Feng Lin. Abstract. Inspired by thewell-known motto of Henry David Thoreau [1], that government

Size: px
Start display at page:

Download "Feng Lin. Abstract. Inspired by thewell-known motto of Henry David Thoreau [1], that government"

Transcription

1 That Supervisor Is Best Which Supervises Least Feng Lin Department of Electrical and Computer Engineering Wayne State University, Detroit, MI Abstract Inspired by thewell-known motto of Henry David Thoreau [1], that government is best which governs least, we prove that in a general discrete event system, whose behavior is described by strings of discrete events, a supervisor (or controller) that supervises less (that is, gives more freedom to the system) is indeed better in the sense that the system will evolve faster (that is, events will occur earlier), if certain fairness condition is satised. This interesting result is a consequence of recent development of a supervisory control theory for discrete event systems [2,3,4]. Consider the following scenario: a manager sitting in his oce supervises the operations of a plant. He may conceive of these operations as a ow of discrete events. For him, events are generic abstractions of various occurrences, activities, decisions, tasks, etc.. Initiating a new program, marketing a new product, signing a contract, negotiating a deal, placing an order, renovating certain equipments, hiring new personal, etc., are typical example of events in his plant. His aim is to ensure the orderly ow ofevents leading to the realization of certain objectives. Formally, we denote by the set of events. A string of events describes a possible evolution of the plant. One of such strings could be, for example, initiate a new program install new equipments hire more workers 1

2 Each occurrence of events has a lifetime which, for generality, is assumed to be random and generated by some stochastic process (of which deterministic process is a special case). The event lifetime describes the time elapsed from the initiation of the event and the completion of the event. Because of our general assumption, dierent occurrences of the same event mayhave dierent lifetimes. We denote the set of all strings of eventsofby. Clearly, in general, not all strings in can physically occur in the plant. We call the set of feasible (or physically possible) strings of, in the absence of supervision, the uncontrolled behavior UB. The set UB may be thought of as the set of all free trajectories, in the classical sense, and thus serves as a model for the plant. Naturally, every prex (or initial substring) of a string in UB is itself in UB.For example, if the aforementioned string is in UB, then initiate a new program install new equipments is also a string in UB. In other words, UB is closed under prex operation. This will be assumed for all behaviors dened in this paper. The manager as a supervisor decides on the strings of events that are permissible (legal or desirable) and these that are not. Thus, he determines the target behavior TB of his plant. In general, TB is a proper subset of UB (TB UB). The manager pursues the objective of realizing this target behavior through a string of enablement/disablement. Each timehe authorizes a transaction, approves a plan, rejects a request, etc., he is enabling or disabling event, as the case may be. We assume, without lose of generality, that his role is merely supervisory. That is, he refrains from issuing orders or enforcing actions (which is implicit in the model itself). Rather, he responds to his environment (that is, his subordinates or the proposal put forward by them) through approval or disapproval. It is only in this \permissive" manner that he exercises control. In short, he leaves initiation of actions to the internal dynamics of his plant and those involved in the operational detail, responds to the events of his environment by his approval or disapproval, and leave enforcement entirely 2

3 to his subordinates. Clearly, hedoesnothave control over all events. For instance, unpredictable events that are often also unpreventable may occur. Machine may break down, market may be lost to competition, personnel may resign, workers may go on strike, contractors may renegeon their promises of timely delivery, etc. These events the manager cannot control (may not disable). Therefore we partition into controllable events c and uncontrollable events uc. Furthermore, it is reasonable to assume that the manager cannot observe the occurrence of all events (some information is either not reported to him or is not available at the time he needs to make a relevant decision). Thus, we also partition into observable events o and unobservable events uo. The manager's task is thus to enable or disable the controllable events based on the record of occurrences of the observable events in such away that only the strings belonging to the target behavior survive. To formalize the manager's function, we rst dene the projection P :! o as P = P (s) = where denotes the empty string 8 >< >: P (s) if 2 uo P (s) if 2 o : Thus, P erases these events that are not observable to the manager. Projecting UB on o results in P (UB):=fs 2 o :(9t 2 UB)Pt = sg: The set P (UB) describes the behavior of the plant observable by the manager. Based on the observed behavior, the manager would like to implement a policy which is dened as a feedback map : P (UB)!f0 1g 3

4 satisfying (s )=1 (s ) 2f0 1g 2 uc s2 P (UB) 2 c s 2 P (UB): In other words, after a string of events t has occurred, the manager sees Pt, next possible events, generically denoted by, are subject to the supervision (Pt ). If (Pt )=0, then is disabled (prohibited from occurring), while if (Pt ) = 1, then is enabled (initiated). Therefore, the supervised behavior under policy is given by CB := fs 2 UB :(8t s) (Pt )=1g where t s means that t is a prex of s. We would like to consider whether, given a target behavior TB, there exists a policy such that CB = TB In other words, whether the target behavior TB is \realizable". To obtain a condition that ensures the existence of such a policy, we need to introduce the notions of controllability and observability of behaviors. Denition 1 (2) A target behavior TB is controllable (with respect to UB)if (8s 2 TB)(8 2 uc )s 2 UB ) s 2 TB Intuitively, a target behavior TB is controllable if uncontrollable events are tolerable in the following sense: An uncontrollable event 2 uc will not lead to undesirable (or illegal) behavior (s 2 TB)ifitisphysically possible (s 2 UB). The idea is that we do not wish the occurrence of an event, designated as uncontrollable, after a legal string s, renders the resulting string illegal. 4

5 Denition 2 (3) A target behavior TB is observable (with respect to UB)if where (8s s 0 2 )(Ps = Ps 0 ) consistent(s s 0 )) consistent(s s 0 ), (8 2 )(s 2 TB ^ s 0 2 TB ^ s 0 2 UB ) s 0 2 TB) In words, for an arbitrary pair of strings s and s 0, the predicate consistent(s s 0 ) holds if and only if an arbitrary event has the same legal/illegal status after both s and s 0. Observability requires that if s and s 0 looks the same (Ps = Ps 0 ) then they must be consistent (consistent(s s 0 )). The idea is that we do not want to put the manager in a position that his action after two dierent strings that nonetheless have been presented to him as the same string renders one string legal and the other illegal. With these two denitions, we can state the following result. Theorem 1 (3) Given a nonempty target behavior TB, there exists a policy such that CB = TB if and only if TB is both controllable and observable. Thus we have shown that realizable target behaviors of the manager are precisely those target behaviors that are controllable and observable. It is however unlikely that the target behavior as initially specied will be controllable and observable to begin with. Because specication of the target behavior is usually independent of the controllability and observability consideration. This being the case, the manager can only hope to realize a part of the target behavior. We would like to show that in the process of selecting a part of the target behavior, he should try to make the resulting behavior (called modied target behavior) as large as possible. In other words, he should give the plant maximum freedom and thus supervise as little as possible. By doing so, the plant willevolve fastest in the following sense. The pace of the plant, described by the occurrence times of events, is determined by the policy and the event lifetimes. Given a realization! of the stochastic process 5

6 governing the event lifetimes, the occurrence times of events under can be determined as follows: Each event is assigned a clock whose time is set according to!. Initially, all the clocks corresponding to the enabled events under are running concurrently untile the event with the shortest lifetime (as specied by!) occurs when its clock runs out. After the occurrence of, a dierent set of enabled events is determined by. If an event is newly enabled, its clock will now start running. If an event is newly disabled, its clock will be put on hold. Otherwise, the clock will run continuously until the next occurrence of an event. This procedure will then repeat itself. Under this general scheme, we can show that the policy generating the largest CB (that is, supervising least) is best in the sense that events will occur fastest, if a fairness condition is satised. To dene fairness, we denote, for a string s, the number of occurrences of an event by jj(s). Denition 3 (5) A supervised behavior CB is fair if (8s s 0 2 CB )s s 0 ) s s 0 where s s 0, (8 2 )jj(s) jj(s 0 ) s s 0, (8 2 )(s 2 CB ^jj(s)=jj(s 0 ) ) s 0 2 CB ) In words, a supervised behavior CB is fair if, given two strings with the number of occurrences of each event in the second string no less that the number of occurrences of the same event in the rst, then an event that is enabled by after the rst string is also enabled after the second, provided that it has not yet occurred. In a sense, events have a fair chance of occurring. With this denition, we can state our main result. Theorem 2 (5) Consider two policies 1 and 2 with supervised behaviors CB 1 and CB 2 respectively. Assuming no simultaneous occurrences of events in the plant. If (1) CB 1 CB 2, and (2) CB 2 is fair, then s 1 (t!) s 2 (t!) for all t and!, where 6

7 s i (t!) i =1 2is the string of events occurred before t in the plant supervised by i with event lifetimes specied by!. On other words, under the fairness condition, if 2 supervises less (disables less and hence gives more freedom to the plant), then more events will occur in the plant. This is true measured at any time t and for any given event lifetimes!. The assumption of no simultaneous occurrences of events is natural because, since time is dense, if twoevents do occur exactly at the same instance, as in the case of synchronization, we can rename them as one event. This important result, rigorously proved now [5], was intuitively understood at least since 1845 [1]. There are some interesting ways to interpret this result, and we will leave them to the reader's imagination. Let us now turn to a more practical question of how to synthesize an optimal policy. Recall that a policy can only be synthesized for a controllable and observable behavior. So, if a given TB is not both controllable and observable, we would like to nd the largest subset of TB that is both controllable and observable, that is, to nd the supremal element in the set of all controllable and observable subset of TB. The policy corresponding to this supremal element is optimal. Unfortunately, such a supremal element may not exist [3]. This leads us to seek a suboptimal solution, for which weintroduce a strong version of observability, called normality. We will show that the supremal element of the set of all controllable and normal subset of an arbitrary TB does exist. Denition 4 (3) A target behavior TB is normal (with respect to UB)if (8s 2 UB)s 2 TB, Ps 2 P (TB) Intuitively, a target behavior is normal if one can check whether a string s 2 UB is legal by checking whether its projection Ps belongs to P (T B). In other words, information on occurrences of unobservable events is not needed in deciding wthether s 2 UB. Therefore, one expects normality to be stronger that observability. Infactwehave 7

8 Theorem 3 (3) If TB is normal, then TB is observable. On the other hand, if every controllable event is observable, then normality is equivalent to observability assuming controllability as shown in the following theorem. Theorem 4 (6) Under the condition c o,iftb is controllable and observable, then TB is controllable and normal. Therefore, instead of nding controllable and observable behaviors, we can nd controllable and normal behaviors. The set of normal behaviors of UB is algebraically better behaved than that of observable behaviors, in the sense that the set of normal behaviors is closed under arbitrary unions as illustrated by the following theorem. Theorem 5 (3) For a given nonempty TB, the set of behaviors CN(TB):=fK TB : K is controllable and normalg is nonempty and closed under arbitrary unions. Therefore, the supremal element ofcn(tb), supcn(t B), exists. Hence, if TB is not both controllable and observable, we can modify TB by taking the modied target behavior as supcn(t B). We can use the following formulas to computer supcn(tb). Theorem 6 The supremal element of CN(TB)is given by the following formula. supcn(tb)=ub \ P ;1 (P (NTB) ; ((P (UB) ; P (NTB))= uc ) o ) where NTB = TB ; P ;1 P (UB ; TB) (P (UB) ; P (NTB))= uc := fs 2 :(9u 2 uc)su 2 P (UB) ; P (NTB)g 8

9 After computing supcn(t B), the corresponding policy can be easily obtained as follows: (s )= 8 >< >: 1 if sp () 2 P (supcn(tb)) 0 otherwise Thus, we have developed a systematic way to design an optimal supervisor, which supervises least. 1 References [1] H. D. Thoreau, On the Duty of Civil Disobedience. [2] R. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete event processes. SIAM J. Control and Optimization, 25(1), pp [3] F. Lin and W. M. Wonham, On observability of discrete event systems. Information Sciences, 44(3), pp [4] P. J. Ramadge and W. M. Wonham, The control of Discrete Event Systems. Proceedings of IEEE, 77(1), pp [5] F. Lin, Analysis of temporal performance of supervised discrete event systems. Automatica, 30(3), pp [6] F. Lin and W. M. Wonham, Supervisory control of timed discrete-event systems under partial observation. IEEE Transactions on Automatic Control, 40(3), pp [7] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham, Formulas for calculating supremal controllable and normal sublanguages. Systems & Control Letters, 15(1), pp

FORMULAS FOR CALCULATING SUPREMAL CONTROLLABLE AND NORMAL SUBLANGUAGES 1 R. D. Brandt 2,V.Garg 3,R.Kumar 3,F.Lin 2,S.I.Marcus 3, and W. M.

FORMULAS FOR CALCULATING SUPREMAL CONTROLLABLE AND NORMAL SUBLANGUAGES 1 R. D. Brandt 2,V.Garg 3,R.Kumar 3,F.Lin 2,S.I.Marcus 3, and W. M. FORMULAS FOR CALCULATING SUPREMAL CONTROLLABLE AND NORMAL SUBLANGUAGES 1 R. D. Brandt 2,V.Garg 3,R.Kumar 3,F.Lin 2,S.I.Marcus 3, and W. M. Wonham 4 2 Department of ECE, Wayne State University, Detroit,

More information

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus On Controllability and Normality of Discrete Event Dynamical Systems Ratnesh Kumar Vijay Garg Steven I. Marcus Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

More information

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1

Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Language Stability and Stabilizability of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Vijay Garg Department of

More information

Nonblocking Supervisory Control. of Nondeterministic Systems. Michael Heymann 1 and Feng Lin 2. Abstract

Nonblocking Supervisory Control. of Nondeterministic Systems. Michael Heymann 1 and Feng Lin 2. Abstract Nonblocking Supervisory Control of Nondeterministic Systems Michael Heymann 1 and Feng Lin 2 Abstract In this paper we extend the theory of supervisory control of nondeterministic discrete-event systems,

More information

MOST OF the published research on control of discreteevent

MOST OF the published research on control of discreteevent IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 3 Discrete-Event Control of Nondeterministic Systems Michael Heymann and Feng Lin, Member, IEEE Abstract Nondeterminism in discrete-event

More information

On the Design of Adaptive Supervisors for Discrete Event Systems

On the Design of Adaptive Supervisors for Discrete Event Systems On the Design of Adaptive Supervisors for Discrete Event Systems Vigyan CHANDRA Department of Technology, Eastern Kentucky University Richmond, KY 40475, USA and Siddhartha BHATTACHARYYA Division of Computer

More information

Decentralized Control of Discrete Event Systems with Multiple Local Specializations 1

Decentralized Control of Discrete Event Systems with Multiple Local Specializations 1 Decentralized Control of Discrete Event Systems with Multiple Local Specializations Shengbing Jiang, Vigyan Chandra, Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington,

More information

On Supervisory Control of Concurrent Discrete-Event Systems

On Supervisory Control of Concurrent Discrete-Event Systems On Supervisory Control of Concurrent Discrete-Event Systems Yosef Willner Michael Heymann March 27, 2002 Abstract When a discrete-event system P consists of several subsystems P 1,..., P n that operate

More information

Supervisory Control of Petri Nets with. Uncontrollable/Unobservable Transitions. John O. Moody and Panos J. Antsaklis

Supervisory Control of Petri Nets with. Uncontrollable/Unobservable Transitions. John O. Moody and Panos J. Antsaklis Supervisory Control of Petri Nets with Uncontrollable/Unobservable Transitions John O. Moody and Panos J. Antsaklis Department of Electrical Engineering University of Notre Dame, Notre Dame, IN 46556 USA

More information

Optimal Non-blocking Decentralized Supervisory Control Using G-Control Consistency

Optimal Non-blocking Decentralized Supervisory Control Using G-Control Consistency Optimal Non-blocking Decentralized Supervisory Control Using G-Control Consistency Vahid Saeidi a, Ali A. Afzalian *b, Davood Gharavian c * Phone +982173932626, Fax +982177310425 a,b,c Department of Electrical

More information

Supervisory Control: Advanced Theory and Applications

Supervisory Control: Advanced Theory and Applications Supervisory Control: Advanced Theory and Applications Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg EE6226, Discrete Event Systems 1 Introduction

More information

Supervisory Control of Timed Discrete-Event Systems under Partial Observation

Supervisory Control of Timed Discrete-Event Systems under Partial Observation 558 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995 Supervisory Control of Timed Discrete-Event Systems under Partial Observation F. Lin and W. M. Wonham I I 1 7 7 7 Fig. 1. (!-traffic

More information

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky Predicates and Predicate Transformers for Supervisory Control of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucy Lexington, KY 40506-0046 Vijay

More information

Supervisory control under partial observation is an important problem

Supervisory control under partial observation is an important problem 2576 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017 Technical Notes and Correspondence Supervisor Synthesis for Mealy Automata With Output Functions: A Model Transformation Approach Xiang

More information

Achieving Fault-tolerance and Safety of Discrete-event Systems through Learning

Achieving Fault-tolerance and Safety of Discrete-event Systems through Learning 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016. Boston, MA, USA Achieving Fault-tolerance and Safety of Discrete-event Systems through Learning Jin Dai, Ali Karimoddini,

More information

Symbolic Decentralized Supervisory Control

Symbolic Decentralized Supervisory Control Symbolic Decentralized Supervisory Control SYMBOLIC DECENTRALIZED SUPERVISORY CONTROL BY URVASHI AGARWAL, B.Eng. a thesis submitted to the department of computing & software and the school of graduate

More information

Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems

Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems 53rd IEEE Conference on Decision and Control December 5-7, 24. Los Angeles, California, USA Synthesis of Maximally Permissive Non-blocking Supervisors for Partially Observed Discrete Event Systems Xiang

More information

of Kentucky, Lexington, KY USA,

of Kentucky, Lexington, KY USA, Controlled Petri Nets: A Tutorial Survey L. E. Holloway 1 and B. H. Krogh 2 1 Center for Manufacturing Systems and Dept. of Electrical Engineering, University of Kentucky, Lexington, KY 40506-0108 USA,

More information

TECHNICAL RESEARCH REPORT

TECHNICAL RESEARCH REPORT TECHNICAL RESEARCH REPORT Extension Based Limited Lookahead Supervision of Discrete Event Systems by R. Kumar, H.M. Cheung, S.I. Marcus T.R. 95-78 ISR INSTITUTE FOR SYSTEMS RESEARCH Sponsored by the National

More information

Optimal Supervisory Control of Probabilistic Discrete Event Systems

Optimal Supervisory Control of Probabilistic Discrete Event Systems 1110 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012 Optimal Supervisory Control of Probabilistic Discrete Event Systems Vera Pantelic and Mark Lawford, Senior Member, IEEE Abstract Probabilistic

More information

Extension based Limited Lookahead Supervision of Discrete Event Systems

Extension based Limited Lookahead Supervision of Discrete Event Systems Extension based Limited Lookahead Supervision of Discrete Event Systems Ratnesh Kumar, Hok M. Cheung Department of Electrical Engineering University of Kentucky, Lexington, KY 40506 Steven I. Marcus Department

More information

Reducing the Supervisory Control of Discrete- Event Systems under Partial Observation

Reducing the Supervisory Control of Discrete- Event Systems under Partial Observation MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 4, WINTER 2016 29 Reducing the Supervisory Control of Discrete- Event Systems under Partial Observation Vahid Saeidi, Ali A. Afzalian, and Davood Gharavian

More information

Supervisory Control of Manufacturing Systems with Time Specifications

Supervisory Control of Manufacturing Systems with Time Specifications Supervisory Control of Manufacturing Systems with Time Specifications Alexander Schaub Institute of Automatic Control Engineering Technische Universität München Joint Advanced Student School 2008 Bibliography

More information

Relative Observability and Coobservability of Timed Discrete-Event Systems

Relative Observability and Coobservability of Timed Discrete-Event Systems TSpace Research Repository tspace.library.utoronto.ca Relative Observability and Coobservability of Timed Discrete-Event Systems Kai Cai, Renyuan Zhang, and W. M. Wonham Version Post-Print/Accepted Manuscript

More information

Bridging the Gap between Reactive Synthesis and Supervisory Control

Bridging the Gap between Reactive Synthesis and Supervisory Control Bridging the Gap between Reactive Synthesis and Supervisory Control Stavros Tripakis University of California, Berkeley Joint work with Ruediger Ehlers (Berkeley, Cornell), Stéphane Lafortune (Michigan)

More information

Upper and Lower Bounds on the Number of Faults. a System Can Withstand Without Repairs. Cambridge, MA 02139

Upper and Lower Bounds on the Number of Faults. a System Can Withstand Without Repairs. Cambridge, MA 02139 Upper and Lower Bounds on the Number of Faults a System Can Withstand Without Repairs Michel Goemans y Nancy Lynch z Isaac Saias x Laboratory for Computer Science Massachusetts Institute of Technology

More information

Supervisor Localization for Large-Scale Discrete-Event Systems under Partial Observation

Supervisor Localization for Large-Scale Discrete-Event Systems under Partial Observation To appear in the International Journal of Control Vol. 00, No. 00, Month 0XX, 1 1 Supervisor Localization for Large-Scale Discrete-Event Systems under Partial Observation Renyuan Zhang a, Kai Cai b a School

More information

Extremal Solutions of Inequations over Lattices with Applications to Supervisory Control 1

Extremal Solutions of Inequations over Lattices with Applications to Supervisory Control 1 Extremal Solutions of Inequations over Lattices with Applications to Supervisory Control 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Email: kumar@engr.uky.edu

More information

Masked Prioritized Synchronization for Interaction and Control of Discrete Event Systems

Masked Prioritized Synchronization for Interaction and Control of Discrete Event Systems Masked Prioritized Synchronization for Interaction and Control of Discrete Event Systems Ratnesh Kumar Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Michael Heymann

More information

Lecture 14 - P v.s. NP 1

Lecture 14 - P v.s. NP 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 27, 2018 Lecture 14 - P v.s. NP 1 In this lecture we start Unit 3 on NP-hardness and approximation

More information

Liveness in Timed and Untimed Systems. Abstract. and its timed version have been used successfully, but have focused on safety conditions and

Liveness in Timed and Untimed Systems. Abstract. and its timed version have been used successfully, but have focused on safety conditions and Liveness in Timed and Untimed Systems Roberto Segala y Rainer Gawlick z Jrgen Sgaard-Andersen x Nancy Lynch { Abstract When proving the correctness of algorithms in distributed systems, one generally considers

More information

A Learning-based Active Fault-tolerant Control Framework of Discrete-event Systems

A Learning-based Active Fault-tolerant Control Framework of Discrete-event Systems A Learning-based Active Fault-tolerant Control Framework of Discrete-event Systems Jin Dai, Ali Karimoddini and Hai Lin Abstract A fault-tolerant controller is a controller that drives the plant to satisfy

More information

What Information Really Matters in Supervisor Reduction?

What Information Really Matters in Supervisor Reduction? What Information Really Matters in Supervisor Reduction? Rong Su 1 arxiv:1608.04104v1 [cs.sy] 14 Aug 2016 Abstract To make a supervisor comprehensible to a layman has been a long-lasting goal in the supervisory

More information

SUM x. 2x y x. x y x/2. (i)

SUM x. 2x y x. x y x/2. (i) Approximate Majorization and Fair Online Load Balancing Ashish Goel Adam Meyerson y Serge Plotkin z July 7, 2000 Abstract This paper relates the notion of fairness in online routing and load balancing

More information

Decentralized Modular Control of Concurrent Fuzzy Discrete Event Systems

Decentralized Modular Control of Concurrent Fuzzy Discrete Event Systems 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 ThB07.2 Decentralized Modular Control of Concurrent Fuzzy Discrete Event Systems Awantha Jayasiri, George

More information

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata Control Synthesis of Discrete Manufacturing Systems using Timed Finite utomata JROSLV FOGEL Institute of Informatics Slovak cademy of Sciences ratislav Dúbravská 9, SLOVK REPULIC bstract: - n application

More information

Bisimulation, the Supervisory Control Problem and Strong Model Matching for Finite State Machines

Bisimulation, the Supervisory Control Problem and Strong Model Matching for Finite State Machines Discrete Event Dynamic Systems: Theory and Applications, 8, 377 429 (1998) c 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Bisimulation, the Supervisory Control Problem and

More information

point, examples of decentralized discrete-event systems control have primarily served a pedagogical and mathematical purpose and have been highly simp

point, examples of decentralized discrete-event systems control have primarily served a pedagogical and mathematical purpose and have been highly simp The Computational Complexity of Decentralized Discrete-Event Control Problems Karen Rudie Jan C. Willems Institute for Mathematics Mathematics Institute and its Applications University of Groningen University

More information

PSPACE-completeness of Modular Supervisory Control Problems

PSPACE-completeness of Modular Supervisory Control Problems PSPACE-completeness of Modular Supervisory Control Problems Kurt Rohloff and Stéphane Lafortune Department of Electrical Engineering and Computer Science The University of Michigan 1301 Beal Ave., Ann

More information

A Discrete Event Systems Approach for Protocol Conversion

A Discrete Event Systems Approach for Protocol Conversion A Discrete Event Systems Approach for Protocol Conversion Ratnesh Kumar Sudhir Nelvagal Department of Electrical Engineering University of Kentucky Lexington, KY 40506-0046 Steven I. Marcus Department

More information

Fault Tolerant Controllability

Fault Tolerant Controllability 2015 American Control Conference Palmer House Hilton July 1-3, 2015. Chicago, IL, USA Fault Tolerant Controllability Simon Radel, Aos Mulahuwaish, and Ryan J. Leduc Abstract In this paper we investigate

More information

On Properties and State Complexity of Deterministic State-Partition Automata

On Properties and State Complexity of Deterministic State-Partition Automata On Properties and State Complexity of Deterministic State-Partition Automata Galina Jirásková 1, and Tomáš Masopust 2, 1 Mathematical Institute, Slovak Academy of Sciences Grešákova 6, 040 01 Košice, Slovak

More information

Then RAND RAND(pspace), so (1.1) and (1.2) together immediately give the random oracle characterization BPP = fa j (8B 2 RAND) A 2 P(B)g: (1:3) Since

Then RAND RAND(pspace), so (1.1) and (1.2) together immediately give the random oracle characterization BPP = fa j (8B 2 RAND) A 2 P(B)g: (1:3) Since A Note on Independent Random Oracles Jack H. Lutz Department of Computer Science Iowa State University Ames, IA 50011 Abstract It is shown that P(A) \ P(B) = BPP holds for every A B. algorithmically random

More information

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE /$ IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE /$ IEEE IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE 2010 951 Correspondence State-Feedback Control of Fuzzy Discrete-Event Systems Feng Lin and Hao Ying Abstract

More information

29 Linear Programming

29 Linear Programming 29 Linear Programming Many problems take the form of optimizing an objective, given limited resources and competing constraints If we can specify the objective as a linear function of certain variables,

More information

Optimal Rejuvenation for. Tolerating Soft Failures. Andras Pfening, Sachin Garg, Antonio Puliato, Miklos Telek, Kishor S. Trivedi.

Optimal Rejuvenation for. Tolerating Soft Failures. Andras Pfening, Sachin Garg, Antonio Puliato, Miklos Telek, Kishor S. Trivedi. Optimal Rejuvenation for Tolerating Soft Failures Andras Pfening, Sachin Garg, Antonio Puliato, Miklos Telek, Kishor S. Trivedi Abstract In the paper we address the problem of determining the optimal time

More information

On-line Bin-Stretching. Yossi Azar y Oded Regev z. Abstract. We are given a sequence of items that can be packed into m unit size bins.

On-line Bin-Stretching. Yossi Azar y Oded Regev z. Abstract. We are given a sequence of items that can be packed into m unit size bins. On-line Bin-Stretching Yossi Azar y Oded Regev z Abstract We are given a sequence of items that can be packed into m unit size bins. In the classical bin packing problem we x the size of the bins and try

More information

Supervisory control of hybrid systems within a behavioural framework

Supervisory control of hybrid systems within a behavioural framework Systems & Control Letters 38 (1999) 157 166 www.elsevier.com/locate/sysconle Supervisory control of hybrid systems within a behavioural framework T. Moor a;, J. Raisch b a Fachbereich Elektrotechnik, Universitat

More information

Preface These notes were prepared on the occasion of giving a guest lecture in David Harel's class on Advanced Topics in Computability. David's reques

Preface These notes were prepared on the occasion of giving a guest lecture in David Harel's class on Advanced Topics in Computability. David's reques Two Lectures on Advanced Topics in Computability Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Spring 2002 Abstract This text consists

More information

CONTROL AND DEADLOCK RECOVERY OF TIMED PETRI NETS USING OBSERVERS

CONTROL AND DEADLOCK RECOVERY OF TIMED PETRI NETS USING OBSERVERS 5 e Conférence Francophone de MOdélisation et SIMulation Modélisation et simulation pour l analyse et l optimisation des systèmes industriels et logistiques MOSIM 04 du 1 er au 3 septembre 2004 - Nantes

More information

Representation of Supervisory Controls using State Tree Structures, Binary Decision Diagrams, Automata, and Supervisor Reduction

Representation of Supervisory Controls using State Tree Structures, Binary Decision Diagrams, Automata, and Supervisor Reduction Representation of Supervisory Controls using State Tree Structures, Binary Decision Diagrams, Automata, and Supervisor Reduction Wujie Chao 1, Yongmei Gan 2, Zhaoan Wang 3, W. M. Wonham 4 1. School of

More information

Linearly-solvable Markov decision problems

Linearly-solvable Markov decision problems Advances in Neural Information Processing Systems 2 Linearly-solvable Markov decision problems Emanuel Todorov Department of Cognitive Science University of California San Diego todorov@cogsci.ucsd.edu

More information

Approach phase Loading phase Manipulation phase Unloading phase Release phase Proximal Remote Remote Proximal make contact break contact make contact

Approach phase Loading phase Manipulation phase Unloading phase Release phase Proximal Remote Remote Proximal make contact break contact make contact A Discrete-Event Systems Approach to Modeling Dextrous Manipulation S. L. Ricker? N. Sarkar?y K. Rudie z? November 1995 External Technical Report ISSN-0836-0227- 95-390? Department of Computing and Information

More information

Statistics 1 - Lecture Notes Chapter 1

Statistics 1 - Lecture Notes Chapter 1 Statistics 1 - Lecture Notes Chapter 1 Caio Ibsen Graduate School of Economics - Getulio Vargas Foundation April 28, 2009 We want to establish a formal mathematic theory to work with results of experiments

More information

Extending Supervisory Controller Synthesis to Deterministic Pushdown Automata Enforcing Controllability Least Restrictively

Extending Supervisory Controller Synthesis to Deterministic Pushdown Automata Enforcing Controllability Least Restrictively 12th IFAC/IEEE Workshop on Discrete Event Systems Extending Supervisory Controller Synthesis to Deterministic Pushdown Automata Enforcing Controllability Least Restrictively A.-K. Schmuck S. Schneider

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Stavros Tripakis Abstract We introduce problems of decentralized control with communication, where we explicitly

More information

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd CDMTCS Research Report Series A Version of for which ZFC can not Predict a Single Bit Robert M. Solovay University of California at Berkeley CDMTCS-104 May 1999 Centre for Discrete Mathematics and Theoretical

More information

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced Primary Partition \Virtually-Synchronous Communication" harder than Consensus? Andre Schiper and Alain Sandoz Departement d'informatique Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne (Switzerland)

More information

IN THIS paper we investigate the diagnosability of stochastic

IN THIS paper we investigate the diagnosability of stochastic 476 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 50, NO 4, APRIL 2005 Diagnosability of Stochastic Discrete-Event Systems David Thorsley and Demosthenis Teneketzis, Fellow, IEEE Abstract We investigate

More information

Concurrent Non-malleable Commitments from any One-way Function

Concurrent Non-malleable Commitments from any One-way Function Concurrent Non-malleable Commitments from any One-way Function Margarita Vald Tel-Aviv University 1 / 67 Outline Non-Malleable Commitments Problem Presentation Overview DDN - First NMC Protocol Concurrent

More information

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2 Embedded Systems 5-1 - Synchronous Composition Lee/Seshia Section 6.2 Important semantic model for concurrent composition Here: composition of actors Foundation of Statecharts, Simulink, synchronous programming

More information

Game Theory with Information: Introducing the Witsenhausen Intrinsic Model

Game Theory with Information: Introducing the Witsenhausen Intrinsic Model Game Theory with Information: Introducing the Witsenhausen Intrinsic Model Michel De Lara and Benjamin Heymann Cermics, École des Ponts ParisTech France École des Ponts ParisTech March 15, 2017 Information

More information

Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines Jinbo Fu, Murat Yasar, Asok Ray Mechanical Engineering Department The Pennsylvania State University University Park, PA 68 Keywords:

More information

Computational Tasks and Models

Computational Tasks and Models 1 Computational Tasks and Models Overview: We assume that the reader is familiar with computing devices but may associate the notion of computation with specific incarnations of it. Our first goal is to

More information

[4] T. I. Seidman, \\First Come First Serve" is Unstable!," tech. rep., University of Maryland Baltimore County, 1993.

[4] T. I. Seidman, \\First Come First Serve is Unstable!, tech. rep., University of Maryland Baltimore County, 1993. [2] C. J. Chase and P. J. Ramadge, \On real-time scheduling policies for exible manufacturing systems," IEEE Trans. Automat. Control, vol. AC-37, pp. 491{496, April 1992. [3] S. H. Lu and P. R. Kumar,

More information

A Decidable Logic for Complex Contracts

A Decidable Logic for Complex Contracts A Decidable Logic for Complex Contracts Cristian Prisacariu joint work with Gerardo Schneider Precise Modeling and Analysis group (PMA), University of Oslo 21 st Nordic Workshop on Programming Theory (NWPT'09)

More information

Resolution of Initial-State in Security Applications of DES

Resolution of Initial-State in Security Applications of DES Resolution of Initial-State in Security Applications of DES Christoforos N. Hadjicostis Abstract A non-deterministic labeled finite automaton is initial-state opaque if the membership of its true initial

More information

Agreement algorithms for synchronization of clocks in nodes of stochastic networks

Agreement algorithms for synchronization of clocks in nodes of stochastic networks UDC 519.248: 62 192 Agreement algorithms for synchronization of clocks in nodes of stochastic networks L. Manita, A. Manita National Research University Higher School of Economics, Moscow Institute of

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Stavros Tripakis 2 VERIMAG Technical Report TR-2004-26 November 2004 Abstract We introduce problems of decentralized

More information

Linear Time Logic Control of Discrete-Time Linear Systems

Linear Time Logic Control of Discrete-Time Linear Systems University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering December 2006 Linear Time Logic Control of Discrete-Time Linear Systems Paulo Tabuada

More information

Algorithmic Probability

Algorithmic Probability Algorithmic Probability From Scholarpedia From Scholarpedia, the free peer-reviewed encyclopedia p.19046 Curator: Marcus Hutter, Australian National University Curator: Shane Legg, Dalle Molle Institute

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

Extracted from a working draft of Goldreich s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Extracted from a working draft of Goldreich s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice. 106 CHAPTER 3. PSEUDORANDOM GENERATORS Using the ideas presented in the proofs of Propositions 3.5.3 and 3.5.9, one can show that if the n 3 -bit to l(n 3 ) + 1-bit function used in Construction 3.5.2

More information

On Detectability Of Networked Discrete Event Systems

On Detectability Of Networked Discrete Event Systems Wayne State University Wayne State University Dissertations 1-1-2017 On Detectability Of Networked Discrete Event Systems Yazeed Sasi Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

More information

{ ub,...,ubk } bl ij ... b m. bk n. lok ij. lub ij. o ij. operate. cij. (a) unbooked ubp wait wp operate. (b) closed. open. blocked_2.

{ ub,...,ubk } bl ij ... b m. bk n. lok ij. lub ij. o ij. operate. cij. (a) unbooked ubp wait wp operate. (b) closed. open. blocked_2. Controlling and Coordinating Recipes in Batch Applications Michael Tittus Martin Fabian Bengt Lennartson Control Engineering Lab, Chalmers University of Technology S-412 91 Goteborg, Sweden e-mail: mt/fabian/bl@control.chalmers.se

More information

Lecture 15 - NP Completeness 1

Lecture 15 - NP Completeness 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 29, 2018 Lecture 15 - NP Completeness 1 In the last lecture we discussed how to provide

More information

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring,

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring, The Finite Dimensional Normed Linear Space Theorem Richard DiSalvo Dr. Elmer Mathematical Foundations of Economics Fall/Spring, 20-202 The claim that follows, which I have called the nite-dimensional normed

More information

Impossibility Results for Universal Composability in Public-Key Models and with Fixed Inputs

Impossibility Results for Universal Composability in Public-Key Models and with Fixed Inputs Impossibility Results for Universal Composability in Public-Key Models and with Fixed Inputs Dafna Kidron Yehuda Lindell June 6, 2010 Abstract Universal composability and concurrent general composition

More information

Robust Supervisory Control of a Spacecraft Propulsion System

Robust Supervisory Control of a Spacecraft Propulsion System 1 Robust Supervisory Control of a Spacecraft Propulsion System Farid Yari, Shahin Hashtrudi-Zad*, and Siamak Tafazoli In this paper the theory of supervisory control of discrete-event systems is used to

More information

c 2011 Nisha Somnath

c 2011 Nisha Somnath c 2011 Nisha Somnath HIERARCHICAL SUPERVISORY CONTROL OF COMPLEX PETRI NETS BY NISHA SOMNATH THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace

More information

We introduce one more operation on sets, perhaps the most important

We introduce one more operation on sets, perhaps the most important 11. The power set Please accept my resignation. I don t want to belong to any club that will accept me as a member. Groucho Marx We introduce one more operation on sets, perhaps the most important one:

More information

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories 1 Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo Outline: Contracts and compositional methods for system design Where and why using

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

PAC Generalization Bounds for Co-training

PAC Generalization Bounds for Co-training PAC Generalization Bounds for Co-training Sanjoy Dasgupta AT&T Labs Research dasgupta@research.att.com Michael L. Littman AT&T Labs Research mlittman@research.att.com David McAllester AT&T Labs Research

More information

The matrix approach for abstract argumentation frameworks

The matrix approach for abstract argumentation frameworks The matrix approach for abstract argumentation frameworks Claudette CAYROL, Yuming XU IRIT Report RR- -2015-01- -FR February 2015 Abstract The matrices and the operation of dual interchange are introduced

More information

A Mathematical (Mixed-Integer) Programming Formulation for. Microbrewery. Spyros A. Reveliotis. Spring 2001

A Mathematical (Mixed-Integer) Programming Formulation for. Microbrewery. Spyros A. Reveliotis. Spring 2001 A Mathematical (Mixed-Integer) Programming Formulation for the Production Scheduling Problem in the McGuinness & Co. Microbrewery Spyros A. Reveliotis Spring 2001 This document provides an analytical formulation

More information

Attack-Resilient Supervisory Control of Discrete-Event Systems

Attack-Resilient Supervisory Control of Discrete-Event Systems 1 Attack-Resilient Supervisory Control of Discrete-Event Systems Yu Wang, Alper Kamil Bozkurt and Miroslav Pajic arxiv:194.3264v1 [cs.fl] 5 Apr 219 Abstract In this work, we study the problem of supervisory

More information

Limited Lookahead Control of Discrete-Event Systems: Cost, Probability, and State Space

Limited Lookahead Control of Discrete-Event Systems: Cost, Probability, and State Space Limited Lookahead Control of Discrete-Event Systems: Cost, Probability, and State Space By Creag Winacott A thesis submitted to the Graduate Program in Computing in conformity with the requirements for

More information

How to Pop a Deep PDA Matters

How to Pop a Deep PDA Matters How to Pop a Deep PDA Matters Peter Leupold Department of Mathematics, Faculty of Science Kyoto Sangyo University Kyoto 603-8555, Japan email:leupold@cc.kyoto-su.ac.jp Abstract Deep PDA are push-down automata

More information

Semi-asynchronous Fault Diagnosis of Discrete Event Systems

Semi-asynchronous Fault Diagnosis of Discrete Event Systems 1 Semi-asynchronous Fault Diagnosis of Discrete Event Systems Alejandro White, Student Member, IEEE, Ali Karimoddini, Senior Member, IEEE Abstract This paper proposes a diagnostics tool for a Discrete-

More information

Where do pseudo-random generators come from?

Where do pseudo-random generators come from? Computer Science 2426F Fall, 2018 St. George Campus University of Toronto Notes #6 (for Lecture 9) Where do pseudo-random generators come from? Later we will define One-way Functions: functions that are

More information

A Preference Semantics. for Ground Nonmonotonic Modal Logics. logics, a family of nonmonotonic modal logics obtained by means of a

A Preference Semantics. for Ground Nonmonotonic Modal Logics. logics, a family of nonmonotonic modal logics obtained by means of a A Preference Semantics for Ground Nonmonotonic Modal Logics Daniele Nardi and Riccardo Rosati Dipartimento di Informatica e Sistemistica, Universita di Roma \La Sapienza", Via Salaria 113, I-00198 Roma,

More information

Announcements. Problem Set Four due Thursday at 7:00PM (right before the midterm).

Announcements. Problem Set Four due Thursday at 7:00PM (right before the midterm). Finite Automata Announcements Problem Set Four due Thursday at 7:PM (right before the midterm). Stop by OH with questions! Email cs3@cs.stanford.edu with questions! Review session tonight, 7PM until whenever

More information

Degradable Agreement in the Presence of. Byzantine Faults. Nitin H. Vaidya. Technical Report #

Degradable Agreement in the Presence of. Byzantine Faults. Nitin H. Vaidya. Technical Report # Degradable Agreement in the Presence of Byzantine Faults Nitin H. Vaidya Technical Report # 92-020 Abstract Consider a system consisting of a sender that wants to send a value to certain receivers. Byzantine

More information

Chapter 0 Introduction Suppose this was the abstract of a journal paper rather than the introduction to a dissertation. Then it would probably end wit

Chapter 0 Introduction Suppose this was the abstract of a journal paper rather than the introduction to a dissertation. Then it would probably end wit Chapter 0 Introduction Suppose this was the abstract of a journal paper rather than the introduction to a dissertation. Then it would probably end with some cryptic AMS subject classications and a few

More information

MODULAR MULTITASKING SUPERVISORY CONTROL OF COMPOSITE DISCRETE-EVENT SYSTEMS. Max H. de Queiroz*, José E. R. Cury**

MODULAR MULTITASKING SUPERVISORY CONTROL OF COMPOSITE DISCRETE-EVENT SYSTEMS. Max H. de Queiroz*, José E. R. Cury** MODULAR MULTITASKING SUPERVISORY CONTROL OF COMPOSITE DISCRETE-EVENT SYSTEMS Max H. de Queiroz*, José E. R. Cury** * GEMM CEFET/SC Florianópolis SC 88020-301 Brazil maxqueiroz@cefetsc.edu.br ** LCMI DAS

More information

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle

More information

State Tree Structures

State Tree Structures aaa State Tree Structures FJW Zeelen (Frank) 514785 August 2007 ii Chapter 0: Contents 1 State Tree Structures (STS) 1 11 State Trees 1 12 Local behaviour 7 13 Global behaviour 9 14 Non-blocking supervisory

More information

Stagnation proofness and individually monotonic bargaining solutions. Jaume García-Segarra Miguel Ginés-Vilar 2013 / 04

Stagnation proofness and individually monotonic bargaining solutions. Jaume García-Segarra Miguel Ginés-Vilar 2013 / 04 Stagnation proofness and individually monotonic bargaining solutions Jaume García-Segarra Miguel Ginés-Vilar 2013 / 04 Stagnation proofness and individually monotonic bargaining solutions Jaume García-Segarra

More information