Nilpotent Elements in Skew Polynomial Rings

Size: px
Start display at page:

Download "Nilpotent Elements in Skew Polynomial Rings"

Transcription

1 Joural of Scece, Ilac epublc of Ira 8(): (07) Uvery of Tehra, ISSN hp://cece.u.ac.r Nlpoe Elee Sew Polyoal g M. Az ad A. Mouav * Depare of Pure Maheac, Faculy of Maheacal Scece, Tarba Modare Uvery, P.O. Bo 45-34, Tehra, Ilac epublc of Ira eceved: 4 Deceber 05 / eved: 3 May 06 / Acceped: 5 February 06 Abrac Le be a rg wh a edoorph ad a -dervao. Aoe uded he rucure of he e of lpoe elee Aredarz rg ad roduced l- Aredarz rg. I h paper we roduce ad vegae he oo of l- (,) - copable rg. The cla of l- (,) -copable rg are eeded hrough varou rg eeo ad ay clae of l- (,) -copable rg are coruced. We alo prove ha, f l- -copable ad l-aredarz rg of power ere ype wh l lpoe, he l( [[ ; ]])()[[ l; ]]. We how ha, f a l- Aredarz rg of power ere ype, wh rg, he l ;, l lpoe ad l- (,) -copable l ;,. A a coequece, everal ow reul are ufed ad eeded o he ore geeral eg. Alo eaple are provded o llurae our reul. Keyword: (,) copable rg; Sew polyoal rg; Sew power ere rg. Iroduco Throughou h arcle, all rg are aocave wh dey. Le be a rg, be a edoorph ad a -dervao of, ha a addve ap uch ha ab ab a b, for all a, b. We deoe ;, he Ore eeo whoe elee are he polyoal over, he addo defed a uual ad he ulplcao ubec o he relao a a a for ay a. We alo deoe he ew power ere rg [[ ; ]], whoe elee are he power ere over, he addo defed a uual ad he ulplcao ubec o he relao a a for ay a. ecall ha a rg reduced f ha o ozero lpoe elee. Aoher geeralzao of a reduced rg a Aredarz rg. A rg ad o be Aredarz f he produc of wo polyoal zero ple ha he produc of her coeffce are zero. Th defo wa coed by ege ad Chhawchhara [6] recogo of Aredarz proof [4, Lea ] ha reduced rg afy h codo. Accordg o Aoe [3], a rg called lf g l ple Aredarz, f ab l (), for all * Correpodg auhor: Tel: ; Fa: ; Eal: ouav.a@gal.co 59

2 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira. 0 0 f () a,() g b [] Whe a -pral rg, he he polyoal rg [ ] ad he Laure polyoal rg [, ] are -pral ad l-aredarz, ad l ( [ ]) l ()[ ]. Th codo rogly coeced o he queo of wheher or o a polyoal rg [ ] over a l rg l, whch relaed o a queo of Aur []. Th rue for ay -pral rg (.e. he lower l radcal Nl () * cocde wh l () ). I [3], M. Habb ad A. Mouav, ay, a rg wh a edoorph α l-aredarz of ew f. g l( ) [[ ; ]] power ere ype, f a b l, for all, ad for ple ha all 0 0 f () a,() g b [[ ; ]]. I h paper, we are cocered wh l-aredarz rg of ew power ere ype, whch a geeralzao of l-aredarz rg. Accordg o Krepa [5], a edoorph of a rg called rgd f a () a 0 ple a 0 for each a. A rg called -rgd f here e a rgd edoorph of. I [9], E. Hahe ad A. Mouav, ay a rg -copable f for each a, b, ab 0 f ad oly f a b 0. Moreover, ad o be - copable f for each a, b, ab 0 ple a b 0. If boh copable ad - copable, ad o be (,) -copable. By [], called wea copable, f ab l f ad oly f a b l for each a, b, ad ad o be wea copable f for each a, b, ab l ple a b l. Ufyg ad eedg he above oo, we ay a l- -copable rg f for each a, b, ab l f ad oly f a b l. Moreover, we ay l- -copable f for each a, b, ab l a b l. ple If boh l- -copable ad l- - copable, we ay ha l- (,) -copable. We eed he cla of l-(,) -copable rg hrough varou rg eeo. We how ha a l-(,) -copable rg f ad oly f he rg of ragular ar T l- (,) -copable, where a -dervao of T. If a l- Aredarz rg of power ere ype ad l-(,) - copable he ; a l- (,) -copable rg, where a -dervao of ;. A a coequece, everal propere of (,) - copable rg are geeralzed o a ore geeral eg. We how ha f a l--copable ad ll Aredarz rg of power ere ype wh lpoe, he l l [[ ; ]] [[ ; ]]. We alo how ha, f l-aredarz rg of power ere ype ad l-(,) -copable, wh l lpoe, he l ;, l ;,. Moreover we how ha, whe l-(,) - copable, -pral, ad eher a rgh Golde rg or ha he acedg cha codo (a.c.c.) o deal or ha he a.c.c. o rgh ad lef ahlaor or a rg wh rgh Krull deo, he ( ;, ) l ;,. l eul ad Dcuo We fr roduce he cocep of a l-(,) - copable rg ad udy propere. Defo.. For a edoorph ad a - dervao, we ay ha l- -copable f for each a, b, ab l f ad oly f a b l. Moreover, ad o be l- - copable f for each a, b, ab l ple a b l. If boh l- - copable ad l- -copable, we ay ha l- (,) -copable. By [9], -rgd rg are (,) -copable. Clearly every (,) -copable rg ad hece every -rgd 60

3 Nlpoe Elee Sew Polyoal g rg alo l-(,) -copable. Alhough he e of (,) -copable rg arrow, we how ha l- (,) -copable rg are ubquou. By [], a rg l-aredarz of power ere f. g l a b ype f [[ ]] l, for all, ad f () a, () g b ple [[ ]]. 0 0 Lea.. Le be a l-(,) -copable rg. The () ab l () f ad oly f a ()() b l, for each pove eger uber. () ab l() ple a ()(), b l for each pove eger uber. (3) If a l-aredarz of power ere ype ad a b l () he ()()(), a b l p q ()()() a b l whe,, p, q are pove eger uber. Proof. () Sce l-(,) -copable, we have he followg plcao: ab l ()()() a b l a () b a ()() b l. Coverely we have a () b l () a (())() b l a () b l () ab l (). () Th lar o (). (3) ab()l ple ba()l becaue for u ba ple ha u bra, for each r, u ()()() bra bra br ab ra. Bu ab l() he ab l () ce l- Aredarz of power ere ype, hu o u l () ad ba l (). We have u l () ab l (), o a ()() b l by (). The we have ()() b a l o ()()() b a l ad ha ()() a b l (). The we coclude ha ()() a b coaed l (). We do he ae for p q ()() b a l () wh pove eger p, q. Lea.3. Each wea (,) copable rg l-(,) -copable. Proof. Suppoe ha ab l (). So arb l () for each r. The ()() ar b l ad o we have ()() ar b l (), by wea (,) copably. So a ()() b l. Slarly, ()() ar b l for all r ad by wea (,) copably we have ()()() ar b l ad o a ()() b l. Ne aue, a ()() b l. The ()()() ar b l ad by wea (,) - copably, we have ()() ar b l for all r, o ab l (). I he followg, we wll ee ha he covere o rue. Ideed, here e a rg, whch l-(,) -copable bu o wea (,) -copable. Thu a l-(,) -copable rg a rue geeralzao of a wea (,) -copable rg (ad hece (,) - copable rg). We he ca fd varou clae of l- (,) -copable rg whch are o wea (,) -copable ad hece are o (,) -copable. Eaple.4. Le K be a feld, ad S K, y, z. Le S K, y, z. y Alo aue ha a edoorph of S ad be a edoorph of, gve by: (),(),() z. z f (),(),() z. z We fr how ha well defed. To ee h, le g for oe f, g, o here e h, f, f S uch ha f g f yf. ()() f g ()()()() f y f Thu ()()() g f yz f. So ()() f g, ad well defed. Now, we deere he e of lpoe elee of. Fr, we fd zero devor ooal. Le 0 f be a zero devor ooal. 6

4 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira We have f uf u,g v gv, wh u, u, v, v, y, z, f, g uch ha fg 0, o uf u. v gv 0. If u v y oe of uf or y, he here e f or f u or v g or g or gv. Bu f oe of hee cae occur, f 0 or g 0. u v So y, ad u y, v. Hece 0 f lef (rgh) zero dvor f ad oly f f f, g g y. If f a lpoe ooal of, he f f y. Moreover () f y0. So f a lpoe ooal, f ad oly f f f y, for oe ooal f. Now we cla ha, f f a lpoe polyoal ad f f where f ooal for oe, he f lpoe (.e. f f y polyoal f for oe ). Before provg he cla we have he followg propery: The deg(f) z, where f a ooal he fro r r y z y z y z r r, Slarly, deg(f), deg(f) y are defed by r r repecvely. Alo deg()() f. r. ad Proof of he cla: A f deg(f) aal ad f o lpoe. Le Aue ha f, f, f A are he ooal uch ha deg, deg y, degz hey have he large. Oe ca ee ha a lea oe of deg,deg y,degz ozero. Whou lo of geeraly, le deg 0. Sce f o lpoe f o zero devor, hece () f o zero. Alo, worh o ay ha he ooal wh large deg f () f. So ca o be plfed ad h ea ha f o lpoe. Th coradco how ha deg() f deg() deg() f 0 f. So f y z lpoe ad coa whch ea ha f 0. Hece f eher zero or he for f y for oe f. Now, le fg l (). Suppoe ha f uf, g gv ad u, v, y, z. If u, v y, he fzg l (). So we have f f, g g y, hece f ()()(). g f g y l I obvou ha f ()() g l. Coverely le f ()() g l, wh f uf, g gv ad u, v, y, z. Sce f ()() g l, u,() v v y, o v y. Hece fg f g y, whch obvouly a ube of l (), whch how ha a l- -copable rg. Bu eay o ee ha y z l (), whle y () z yz 0(). l Thu o wea - copable. Noe ha l () o a deal of. Th becaue y z l (), z, bu z y z l (), y z z l (). Le be a -dervao of. The edoorph of eeded o he : edoorph T ()() T defed by (())(()) a a, alo he -dervao eeded o he -dervao T ()() T : defed by (())(()) a a, for each a T (). The we have he followg. () Theore.5. A rg l-(,) -copable f ad oly f he ragular rg T () l- (,) - copable. Proof. Suppoe ha a l-(,) -copable A a B b T(). rg ad (),() We how ha AT ()(()) B l T AT ()()(()) B l T. We oberve ha l (()) T l () 0() l () l f ad oly f The for C (r) T (), we have AC(()) B l T 6

5 Nlpoe Elee Sew Polyoal g ar b 0(()) ar b l T 0 0 ar b a r b l() for a r ()() b l, for, by l- (,) copably - ar () b 0()(()) ar b l T 0 0() ar b AC() B l (()) T AT ()()(()) B l T. The cae l- -copably lar. Ne uppoe ha T() a l-(,) -copable rg ad ha a, b, r, A () a,() B, b C(c) are dagoal arce T (). The we have a b l () arb arb 0 0 l(()) T 0 0 arb AC(()) B l T AC()(()) B l T, for all r, by l- (,) -copably ar () b 0 0 0() 0 ar0 b l(()) T 0 0() ar b ar ()() b l for all r a ()() b l. The cae l- -copable lar. Le be a rg ad le a a a 0 a a S () ad, a a 0 0 a a a a 0 a a wh 0 0 a, ad le T (, ) be he rval eeo of by. Ay edoorph of ca be eeded o a edoorph of S () or T (, ) or T (,) a T (, ) defed by (())(()) a a, ad ay - dervao ca be eeded o a -dervao of S() (or T(,) or T(,) ) defed by (())(()). a a Theore.6. Le be a edoorph ad a -dervao of. The he followg codo are equvale: () l-(,) -copable. () S () l- (,) -copable. (3) T(,) l- (,) -copable. (4) T (,) l- (,) -copable. Proof. Ug he ae ehod a he proof of Theore.5, he reul follow. By [, Lea.9], proved ha, f - l l. A edoorph pral he ad -dervao of a rg [ ], gve by : [ ] [ ] are eeded o defed by ( a )= a, ad [ ] 0 0 defed by ( a )= a 0 0 : [ ]. We ca ealy ee ha a -dervao of he polyoal rg [ ]. Lea.7 Le be a l-aredarz rg of power ere ype, l- -copable ad a ()() b l, a, b, uch 63

6 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira ha 0,,,,. The a ()() b l for all. Proof. We have he followg ye of equao: a b l (); a b a ()(); b l 0 0 a b a ()()()(). b a b (*) a b l 0 0 We wll how ha a ()() b l by duco o. If 0, he a 0 b 0 l (), () b 0 a 0 l. Now, uppoe ha a pove eger uch ha a ()() b l, whe. We wll how, whe. Mulplyg ha a ()() b l equao (*) by b0 fro lef, we have b a ()()()() b b b a b b a b b a b b a b By he duco hypohe a ()() b0 l, for each,0. So a ()() b0 l by [, Lea 3], hece a b0 l (), by lcopably. The a b0 l (), b0 a l (), for each,0. Thu b0a ()() b0 l ad o b a ()() b l, o b0a b0 l (), ad 0 0 hece a ()() b0 l. Mulplyg equao (*) by b, b,, b fro he lef de repecvely, yeld a ()(),()(), b l,() a b l a b l, 0 ur. Th ea ha a ()() b l, whe. Theore.8. If a -pral ad l-(,) - copable rg, he he polyoal rg [ ] l- (,) -copable. Proof. Le f g l f () a, 0 p 0 r r [ ], we have 0, wh g ( ) b [ ]. The for all f r g l. Hece p () arb l = 0 a r b () l for 0,,,, p. Bu -pral, o a rb l (), by ehod of Lea.7, ad by l-(,) -copably we have a r () b l () for all,,. Thu a r() b l (). So we ca coclude ha p f r ( g ) (() 0 a r b l f () g l how ha f g l. Hece we ge. Slarly, we ca. The covere lar. Thu [ ] a l-(,) - copable rg. Le be a -dervao of, ad for eger, wh 0 f Ed,, wll deoe, he ap whch he u of all poble word, bul wh leer ad leer. For ace f, f, f ad f appear [6].. The e lea Lea.9. For ay pove eger ad r we have ab a, b r f () r he rg ;,. 0 By [7], a rg l-ecouave f l ple ab l., for all Lea.0. Le be a l-, -copable rg ad l-aredarz of power ere ype. If a b l af () b l for all 0. he Proof. Ug Lea., he proof rval. By [, Lea 3], f a l-aredarz rg of power ere ype he a l-ecouave rg. 64

7 Nlpoe Elee Sew Polyoal g Now we have: Propoo.. Le be a l-(,) -copable rg ad l-aredarz of power ere ype. The we l ( ;,() ) ; l,. have Proof. Le f () a ( [) ;, ]. 0 l There e a pove eger uch ha So l. Thu we have... f The we have a a a a lower er a α a α a α a 0 aα a α a α a α a l, by [, Lea 3]. So we have a α a α a α a α a l, by l-(,) -copably. I ple ha a α a α a α a.. α a l, 3 he aα a α a α a, by [, Lea 3], o 3... α a a l a α a α a α a a a l By followg h ehod, we have a l. Alo a. aò l, he a l have f a l f l for 0. 0 a. We, by Lea.0. So Now we f A a a a f A a A wh, The ;. Noe ha he coeffce of ca be wre a u of ooal a ad f ( a ), where a, a a, a,, a ad 0, are 0 oegave eger ad each ooal ha a f ( a ). Becaue l-aredarz of power ere ype, we ge ha l () ;, he er A a a a or. Now coder 0, o we have A l ; α, δ, he A a α a α a +lower er l ; α, δ () a α a α a l () (). Hece. A he argue above, he we have a l (). By followg h ehod we have a l 0. Hece f l ( ) [ ;, ]. for Corollary.. If 0, he l ( [ ; ]) l ;. Lea.3. Le be a l-(,) -copable ad l-aredarz rg of power ere ype rg. The l l a. Proof. Le u l o u a wh l (). Hece a a l(), ad by δ- copably we have a ()(). a l So a l (), he a l(). Theore.4. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l lpoe. The ;, Proof. Le f () l [ ]( [ l ]);,. a l ;, 0 [ ]. For a ay arbrary coeffce of f, δ a l. A α a edoorph, α a l. The here e aural uch ha ( l ) zero. Now we coder f v v ()...(). a f u a f u a All coeffce 0... of v v f are he for of ()...() u u whch he produc of eber of he a f a f a, l by Lea.0, o hould be equal o zero. Thu f l ; α, δ ). 0 f ad hece ( [ ] 65

8 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira Corollary.5. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l lpoe. The we have l( [ ;, ]) l [ ;, ]. Corollary.6. Le be a l-(,) -copable ad -pral rg. Aue ha eher a rgh Golde rg or ha he acedg cha codo (a.c.c.) o deal or ha he a.c.c. o rgh ad lef ahlaor or a rg wh rgh Krull deo. l ( [ ;, ]) l [ ;, ]. The Proof. If ha ay of hee cha codo, he upper lradcal Nl () of lpoe. If ha he a.c.c. o deal, Nl () ca be characerzed a he aal lpoe deal of. If ha he a.c.c. o boh lef ad rgh ahlaor, Nl () lpoe by a reul of Here ad Sall [0, Theore.34], whle lpoe by a reul of f rgh Golde, Nl () La [8, Theore ]. Alo, f a rg wh rgh Krull deo, he by [7], Nl () lpoe. Corollary.7. If a l-aredarz rg of l lpoe ad l- - power ere ype ad copable rg, he l( [ ]) l ; ;. Proof. By Corollary.5, f 0 l( [ ; ]) l ;., he Theore.8. If a l-aredarz rg of power ere ype ad l-(,) -copable rg l lpoe, he ; copable rg. a l- (,) - Proof. Aue ha,), ad le f () a g( b ; 0 0 ; () ; p a ;, f g l. For all r 0 we have f r () g l.; Corollary.7, we have f r () g So by p l (()()) a r ; b l 0 The ;. a l ()() r b (), for 0,,,, p. Bu l-aredarz rg of power ere ype, o a ()()(), r b l by Lea.7, wh 0,0, 0 p. A lecouave, o we ge a ()() r l (), he a ()() r b l () Lea.. The ()() b, by a r b l () a r b l (). Hece ()() we have p (()()) 0. a r b So l ; l ;. Therefore we ge f r g l ; α. Coverely aue f ; α g l ; α. So we have p l ; f r g (()()) a r b, 0 for all r ; α. Thu we have a ()() r b l(). Sce l Aredarz rg of power ere ype, a ()() r b l (), o a ()() r b l (). Hece a ()() r b l (), a ()() r b l (). o The for all,,, we have l (). p a ()() r b (()()) a r ; b l, ad 0 hece f r ( g ) l ; α So, for 66

9 Nlpoe Elee Sew Polyoal g all r ; α f ; α ( g ) l ; α. Fally we have. For he cae of l- -copably, le f ; α g l ; α. The we have f r g p (()())()[ a ; ], r b l 0 for all r ; α. Hece a ()() r b l (). The a ()() r b l () for 0,0,0 p. Baed o he aupo we have ()() r b a l (), o a () r b l () ad ha a ()() r b l (). Hece a ()(()) r b l(), ad ha p 0 (()(())) a r ; b l. Th ple f r () g l,; α for all ; α ; ( ) l ; α r. Therefore we coclude ha f α g. Now we coder he lpoe elee ew polyoal rg whe a l-aredarz rg of power ere ype. Theore.9. Le be a l-aredarz rg of power ere ype ad l-, -copable rg. Le ; α, δ. 0 0 f () a,() g b f α δ g l α δ If ;, ;,, he a b l () for 0, 0. a rb Proof. Le 0, 0. a b for all r, We have r ; α, δ o ;, f rg f α δ g hece we have, () r() a 0 0 ()(()) a rb l( [ ]) 0 0 ()(()) b ;,, a rb ( )[ ;, ] 0 0 l Propoo.. Therefore a () 0 f rb l ( ) [ ;, ], wh. Pu 0, a f () rb,,,,, hece l(). equao: a ()(); rb l o by We have he followg a ()() rb a()(); a rb f rb l ()()()(); a rb a f rb a f rb l (())(). a f rb l The ce l-ecouave by [, Lea 3], applyg he ehod he proof of [, Theore.4], we oba a ()() rb l, he a b l(). Theore.0. Le be a l-(,) -copable ad I be a l deal of uch ha I I, I I. The a l-(,) - I copable rg. Proof. We have o prove a b l f ad oly f a() b l, for ay a, b, uch ha a a I, b b I. Fr aue ab l ad r. The a r ()() b a b, o ai r I α b I a () b. The 67

10 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira arα b l. Bu I a () b l () arb I, I l-(,) hece arb l (), o I I l. A -copable, we have arα b l arα b l. I I l () The a () b l I o. The cae l- - copable lar. Coverely aue a () b l ad arb ab. The ()arb I a b. Uder he aupo (), hece ar () b l a r b l. A l-(,) -copable, we have arb l for all r, o we cocluded ha ab l () l I. I Defo.. [3] A rg ad o be, - ew l-aredarz f wheever 0 0 f () a,() g b ; α, δ afy. l,,, he a b l,, for ay,. f g, Lea.. If a l-(,) -copable ad l-aredarz rg of power ere ype, he a, -ew l-aredarz rg. Proof. Le f () a,() g b ; α, δ ad f. g l,,. Therefore a f () b l ( ) [ ;, ], wh. So (())() a f b l, ce l-ecouave by [, Lea 3], applyg he ehod he proof of [, Theore.4], we oba a f ()() b l wh. The a, -ew l-aredarz rg. Propoo.3. Le be a l-(,) -copable ad l-aredarz rg of power ere ype, he for each depoe elee e e l ad e e u uch ha u l,. Proof. We have e e αe ee. By ag polyoal f e e, g e e, we ee ha f. g 0, whch ple ha f. g l ; α, δ l ;, by Propoo.. e e ee e l(). Now ae h e () α e, () ee. The we have h. 0 ad o e (), o we ge e e () l l. Now ae p e e α e ad q e e α e ; α, δ. The p. q eα e e eα e e α e l ; α, δ, ce e l () ad l-aredarz rg of power ere ype. Bu, -ew l- Aredarz by Lea., o e. e α e eα e α e l ( ) (). Now ae e e() α e, ee() αe ; α, δ. The we have. e () α e e e () α e e e() αe eαe. A e l(),. l ; α, δ. 68

11 Nlpoe Elee Sew Polyoal g Ad o a e. e ( α e ), -ew l-aredarz rg, hu () (). Now by () ad () we oba u e α e l. Hece α e e u e eα e l wh u l (). Theore.4. Le be a l-(,) -copable ad l-aredarz rg of power ere ype. The for each depoe elee e ad a, ea ae u wh u l(). Proof. Accordg o he Propoo.3, e e u wh u l () l., e () Now ae he polyoal f e ea e, g e ea e ; α, δ. Hece f. g ea e e ea e. ea e. l ad, e () O he oher had, u l () l-aredarz rg of power ere ype. So we have = ea e α e ea e e ea e e ;,. ea e u eu e e l α δ Slarly ea eea e l ; α, δ f g l ; α, δ ge e. ea e l ea ea e l h e e ae,. The, hece we, ad ha (). Le e eae, accordg o a earler ae we have eeae l. Hece ae eae l (). Ug (), () we have ea ae l, o ea a e u wh ul. Defo.5. For a edoorph ad a -dervao, a deal I ad o be l- (,) - copable provded ha: ) ab l a b l. For all a, b I. ) a b l a b l. all a, b I. For Theore.6. Le be a abela l-aredarz rg of power ere ype. The he followg aee are equvale : ) a l-(,) -copable rg. ) For each depoe e wh e e u,, e ad u l() ad e l () e are l-(,) -copable deal. Proof. rval. Le e be a l-(,) - copable deal ad ab l for each a, b o arb l, hece earb l. Thu () ea rebl. Bu e a l-(,) -copable deal, hece we have ha ea rα e α b ea r e u α b ea reα b ea ru α b l. Sce u) l (, we have ea ruα b o ea reα b ea rα bl l, (). Now, accordg o he above argue for e, we have e arα b l Wh () ad () we oba arα b l all r or aα b l ()., for. For he cae of l- -copable, we do a lar way. Coverely uppoe ha aα bl, he we ge arα b l, for each r. Bu (ea)rα (eb)= (ea) rα (e)α (b)= (ea) r (e+u) α (b)= (ea) r e α (b)+ ea rα b ea ruα b ad ha (ea) ruα (b) 69

12 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira ea r α b,ea ruα b l. The ea rα eb l, ce e l- (,) -copable deal, hu we have ea r eb ea r b l (3). Slarly, we have ea r b l (4). Therefore (3),(4) ple arb l, for all r. Hece ab l. We coue o eed l- -copable codo ad, ; α. If o, f () a, a =,. a, we defe, for each eger uber Theore.7. If a -pral ad l- - copable rg, he, copable rg. have Proof. Le,,, a l- - [ ]. The we,. Hece for, f a uber, wh he eger we have f a, hece f g 0 o f g,., Now by Theore.8, a l- -copable rg. ecall ha a rg called of bouded de of lpoecy, f here e a pove uber uch ha 0 l., for each Lea.8. [, Lea ] If a l- Aredarz rg of power ere ype, he l( [[ ]]()[[ ) l ] ]. Theore.9. Le be a l-aredarz rg of power ere ype ad of bouded de. The l( [[ ]]()[[ ) l ] ]. Proof. By Lea.8 uffce o prove ha l()[[ ]]( [[ l ]] ). Sce l- Aredarz of power ere ype, l l ad of bouded de, a a rg, by [, Theore.5]. The [[ ]] a l rg of bouded de. Hece we ge l ()[[ ]]( [ ]] l [ ). Lea.30. [, Lea] Le be a l- Aredarz rg of power ere ype. Le f, f,, f [[ ]] f f f l()[[ ]] ad. The for all coeffce a of aa a l(), f. Theore.3. Le be a l-(,) -copable ad l-aredarz of power ere ype rg wh bouded de. The [[ ]] a l- (,) - copable rg. Proof. Le 0 0 f () a,() g b [[ ]] ad aue ha f [[ ]] g l( [[ ]] ). For each we have r() c [[ ]] 0 f r()( g [[ ]] l ). If u a arbrary elee of f [[ ]] g he u f r g r [[ ]],, for all. Uder he aupo we have f r g l( [[ ]]()[[ ) l ] ] ce, l-aredarz of power ere ype o l ad ce l-(,) - a cb copable a () b l c ad 70

13 Nlpoe Elee Sew Polyoal g ac () b l() for 0,,, Hece 0. (()) ac b l()[[ ]], o we have ()[[ ]]( ) f r g l l [[ ]]. Ad h ea we prove ha f rg f [[ ]] g f [[ ]]( () [[ g ] l ]). Coverely, f [[ ]]( g [[ l ]] ). If, he by he aupo f r g l ( [[ ]]) l ()[[ ]], ad ce l- Aredarz of power ere ype, we have () l. Hece a cb l a c b l for 0,,, a c b ad ha. So () a cb 0 l()[[ ]] l [ ]) Ad h ea ha ( [ ]. f [[ ]]( g [[ l ]] ). For he cae of l- -copable, we do a lar ehod. The [[ ]] a l- (,) -copable rg. Defo.3. A rg wh a edoorph ew l-aredarz of power ere ype, f wheever for all, 0 0 f () a,() g b [[ ; ]] f ().() g l()[[ ; ]], he a b l for all,. Propoo.33. Le be a l- -copable ad l-aredarz rg of power ere ype. The ew l-aredarz rg of power ere ype. Proof. Le, 0 0 f () a,() g b [[ ; ]] f ().() g l()[[ ; ]], hu (()) a b l()[[ ; ]], o 0 a ()() b l, hu a ()() b l, for all, by Lea.7. The ew l- Aredarz rg of power ere ype. Lea.34. Le be a l-(,) -copable ad ew l-aredarz rg of power ere ype. The l-ecouave. Proof. Le r ad ab l. The a()(()) r r r b l()[[ ; ]]. So ar b l ad hece a r b l. Lea.35. Le be a ew l-aredarz rg f f f of power ere ype ad aue ha l()[[ ; ]]. The ()()() a a a l()[[ ; ]], for all coeffce a of f. Proof. We wll how ha a ()()() a a a l () by 3 duco o. Suppoe ha a ()()() a a a l () 3. Sce () a 3 a l for, we have a ()()()() a a a (). Th becaue, f a l, a a()(()()) b b b b ()[[ l ; ]]. So ab l ()() ( ) ()[[. ; ]] l a a a, we have ad hece Theore.36. Le be a l-(,) -copable l-aredarz rg of power ere ype. The l( [[ ; ]]()[[ ) l ; ] ]. Proof. We how ha l( [[ ; ]]()[[ ) l ; ] ]. Le f () l( [[ ; ]]). The f 0 a 0 for oe 7

14 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira pove eger. So we have (()()()). 0 f a a a a 3 0 If a a arbrary eber of coeffce of f, a a a l [[ ; he () ]] ( e). Hece we have Lea., ad Lea.34, we have a Thu a l, ad hece f l [[ ; ]]. aα a α a α a l. The by l. Theore.37. Le be a l-(,) -copable ad l-aredarz rg of power ere ype ad l be lpoe. The l()[[ ; ]]( [[ l ; ]] ). Proof. Le f () a l()[[ ; ]] 0 a l ad α () a l Sce l eger uch ha () l 0. The for all. lpoe, here e a pove produc of elee fro l ad ay zero. Now coder f (()()()) a a a a 0 l()[[ ; ]] 3, o... a ()...() a a... ()...() 0 a a a l, he. Hece ad ha f ()( [[ l ; ]] ). f 0 Corollary.38. Le be a l-(,) -copable l-aredarz rg of power ere ype ad l be lpoe. The l()[[ ; ]]( [[ l ; ]] ). Theore.39. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l () be lpoe. The [[ ; ]] a l- (,) - copable rg. Proof. Le 0 0 f () a,() g b [[ ; ]] ad f (). [[ ; ]].()( g [[ ; l ]] ). The for all r () r [[ ; ]] 0 f ().( r.()( ) g [ ; l ]] [ ). If u f [[ ; ]] () g elee, he u f r () g we have a arbrary, for all r( ) [[ ; ]]. f ().( r.()( )) g [[ ; l ]]. l()[[ ; ]] Uder he aupo we have Sce ew l-aredarz of power ere ype, a ()() r b l. Sce a ()() r b l a ()() r b l copable, Hece l-(,) - ad for 0. (())) a r b l()[[ ; ] ] 0 (. The we ge f ().( r.(() ) g ) l()[[ ; ]]( [[ l ; ]] ). Ad h ea ha f [[ ; ]] () g l() [[ ; ]]. Coverely, we u prove ha f (). [[ ; ]].(( g [[ ) ; ]] l ). If u f ().( r.()().[[ g ; ]].(), f g he uder he aupo f [[ ; ]] () g l( [[ ; ]]()[[ ) l ; ]], ad ce ew l-aredarz of power ere ype we have a ()() r b l. Hece ()() l a ()() r b l a r b ad ha for 0. 7

15 Nlpoe Elee Sew Polyoal g Hece (()()) 0 a r b l()[[ ; ]] 0 f (). [[ ; ]].(( g [[ ) ; l ]] ), for. Ad h ea ha. For he cae of l- -copably, we ca do a lar way. Thu [[ ; ]] a l-(,) -copable rg. Theore.40. Le be a l-(,) -copable ad l-aredarz rg of power ere ype. If f ().()()[[ g ; l ]], he f (). [[ ; ]].()()[[ g ; ]] l for all f, g [[ ; ]]. r() Proof. Le f ().()()[[ g ; l ]] c [[ ; ]], 0, ad for aue ha [[ ; ]] u f r g f g. The Bu ().() 0 ((c)()). u a b (()) a b l()[[, ; ] ] 0 f g ad ew l-aredarz of power ere ype, o a b l for all,. By Lea.34, l-ecouave, whch yeld a α b l By Lea.,.. aα b l Thu a (c)() b l ad hece a (c)() l, for all,,,, (()()) 0 l()[ [ ; ]]. a r b b whch yeld Therefore we have f (). [[ ; ]].() g l [[ ; ]]. Corollary.4. Le be a ew l-aredarz rg of power erewe ype, ad l-(,) - copable. The [[ ; ]] rg. a l-ecouave Proof. We prove ha, f ().()( [[ ; l ]] ), he for all, [[ ; ]] we ge (). [[ ; ]].()( [[ ; ]]). We have f g f g f g l l( [[ ; ]]) l()[[ ; ]]. The [[ ; ]] a l-ecouave rg by Lea.34. We rear ha, he above reul eable u o produce large clae of rg whch afy he l ( [ ;, ]) l [ ;, ]. codo eferece. Aur A., Algebra Over Ife Feld. Proc. Aer. Mah. Soc. 7: (956).. Alhevaz A., ad Mouav A., O Mood g Over Nl-Aredarz g. Co. Algebra 4: - (04) 3. Aoe., Nlpoe Elee ad Aredarz g. J. Algebra 39: (008). 4. Aredarz E.P., A Noe O Eeo of Baer ad p.p.- rg. J. Aural. Mah. Soc. 8: (974). 5. Breeer G. F., K J. Y., ad Par J. K., gh Prary ad Nlary g ad Ideal. J. Algebra 378: 33-5 (03). 6. Callo V., Kwa T. K., Lee Y., Ideal- Syerc ad Sepre g. Co. Algebra 4: (03). 7. Che W., O Nl-ecouave g. Tha J.Mah. 9: (0). 8. Habb M., Mouav A., Alhevaz A., The McCoy Codo o Ore Eeo, Co. Algebra. 4(): 4-4 (03). 9. Hahe E., Mouav A., Polyoal Eeo of Qua-Baer g. Aca Mah. Hugar. 07: 07-4 (005). 0. Her I.N., Sall L.W., Nl g Safyg Cera Cha Codo. Caad. J. Mah. 6: (964).. Hze S., A Noe O Nl Power Serewe Aredarz g. ed. del Crc. Ma. Palero. 59: (00).. Huh C., K C.O., K E.J., K H.K., Lee Y., Nl adcal of Power Sere g ad Nll Power Sere g. J. Korea Mah. Soc. 4: (005). 3. Habb M., Mouav A., O Nl Sew Aredarz g. Aa-Eur. J. Mah. 5: -6 (0). 4. Kawar P., A. Leroy A., Maczu J., Idepoe g Eeo. J. Algebra. 389: 8-36 (03). 5. Krepa J., Soe Eaple of educed g. Algebra Colloq. 3: (996). 6. La T.Y., Leroy A., Maczu J., Pree, Sepree ad Pre adcal of Ore Eeo. Co. Algebra. 5: (997). 7. La T.Y. A Fr Coure Nocouave g. Sprger-Verlag, New Yor, 397 p. (99). 8. La C., Nl Subrg of Golde g are Nlpoe. Caad. J. Mah. : (969). 9. Lezer E. S., Wag L., Golde a of Sew Power Sere g of Auoorphc Type. Co. Algebra 73

16 Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira 40(6): 9-97 (0). 0. Luqu O., Jgwag L., Nl-Aredarz g elave o a Mood. Arab. J. Mah. (): 8-90 (03).. Luqu O., Specal Wea Propere of Geeralzed Power Sere. J. Korea Mah. Soc. 4: (0).. Luqu O., Jgwag L., O Wea, Copable g. Ieraoal Joural of Algebra. 5: (0). 3. Madya A., Mouav A., Paya K., g Whch he Ahlaor of ad Ideal I Pure. Algebra Colloquu. : (05). 4. Mazure., Nle P., Zebow M., The Upper Nlradcal ad Jacobo adcal of Segroup Graded g. J. Pure Appl. Algebra 9: (05). 5. Paya K., Mouav A., Zero Dvor Graph of Sew Geeralzed Power Sere g. Cou. Korea Mah. Soc. 30: (05). 6. ege M. B., Chhawchhara S., Aredarz g. Proc. Japa Acad. Ser. A Mah. Sc. 73: 4-7 (997). 7. Wag Y., e Y., -good g ad Ther Eeo. Bull. Korea Mah. Soc. 50: 7-73 (03). 8. Zhag W.., Sew Nl-Aredarz g. J. Mah. 34: (04). 74

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays Ieraoal Coferece o Appled Maheac Sulao ad Modellg (AMSM 6) Aaly of a Sochac Loa-Volerra Copeve Sye wh Drbued Delay Xagu Da ad Xaou L School of Maheacal Scece of Togre Uvery Togre 5543 PR Cha Correpodg

More information

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

A Remark on Generalized Free Subgroups. of Generalized HNN Groups Ieraoal Mahemacal Forum 5 200 o 503-509 A Remar o Geeralzed Free Subroup o Geeralzed HNN Group R M S Mahmood Al Ho Uvery Abu Dhab POBo 526 UAE raheedmm@yahoocom Abrac A roup ermed eeralzed ree roup a ree

More information

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ecre Noe Prepared b r G. ghda EE 64 ETUE NTE WEE r. r G. ghda ocorda Uer eceraled orol e - Whe corol heor appled o a e ha co of geographcall eparaed copoe or a e cog of a large ber of p-op ao ofe dered

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

On the energy of complement of regular line graphs

On the energy of complement of regular line graphs MATCH Coucato Matheatcal ad Coputer Chetry MATCH Cou Math Coput Che 60 008) 47-434 ISSN 0340-653 O the eergy of copleet of regular le graph Fateeh Alaghpour a, Baha Ahad b a Uverty of Tehra, Tehra, Ira

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Competitive Facility Location Problem with Demands Depending on the Facilities

Competitive Facility Location Problem with Demands Depending on the Facilities Aa Pacc Maageme Revew 4) 009) 5-5 Compeve Facl Locao Problem wh Demad Depedg o he Facle Shogo Shode a* Kuag-Yh Yeh b Hao-Chg Ha c a Facul of Bue Admrao Kobe Gau Uver Japa bc Urba Plag Deparme Naoal Cheg

More information

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs Aalable a hp://paed/aa Appl Appl Mah ISS: 9-9466 Vol 0 Isse (Deceber 0) pp 04- Applcaos ad Appled Maheacs: A Ieraoal Joral (AAM) Solo o Soe Ope Probles o E-sper Verex Magc Toal Labelg o Graphs G Marh MS

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems *

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems * erca Joural of Operao eearch 0 47-5 hp://ddoorg/046/ajor007 Publhed Ole Jue 0 (hp://wwwscporg/joural/ajor) The Theory of Meberhp Degree of Γ-Cocluo Several -Valued Logc Sye Jacheg Zhag Depare of Maheac

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling I.J.Curr.crobol.App.Sc (08) 7(): 808-85 Ieraoal Joural of Curre crobolog ad Appled Scece ISS: 39-7706 olue 7 uber 0 (08) Joural hoepage: hp://www.jca.co Orgal Reearch Arcle hp://do.org/0.0546/jca.08.70.9

More information

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method Ieraoal Reearch Joural o Appled ad Bac Scece Avalable ole a wwwrabcom ISSN 5-88X / Vol : 8- Scece xplorer Publcao New approach or umercal oluo o Fredholm eral equao yem o he ecod d by u a expao mehod Nare

More information

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling Vplav Kumar gh Rajeh gh Deparme of ac Baara Hdu Uver Varaa-00 Ida Flore maradache Uver of ew Meco Gallup UA ome Improved Emaor for Populao Varace Ug Two Aular Varable Double amplg Publhed : Rajeh gh Flore

More information

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai Ro Geeralzed B-lear Mxed Varaoal-lke Iequaly for Ro Fuzzy Mappgs Hogxa Da Depare of Ecooc Maheacs Souhweser Uversy of Face Ecoocs Chegdu 674 P.R.Cha Absrac I h paper we roduce sudy a ew class of ro geeralzed

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

Linear Approximating to Integer Addition

Linear Approximating to Integer Addition Lear Approxmatg to Iteger Addto L A-Pg Bejg 00085, P.R. Cha apl000@a.com Abtract The teger addto ofte appled cpher a a cryptographc mea. I th paper we wll preet ome reult about the lear approxmatg for

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition SSN 76-7659 Eglad K Joural of forao ad Copug Scece Vol 7 No 3 pp 63-7 A Secod Kd Chebyshev olyoal Approach for he Wave Equao Subec o a egral Coservao Codo Soayeh Nea ad Yadollah rdokha Depare of aheacs

More information

THE TRUNCATED RANDIĆ-TYPE INDICES

THE TRUNCATED RANDIĆ-TYPE INDICES Kragujeac J Sc 3 (00 47-5 UDC 547:54 THE TUNCATED ANDIĆ-TYPE INDICES odjtaba horba, a ohaad Al Hossezadeh, b Ia uta c a Departet of atheatcs, Faculty of Scece, Shahd ajae Teacher Trag Uersty, Tehra, 785-3,

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

National Conference on Recent Trends in Synthesis and Characterization of Futuristic Material in Science for the Development of Society

National Conference on Recent Trends in Synthesis and Characterization of Futuristic Material in Science for the Development of Society ABSTRACT Naoa Coferece o Rece Tred Syhe ad Characerzao of Fuurc Maera Scece for he Deveome of Socey (NCRDAMDS-208) I aocao wh Ieraoa Joura of Scefc Reearch Scece ad Techoogy Some New Iegra Reao of I- Fuco

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Reliability Analysis. Basic Reliability Measures

Reliability Analysis. Basic Reliability Measures elably /6/ elably Aaly Perae faul Πelably decay Teporary faul ΠOfe Seady ae characerzao Deg faul Πelably growh durg eg & debuggg A pace hule Challeger Lauch, 986 Ocober 6, Bac elably Meaure elably:

More information

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2) Ieaoal Reeach Joual of Egeeg ad Techology (IRJET) e-issn: 9 - Volume: Iue: May- www.e.e -ISSN: 9-7 O he Qua-Hyebolc Kac-Moody lgeba QH7 () Uma Mahewa., Khave. S Deame of Mahemac Quad-E-Mllah Goveme College

More information

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull Advace Pure Mahemac 3 3 67-679 Publhed Ole November 3 (h://wwwcrorg/oural/am) h://dxdoorg/436/am3389 he Lace of Fully Ivara Subgrou of he Cooro Hull arel Kemoldze Dearme of Mahemac Aa ereel Sae Uvery Kua

More information

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations Global Joural of Scece Froer Research: F Maheacs ad Decso Sceces Volue 8 Issue Verso. Year 8 Type: Double Bld Peer Revewed Ieraoal Research Joural Publsher: Global Jourals Ole ISSN: 49-466 & Pr ISSN: 975-5896

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S Joural of Egeerg ad Natural Scece Mühedl ve Fe Bller Derg Sga 25/2 FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S Murat ALAN* Yıldız Te Üverte, Fe-Edebyat Faülte, Mateat Bölüü, Davutpaşa-İSTANBUL

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

On Metric Dimension of Two Constructed Families from Antiprism Graph

On Metric Dimension of Two Constructed Families from Antiprism Graph Mah S Le 2, No, -7 203) Mahemaal Sees Leers A Ieraoal Joural @ 203 NSP Naural Sees Publhg Cor O Mer Dmeso of Two Cosrued Famles from Aprm Graph M Al,2, G Al,2 ad M T Rahm 2 Cere for Mahemaal Imagg Tehques

More information

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF INF 4300 04 Mulvarae clafcao Ae Solberg ae@fuoo Baed o Chaper -6 Duda ad Har: Paer Clafcao Baye rule for a clafcao proble Suppoe we have J, =,J clae he cla label for a pel, ad he oberved feaure vecor We

More information

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution ISSN 684-843 Joua of Sac Voue 5 8 pp. 7-5 O Pobaby Dey Fuco of he Quoe of Geeaed Ode Sac fo he Webu Dbuo Abac The pobaby dey fuco of Muhaad Aee X k Y k Z whee k X ad Y k ae h ad h geeaed ode ac fo Webu

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

Reliability Equivalence of a Parallel System with Non-Identical Components

Reliability Equivalence of a Parallel System with Non-Identical Components Ieraoa Mahemaca Forum 3 8 o. 34 693-7 Reaby Equvaece of a Parae Syem wh No-Ideca ompoe M. Moaer ad mmar M. Sarha Deparme of Sac & O.R. oege of Scece Kg Saud Uvery P.O.ox 455 Ryadh 45 Saud raba aarha@yahoo.com

More information

The Lucas congruence for Stirling numbers of the second kind

The Lucas congruence for Stirling numbers of the second kind ACTA ARITHMETICA XCIV 2 The Luc cogruece for Srlg umber of he ecod kd by Robero Sáchez-Peregro Pdov Iroduco The umber roduced by Srlg 7 h Mehodu dfferel [], ubequely clled Srlg umber of he fr d ecod kd,

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

On cartesian product of fuzzy primary -ideals in -LAsemigroups

On cartesian product of fuzzy primary -ideals in -LAsemigroups Joural Name Orgal Research aper O caresa produc o uzzy prmary -deals -Lsemgroups aroe Yarayog Deparme o Mahemacs, Faculy o cece ad Techology, bulsogram Rajabha Uvers, hsauloe 65000, Thalad rcle hsory Receved:

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

Some probability inequalities for multivariate gamma and normal distributions. Abstract

Some probability inequalities for multivariate gamma and normal distributions. Abstract -- Soe probably equales for ulvarae gaa ad oral dsrbuos Thoas oye Uversy of appled sceces Bge, Berlsrasse 9, D-554 Bge, Geray, e-al: hoas.roye@-ole.de Absrac The Gaussa correlao equaly for ulvarae zero-ea

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation ece Advce Appled d eorecl ec uercl eod u e Succeve Approo or e Soluo o Fredol Ierl Equo AIA OBIŢOIU epre o ec d opuer Scece Uvery o Peroş Uvery Sree 6 Peroş OAIA rdorou@yoo.co Arc: pper pree wo eod or

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Speech, NLP and the Web

Speech, NLP and the Web peech NL ad he Web uhpak Bhaacharyya CE Dep. IIT Bombay Lecure 38: Uuperved learg HMM CFG; Baum Welch lecure 37 wa o cogve NL by Abh Mhra Baum Welch uhpak Bhaacharyya roblem HMM arg emac ar of peech Taggg

More information

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I CEE49b Chaper - Free Vbrao of M-Degree-of-Freedo Syses - I Free Udaped Vbrao The basc ype of respose of -degree-of-freedo syses s free daped vbrao Aaogos o sge degree of freedo syses he aayss of free vbrao

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C Soluos (page 7) ρ 5 4 4 Soluo = ρ as 4 4 5 = So ρ, ρ s a Z bass of Z ad 5 4 ( m, m ) = (,7) = (,9) No, as 5 7 4 5 6 = ± Soluo The 6 elemes of Z K are: g = K + e + e, g = K + e, g = K + e, 4g = K + e, 5g

More information

General Complex Fuzzy Transformation Semigroups in Automata

General Complex Fuzzy Transformation Semigroups in Automata Joural of Advaces Compuer Research Quarerly pissn: 345-606x eissn: 345-6078 Sar Brach Islamc Azad Uversy Sar IRIra Vol 7 No May 06 Pages: 7-37 wwwacrausaracr Geeral Complex uzzy Trasformao Semgroups Auomaa

More information

The Solutions of Initial Value Problems for Nonlinear Fourth-Order Impulsive Integro-Differential Equations in Banach Spaces

The Solutions of Initial Value Problems for Nonlinear Fourth-Order Impulsive Integro-Differential Equations in Banach Spaces WSEAS TRANSACTIONS o MATHEMATICS Zhag Lglg Y Jgy Lu Juguo The Soluos of Ial Value Pobles fo Nolea Fouh-Ode Ipulsve Iego-Dffeeal Equaos Baach Spaces Zhag Lglg Y Jgy Lu Juguo Depae of aheacs of Ta Yua Uvesy

More information

Integral Form of Popoviciu Inequality for Convex Function

Integral Form of Popoviciu Inequality for Convex Function Procees of e Paksa Acaey of Sceces: A. Pyscal a ozaoal Sceces 53 3: 339 348 206 oyr Paksa Acaey of Sceces ISSN: 258-4245 r 258-4253 ole Paksa Acaey of Sceces Researc Arcle Ieral For of Pooc Ieqaly for

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model Joura of Saca Theory ad Appcao Vo. No. (Sepember ) - Parameer Emao a Geera Faure Rae Sem-Marov Reaby Mode M. Fahzadeh ad K. Khorhda Deparme of Sac Facuy of Mahemaca Scece Va-e-Ar Uvery of Rafaja Rafaja

More information

Nonsynchronous covariation process and limit theorems

Nonsynchronous covariation process and limit theorems Sochac Procee ad her Applcao 121 (211) 2416 2454 www.elever.com/locae/pa Noychroou covarao proce ad lm heorem Takak Hayah a,, Nakahro Yohda b a Keo Uvery, Graduae School of Bue Admrao, 4-1-1 Hyoh, Yokohama

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL UPB Sc B See A Vo 72 I 3 2 ISSN 223-727 MUTIPE -HYBRID APACE TRANSORM AND APPICATIONS TO MUTIDIMENSIONA HYBRID SYSTEMS PART II: DETERMININ THE ORIINA Ve PREPEIŢĂ Te VASIACHE 2 Ace co copeeă oă - pce he

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2 Joh Rley Novembe ANSWERS O ODD NUMBERED EXERCISES IN CHAPER Seo Eese -: asvy (a) Se y ad y z follows fom asvy ha z Ehe z o z We suppose he lae ad seek a oado he z Se y follows by asvy ha z y Bu hs oads

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Practice Final Exam (corrected formulas, 12/10 11AM)

Practice Final Exam (corrected formulas, 12/10 11AM) Ecoomc Meze. Ch Fall Socal Scece 78 Uvery of Wco-Mado Pracce Fal Eam (correced formula, / AM) Awer all queo he (hree) bluebook provded. Make cera you wre your ame, your ude I umber, ad your TA ame o all

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin Iero Jor "Iforo Theore & co" Vo 463 ONE PPROH FOR THE OPTIIZTION OF ETITE UTING GORITH Do rc: I h rce he ew roch for ozo of eo ccg gorh ggeed I c e ed for fdg he correc gorh of coexy he coex of gerc roch

More information

Theory study about quarter-wave-stack dielectric mirrors

Theory study about quarter-wave-stack dielectric mirrors Theor tud about quarter-wave-tack delectrc rror Stratfed edu tratted reflected reflected Stratfed edu tratted cdet cdet T T Frt, coder a wave roagato a tratfed edu. A we kow, a arbtrarl olared lae wave

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis Probably /4/6 CS 5 elably Aaly Yahwa K. Malaya Colorado Sae very Ocober 4, 6 elably Aaly: Oule elably eaure: elably, avalably, Tra. elably, T M MTTF ad (, MTBF Bac Cae Sgle u wh perae falure, falure rae

More information