choice Games of Incomplete Information

Estimating Dynamic Discrete-Choice Games of Incomplete Information Estimating Dynamic Discrete-Choice Games of Incomplete Information Michael Egesdal Zhenyu Lai Che-Lin Su October 5, 2012 Abstract We investigate the estimation of models of dynamic discrete-choice games

More information

Sequential Estimation of Dynamic Programming Models

Sequential Estimation of Dynamic Programming Models Sequential Estimation of Dynamic Programming Models Hiroyuki Kasahara Department of Economics University of British Columbia hkasahar@gmail.com Katsumi Shimotsu Department of Economics Hitotsubashi University

More information

An Application to Growth Theory

An Application to Growth Theory An Application to Growth Theory First let s review the concepts of solution function and value function for a maximization problem. Suppose we have the problem max F (x, α) subject to G(x, β) 0, (P) x

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Consumer heterogeneity, demand for durable goods and the dynamics of quality

Consumer heterogeneity, demand for durable goods and the dynamics of quality Consumer heterogeneity, demand for durable goods and the dynamics of quality Juan Esteban Carranza University of Wisconsin-Madison April 4, 2006 Abstract This paper develops a methodology to estimate models

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES. Victor Aguirregabiria (Boston University) and. Pedro Mira (CEMFI) Applied Micro Workshop at Minnesota

SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES. Victor Aguirregabiria (Boston University) and. Pedro Mira (CEMFI) Applied Micro Workshop at Minnesota SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES Victor Aguirregabiria (Boston University) and Pedro Mira (CEMFI) Applied Micro Workshop at Minnesota February 16, 2006 CONTEXT AND MOTIVATION Many interesting

More information

Identifying the Discount Factor in Dynamic Discrete Choice Models

Identifying the Discount Factor in Dynamic Discrete Choice Models Identifying the Discount Factor in Dynamic Discrete Choice Models Jaap H. Abbring Øystein Daljord September 25, 2017 Abstract Empirical applications of dynamic discrete choice models usually either take

More information

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Daron Acemoglu MIT November 19, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 1 / 79 Stochastic

More information

Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games

Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games Gabriel Y. Weintraub, Lanier Benkard, and Benjamin Van Roy Stanford University {gweintra,lanierb,bvr}@stanford.edu Abstract

More information

Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration

Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration Peter Arcidiacono Department of Economics Duke University psarcidi@econ.duke.edu Federico A. Bugni Department of Economics

More information

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming

Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming Economics 2010c: Lecture 2 Iterative Methods in Dynamic Programming David Laibson 9/04/2014 Outline: 1. Functional operators 2. Iterative solutions for the Bellman Equation 3. Contraction Mapping Theorem

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Econometrica Supplementary Material SUPPLEMENT TO CONDITIONAL CHOICE PROBABILITY ESTIMATION OF DYNAMIC DISCRETE CHOICE MODELS WITH UNOBSERVED HETEROGENEITY (Econometrica, Vol. 79, No. 6, November 20, 823

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity

CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity Peter Arcidiacono Duke University Robert A. Miller Carnegie Mellon University August 13, 2010 Abstract We adapt the Expectation-Maximization

More information

Lecture 8 Inequality Testing and Moment Inequality Models

Lecture 8 Inequality Testing and Moment Inequality Models Lecture 8 Inequality Testing and Moment Inequality Models Inequality Testing In the previous lecture, we discussed how to test the nonlinear hypothesis H 0 : h(θ 0 ) 0 when the sample information comes

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration

Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration Approximating High-Dimensional Dynamic Models: Sieve Value Function Iteration Peter Arcidiacono Patrick Bayer Federico Bugni Jon James Duke University Duke University Duke University Duke University January

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Master MVA: Reinforcement Learning Lecture: 5 Approximate Dynamic Programming Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/ lazaric/webpage/teaching.html Objectives of the lecture 1.

More information

Hidden Rust Models. Benjamin Connault. Princeton University, Department of Economics. Job Market Paper. November Abstract

Hidden Rust Models. Benjamin Connault. Princeton University, Department of Economics. Job Market Paper. November Abstract Hidden Rust Models Benjamin Connault Princeton University, Department of Economics Job Market Paper November 2014 Abstract This paper shows that all-discrete dynamic choice models with hidden state provide

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

Numerical Methods in Economics

Numerical Methods in Economics Numerical Methods in Economics MIT Press, 1998 Chapter 12 Notes Numerical Dynamic Programming Kenneth L. Judd Hoover Institution November 15, 2002 1 Discrete-Time Dynamic Programming Objective: X: set

More information

MKTG 555: Marketing Models

MKTG 555: Marketing Models MKTG 555: Marketing Models Structural Models -- Overview Arvind Rangaswamy (Some Parts are adapted from a presentation by by Prof. Pranav Jindal) March 27, 2017 1 Overview Differences between structural

More information

ECON 2010c Solution to Problem Set 1

ECON 2010c Solution to Problem Set 1 ECON 200c Solution to Problem Set By the Teaching Fellows for ECON 200c Fall 204 Growth Model (a) Defining the constant κ as: κ = ln( αβ) + αβ αβ ln(αβ), the problem asks us to show that the following

More information

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Jefferson Huang March 21, 2018 Reinforcement Learning for Processing Networks Seminar Cornell University Performance

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 8 Probability and Statistical Models Motivating ideas AMS 131: Suppose that the random variable

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608 Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions So far we ve seen two canonical settings for regression.

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course.

Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course. Paris. Optimization, Part 2 (november to december): mandatory for QEM-IMAEF, and for MMEF or MAEF who have chosen it as an optional course. Philippe Bich (Paris 1 Panthéon-Sorbonne and PSE) Paris, 2016.

More information

CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity

CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity CCP Estimation of Dynamic Discrete Choice Models with Unobserved Heterogeneity Peter Arcidiacono Duke University Robert A. Miller Carnegie Mellon University April 26, 2011 Abstract We adapt the Expectation-Maximization

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information

Value and Policy Iteration

Value and Policy Iteration Chapter 7 Value and Policy Iteration 1 For infinite horizon problems, we need to replace our basic computational tool, the DP algorithm, which we used to compute the optimal cost and policy for finite

More information

Continuous random variables

Continuous random variables Continuous random variables CE 311S What was the difference between discrete and continuous random variables? The possible outcomes of a discrete random variable (finite or infinite) can be listed out;

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

1 Degree distributions and data

1 Degree distributions and data 1 Degree distributions and data A great deal of effort is often spent trying to identify what functional form best describes the degree distribution of a network, particularly the upper tail of that distribution.

More information

Bayesian inference in dynamic discrete choice models

Bayesian inference in dynamic discrete choice models University of Iowa Iowa Research Online Theses and Dissertations 2007 Bayesian inference in dynamic discrete choice models Andriy Norets University of Iowa Copyright 2007 Andriy Norets This dissertation

More information

Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions

Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions 1 / 36 Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions Leonardo Rojas-Nandayapa The University of Queensland ANZAPW March, 2015. Barossa Valley, SA, Australia.

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Some Fixed-Point Results for the Dynamic Assignment Problem

Some Fixed-Point Results for the Dynamic Assignment Problem Some Fixed-Point Results for the Dynamic Assignment Problem Michael Z. Spivey Department of Mathematics and Computer Science Samford University, Birmingham, AL 35229 Warren B. Powell Department of Operations

More information

Social Interactions under Incomplete Information with Heterogeneous Expectations

Social Interactions under Incomplete Information with Heterogeneous Expectations Social Interactions under Incomplete Information with Heterogeneous Expectations Chao Yang and Lung-fei Lee Ohio State University February 15, 2014 A Very Preliminary Version Abstract We build a framework

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Discrete panel data. Michel Bierlaire

Discrete panel data. Michel Bierlaire Discrete panel data Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M. Bierlaire (TRANSP-OR ENAC

More information

A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006)

A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006) A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006) A Presentation for Corporate Finance 1 Graduate School of Economics December, 2009

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm

CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm Jan-Willem van de Meent, 19 November 2016 1 Hidden Markov Models A hidden Markov model (HMM)

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Lecture 4: State Estimation in Hidden Markov Models (cont.)

Lecture 4: State Estimation in Hidden Markov Models (cont.) EE378A Statistical Signal Processing Lecture 4-04/13/2017 Lecture 4: State Estimation in Hidden Markov Models (cont.) Lecturer: Tsachy Weissman Scribe: David Wugofski In this lecture we build on previous

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Cupid s Invisible Hand

Cupid s Invisible Hand Alfred Galichon Bernard Salanié Chicago, June 2012 Matching involves trade-offs Marriage partners vary across several dimensions, their preferences over partners also vary and the analyst can only observe

More information

1 Basic Analysis of Forward-Looking Decision Making

1 Basic Analysis of Forward-Looking Decision Making 1 Basic Analysis of Forward-Looking Decision Making Individuals and families make the key decisions that determine the future of the economy. The decisions involve balancing current sacrifice against future

More information

Estimation of demand for differentiated durable goods

Estimation of demand for differentiated durable goods Estimation of demand for differentiated durable goods Juan Esteban Carranza University of Wisconsin-Madison September 1, 2006 Abstract This paper develops a methodology to estimate models of demand for

More information

Linear Classification: Probabilistic Generative Models

Linear Classification: Probabilistic Generative Models Linear Classification: Probabilistic Generative Models Sargur N. University at Buffalo, State University of New York USA 1 Linear Classification using Probabilistic Generative Models Topics 1. Overview

More information

Spatial Economics and Potential Games

Spatial Economics and Potential Games Outline Spatial Economics and Potential Games Daisuke Oyama Graduate School of Economics, Hitotsubashi University Hitotsubashi Game Theory Workshop 2007 Session Potential Games March 4, 2007 Potential

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Mathematical Optimization Models and Applications

Mathematical Optimization Models and Applications Mathematical Optimization Models and Applications Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 1, 2.1-2,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Infering the Number of State Clusters in Hidden Markov Model and its Extension

Infering the Number of State Clusters in Hidden Markov Model and its Extension Infering the Number of State Clusters in Hidden Markov Model and its Extension Xugang Ye Department of Applied Mathematics and Statistics, Johns Hopkins University Elements of a Hidden Markov Model (HMM)

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Software Reliability & Testing

Software Reliability & Testing Repairable systems Repairable system A reparable system is obtained by glueing individual non-repairable systems each around a single failure To describe this gluing process we need to review the concept

More information