Algoritmalar, Tamsayılar ve Matrisler

Size: px
Start display at page:

Download "Algoritmalar, Tamsayılar ve Matrisler"

Transcription

1 Algoitml, Tmsyıl ve Mtisle CSC-59 Ayık Ypıl Kostti Busch - LSU f Foksiyolı Büyümesi : R R g : R R f ( is O( g( Big-Oh: E kötü duum Big-Omeg: f ( is ( g( E iyi duum Big-Thet: f ( is ( g( Ayı duum Kostti Busch - LSU

2 Big-Oh: f ( is O( g( (Nottio buse: f ( O( g( C, k Thee e costts such tht fo ll : k f ( C g( (clled witesses Kostti Busch - LSU f ( g( f ( O( g( O ( Fo : f ( g( Witesses: C, k Kostti Busch - LSU 4

3 Kostti Busch - LSU 5 ( O 4 Fo : ( 4 ( f g, 4 C k ( g ( f ( ( ( f O g Witesses: Kostti Busch - LSU 6 ( ( ( g O f ( ( ( f O g ve f ve yı deecededi g Emple: ve yı deecededi

4 4 Kostti Busch - LSU 7 ( ( ( g O f ( ( h g ve Emple: ( O ( ( ( h O f ( O Kostti Busch - LSU 8 ( O ( O Suppose C The fo ll : k C Impossible fo, m( k C

5 5 Kostti Busch - LSU 9 Theoem: If ( f the ( ( O f Poof: ( ( f fo, k C Ed of Poof Witesses: Kostti Busch - LSU ( O, C k Witesses:

6 6 Kostti Busch - LSU (! O!, C k Witesses: Kostti Busch - LSU! ( O! ( (, C k Witesses:

7 log! O( log log! log log Witesses: C, k Kostti Busch - LSU O( log O( Fo : log log log Witesses: C, k Kostti Busch - LSU 4 7

8 log O(log log log log Witesses: C, log k Kostti Busch - LSU 5 costt ( O Fo : Witesses: C, k Kostti Busch - LSU 6 8

9 Iteestig fuctios log log! Highe gowth Kostti Busch - LSU 7 Theoem: If f O( g (, f O( g ( ( ( ( the f f( O(m( g(, g ( Poof: k f( C g( k f( C g( m( k, k ( f ( C f ( f ( f ( f ( C g ( C g ( C m( g (, g ( f ( Witesses: C C C k, k m( k, Ed of Poof Kostti Busch - LSU 8 9

10 Coolly: If f ( O( g(, f ( O( g( the ( f f( O( g( Theoem: If f O( g (, f O( g ( ( the f f ( O( g ( g ( ( ( Kostti Busch - LSU 9 log(! ( log O( log O( log(! O( log O( log O(log Multiplictio log(! O( log O( ( O( log log( log log(! ( O( Additio log log Kostti Busch - LSU

11 Big-Omeg: f ( is ( g( (Nottio buse: f ( ( g( C, k Thee e costts such tht fo ll : k f ( C g( (clled witesses Kostti Busch - LSU ( Witesses: C 8, k Kostti Busch - LSU

12 Sme ode Big-Thet: f ( is ( g( (Nottio buse: f ( ( g( f ( O( g( d f ( ( g( f Altetive defiitio: ( O( g( d g( O( f ( Kostti Busch - LSU 8 log ( 8 log 8 8 log O( Witesses: C, k 8 log 8 log ( Witesses: C, k Kostti Busch - LSU 4

13 Theoem: If f ( the f ( ( Poof: We hve show: f ( O( We oly eed to show f ( ( Tke d emie two cses Cse : Cse : Kostti Busch - LSU 5 Cse : ( b m(,,, f ( b Fo Cse is simil d b ( Ed of Poof Kostti Busch - LSU 6

14 Compleity of Algoithms Time compleity Numbe of opetios pefomed Spce compleity Size of memoy used Kostti Busch - LSU 7 Lie sech lgoithm dsil(it Dizi[], it N, it { it k; fo (k=; k<n; k++ { if (Dizi[k]== etu k; } etu -; } Kostti Busch - LSU 8 4

15 Time compleity Compisos Item ot foud i list: ( Item foud i positio : i i Wost cse pefomce: ( O( Kostti Busch - LSU 9 Biy sech lgoithm Biy-Sech(,,,, { i j while( i j { m ( i j / if ( m i m else j m } if ( i etu else etu } //left edpoit of sech e //ight edpoit of sech e i //item is i ight hlf //item is i left hlf //item foud //item ot foud Kostti Busch - LSU 5

16 Sech Kostti Busch - LSU Time compleity Size of sech list t itetio : Size of sech list t itetio : Size of sech list t itetio k: k Kostti Busch - LSU 6

17 Size of sech list t itetio : k k Smllest list size: m i lst itetio : m m log Kostti Busch - LSU Totl compisos: ( log (log #itetios Lst compiso Compisos pe itetio Kostti Busch - LSU 4 7

18 Bubble sot lgoithm Bubble-Sot(,,, { fo ( to { fo ( to if ( j j swp } i i j j j, Kostti Busch - LSU Fist itetio Secod itetio Lst itetio 5 4 Kostti Busch - LSU 6 8

19 Time compleity Compisos i itetio : Compisos i itetio : Compisos i itetio : ( Totl: ( ( Kostti Busch - LSU 7 P Clss : Hsss poblemle Poblems with lgoithms whose time compleity is polyomil O( b Emples: Sech, Sotig, Shotest pth Kostti Busch - LSU 8 9

20 NP Clss : Itctble poblems Solutio c be veified i polyomil time but o polyomil time lgoithm is kow Emples: Stisfibility, TSP (gezgi stıcı poblemi, Vete coloig Impott compute sciece questio P NP? Kostti Busch - LSU 9 Usolvble poblems Thee eist usolvble poblems which do ot hve y lgoithm Emple: Hltig poblem i Tuig Mchies Tuig mkisıd ksızlık poblemlei Kostti Busch - LSU 4

21 b Iteges d Algoithms Bse epsio of itege : b Iteges: b b k k k k ( k k b k i b Emple: ( Kostti Busch - LSU 4 Biy epsio Digits:, ( Kostti Busch - LSU 4

22 Hedeciml epsio Digits:,,,,9, A, B, C, D, E, F (AEB Kostti Busch - LSU 4 Octl epsio Digits:,,,,7 ( Kostti Busch - LSU 44

23 Covesio betwee biy d hedeciml ( hlf byte ( 9 5 F 6 Covesio betwee biy d octl ( ( Kostti Busch - LSU 45 Biy epsio of 4 ( Kostti Busch - LSU 46

24 Octl epsio of 45 ( Kostti Busch - LSU 47 b q k While ( q { k q mod b q q / b Bse epsio( { k k } etu } ( k k b Kostti Busch - LSU 48 4

25 Cy bit: b Time compleity of biy dditio: O( (coutig bit dditios O(log Kostti Busch - LSU 49,b Biy_dditio( { ( b ( b b bb c //cy bit fo j to { d ( j bj c / //uilliy s j j bj c d //j sum bit c d //cy bit } s c //lst sum bit etu ( ss ss } Kostti Busch - LSU 5 5

26 Time compleity of multiplictio: O( (coutig shifts d bit dditios O(log Kostti Busch - LSU 5 b c c c Biy_multiplictio( { ( b ( b b bb fo j to { if ( } b j j c j j,b else c j } p c c c etu biy epsio of // shifted j positios p Kostti Busch - LSU 5 6

27 Tm syıl ve böle Tm syıl,b ( böle : b b c, b c fktö Öekle: 4 7 Kostti Busch - LSU 5 b, if, Tm syı c b the bc b s b s bc (sc Kostti Busch - LSU 54 7

28 , b, b c Tm syı if d the c ( b c b c s t b s c t b c ( s t Kostti Busch - LSU 55 b,, iteges c b b c if d the c b b c s t b s c bt c st Kostti Busch - LSU 56 8

29 b, c, m,, iteges b c if d the mb c b c mb c mb c Kostti Busch - LSU 57 Thee e uique The divisio lgoithm Z d Z q, Z d q such tht: böle bölüm kl d Kostti Busch - LSU 58 9

30 q q d div d d q mod d d d 9 Emples: 9 div mod ( 4 4 div mod Kostti Busch - LSU 59 d d d d d d d d d Numbe of positive iteges divisible by d ot eceedig : d d Kostti Busch - LSU 6

31 Divisio_lgoithm( { } q d d while ( { q q, d } if ( d { // is egtive //djust q ( q //djust q } else if ( { q q } etu q ( div d, ( mod d d Kostti Busch - LSU 6 d q mod 4 q 5 div 4 Time compleity of divisio lg.: O( q log Thee is bette lgoithm: O(log log d (bsed o biy sech Kostti Busch - LSU 6

32 , b Z Modul Aithmetic b (mod m m Z b m is coguet to modulo mod m b mod m Emples: (mod 5 (mod 6 m (mod m k m (mod m Kostti Busch - LSU 6 Equivlet defiitios b (mod m mod m b mod m m b k Z, b km Kostti Busch - LSU 64

33 mod Legth of lie epesets umbe Kostti Busch - LSU 65 mod Legth of heli lie epesets umbe Kostti Busch - LSU 66

34 9 mod Legth of heli lie epesets umbe Kostti Busch - LSU 67 9(mod Heli lies temite i sme umbe Kostti Busch - LSU 68 4

35 Coguece clss of modulo : S m { b b (mod m} Thee e S m coguece clsses:, S,, S m Kostti Busch - LSU 69 b c d (mod m (mod m c b d (mod m b (mod m b sm c d b ( s t m c d (mod m c d tm Kostti Busch - LSU 7 5

36 b c d (mod m (mod m c b d (mod m b (mod m b sm c ( b sm( d tm c d (mod m c d tm bd m( bt ds stm Kostti Busch - LSU 7 7 (mod 5 (mod ( (mod 5 (mod ( (mod 5 (mod 5 Kostti Busch - LSU 7 6

37 ( b mod m (( mod m ( b mod m mod m bmod m (( mod m( b mod m mod m Follows fom pevious esults by usig: mod m ( mod m mod m b mod m ( b mod m mod m Kostti Busch - LSU 7 Compute Modul epoetitio b mod m Biy epsio of efficietly usig smll umbes b b k k k k b b b b b mod m k (( b k k b k b mod m mod m ( b mod m ( b mod mmod m Kostti Busch - LSU 74 7

38 Emple: 644 mod ( (( mod mod 645 mod 645( 7 mod 645( mod 645 mod 645 Kostti Busch - LSU 75 mod 645 9mod Compute ll the powes of efficietly mod 645 mod 645 mod 645 mod 645 (( mod 645( mod 645mod 645 (99mod mod 645 (( mod 645( mod 645mod mod 645 mod 645 (( mod 645( mod 645mod Use the powes of to get esult efficietly 644 ( 9 ( 9 ( 9 ((( ((( ( 7 mod 645 mod 645 mod 645 ( 8mod mod 6458 mod 645 mod 645 ( ((968 mod 645 mod 645 ( mod mod mod mod 645 Kostti Busch - LSU 76 8

39 Modul_Epoetitio( { ( } b,, m powe b mod m fo to { if ( ( powe mod m powe ( powe powe mod m } etu ( b mod m i i k Time compleity: O(log m log bit opetios Kostti Busch - LSU 77 Coguet pplictio: Hshig fuctios h( k k mod m Emple: h( k k mod Employe id Folde# h( mod 4 h( mod 65 h( mod 4 collisio Kostti Busch - LSU 78 9

40 Applictio: Pseudodom umbes Sequece of pseudodom umbes,,, Lie coguetil method: (7 m ( c mod m seed c m m 4 mod Emple: 9,7,8,6,,,,4,5,,7,8,6,,,,4,5, seed Kostti Busch - LSU 79 Applictio: Cyptology MEET YOU IN THE PARK ecyptio f ( ( mod m f decyptio ( ( mod m PHHW BRX LQ WKH SDUN Shift ciphe: f ( ( mod m Affie tsfomtio: f ( ( b mod m Kostti Busch - LSU 8 4

41 Asl ve E Büyük Otk Böle Asl : ppositive itege gete th, oly positive fctos e, p Asl olmyl = composite (bileşik Asll:,,5,7,,,7,9,,9,,7,4, Kostti Busch - LSU 8 Aitmetiği temel teoemi He pozitif tmsyı, y sldı y d sl syılı soucudu. Asl çplı yım: m sl p k p k p k p k l l Öekle: Kostti Busch - LSU 8 4

42 Theoem: If is composite the it hs pime diviso p Poof: is composite, b,, b, b c mi(, b sice othewise b Fom fudmetl theoem of ithmetic is eithe pime o hs pime diviso c Ed of Poof Kostti Busch - LSU 8 Pime_fctoiztio( { //fist pime } p ' while ( d { if ( divides { p is fcto of p / p } else p et pime fte } etu ll pime fctos foud p Kostti Busch - LSU 84 p 4

43 77 p,,5 p 7 p 7 p 7 p p do ot divide does ot divide 4 4 ( 77 7 Kostti Busch - LSU 85 Theoem: Sosuz syıd sl syı vdı Poof: Solu syıd sl syı olduğuu vsylım p, p,, pk Let q If some pime Sice p p p p pk p i q p i p k p i q p p pk impossible No pime divides q (Fom fudmetl theoem of ithmetic q is pime Cotdictio! Ed of Poof Kostti Busch - LSU 86 4

44 Bilie e büyük sl (s of 6 Mesee sl syılıı gösteimi: Kostti Busch - LSU 87 Asl syı teoemi The umbe of pimes less o equl to ppoches to: l log e Kostti Busch - LSU 88 44

45 Goldbch ı vsyımı: He tm syı iki sl syıı toplmıdı İkili sl syıl vsyımı: Sosuz syıd ikiz sl vdı. İki fklı ikili sl syı vdı:,5 5,7, 7,9 Kostti Busch - LSU 89 gcd(, b, b Z b E büyük otk böle lgest itege such tht d d d d b Emples: gcd( 4,6 Commo divisos of 4, 6:,,, 4, 6, gcd( 7, Commo divisos of 7, : Kostti Busch - LSU 9 45

46 Öemsiz duuml: Kostti Busch - LSU 9 Theoem: b q ( / b If b the gcd(, b gcd( b, Poof: d ds d( s tq d d b b dt b dt d b Thus, (, b d ( b, hve the sme set of commo divisos Ed of poof Kostti Busch - LSU 9 46

47 divisios / / / / b q q q q fist zeo emide esult Kostti Busch - LSU 9 66 b esult 4 8 gcd(66,44 gcd(44,48 gcd(48,66 gcd(66,8 gcd(8, gcd(, Kostti Busch - LSU 94 47

48 b 4 mod mod mod 4 mod mod Kostti Busch - LSU 95 gcd(, b 66 b mod mod mod mod 8 8 mod gcd(, b Kostti Busch - LSU 96 48

49 49 Kostti Busch - LSU 97 i i i mod i i i b Özellik: i i Azl sılm i i i i i Duum : Kostti Busch - LSU 98 i i i mod i i i b Özellik: i i Azl sılm i i i i i i Duum :

50 b Azl sılm i i i mod i i i Özellik: i i log Kostti Busch - LSU 99 Euclidi Algoithm gcd( { },b y b while ( y { mod y y y } etu Time compleity: O(log divisios Kostti Busch - LSU 5

51 Alıd sl syıl:,b If gcd (, b the e eltively pime b d hve o commo fctos i thei pime fctoiztio Öek:, lıd sl syıldı gcd(, 7 Kostti Busch - LSU E küçük otk kt lcm(, b,b Z smllest positive itege such tht d d b d d Emples: lcm(,4 lcm(5, Kostti Busch - LSU 5

52 Syıl teoisii uygulmlı Doğusl kombisyo:, Z b Z s, t if the thee e such tht gcd(, b s tb Öek: gcd( 6,4 ( 6 4 Kostti Busch - LSU Doğusl kombisyo, Öklid lgoitmsıı dımlıı tesie çevieek bulubili. gcd( 5, gcd(5, ( ( Kostti Busch - LSU 4 5

53 Doğusl uyguluk We wt to solve the equtio fo b(mod m? (mod m Kostti Busch - LSU 5 (mod m Ivese of : b(mod m mod m b(mod m (mod m (mod m (mod m b(mod m Kostti Busch - LSU 6 5

54 Theoem: If d m e eltively pime the the ivese modulo m eists Poof: gcd(, m s tm s (mod m s Ed of poof Kostti Busch - LSU 7 4(mod 7 Emple: solve equtio, b 4, m 7 ü tesi: gcd(,7 7 (mod m b(mod m 4(mod 7 8(mod 7 6mod 7 Kostti Busch - LSU 8 54

55 Chiese emide poblem :piwise eltively pime (mod m (mod m Hs uique solutio fo (mod m modulo: (mod m Kostti Busch - LSU 9 Uique solutio modulo : M y M y M y M k m m k y :ivese of M modulo k k mk Kostti Busch - LSU 55

56 Epltio: M k m m k y k :ivese of M k y k M k mod m modulo k mk M y (mod m (mod m M y M y M y (mod m (mod m M k m (mod Simil fo y m j Kostti Busch - LSU Emple: (mod m 57 5 (mod5 (mod 7 M M m / 5/ 5 M m / 5 5/ 5 m / 7 5/ 7 5 y y y M y M 5 5 y M (mod 57 (mod5 y Kostti Busch - LSU 56

57 A Applictio of Chiese emide poblem Pefom ithmetic with lge umbes usig ithmetic modulo smll umbes Emple: eltively pime umbes m 99, m 98, m 97, m4 95 m ,4,9,684 (, 8, 9, 89 Ay umbe smlle th hs uique epesettio m,684mod 99,684mod 98 8,684mod 97 9,684mod Kostti Busch - LSU, ,456 (, 8, 9, (, 9, 4, 6 (65 mod99, mod98, 5mod97,5 mod95 57,4 (65,, 5, We obti this by usig the Chiese emide poblem solutio Kostti Busch - LSU 4 57

58 Femt s little theoem: p Fo y pime d itege ot divisible by ( : p p (mod p gcd(, p Emple: 4 (mod4 p 4 Kostti Busch - LSU 5 Poof: Popety : p does ot divide y of: Kostti Busch - LSU 6 58

59 Epltio: p k Suppose divides, k p s Z : k sp gcd(, p k p Does ot hve s pime fcto p p hs s pime fcto Cotdicts fudmetl theoem of ithmetic Kostti Busch - LSU 7 Popety : y pi below is ot coguet modulo : p Kostti Busch - LSU 8 59

60 Epltio: y (mod p y p Suppose, s Z : y sp ( y sp p ( y divides y p Cotdicts Popety Kostti Busch - LSU 9 Popety : Kostti Busch - LSU 6

61 Epltio: Fom Popety ( p i j (mod p, (mod p, p (mod p, p ( p p p p i j p p ( p ( p (mod p Kostti Busch - LSU Popety 4: (follows diectly fom popety Kostti Busch - LSU 6

62 Popety 5: Kostti Busch - LSU Epltio: ( p! fom Popety 4: ( p ( p!(mod p p does ot divide ( p! gcd( p,( p! ( p! (mod p eists Multiply both sides with: ( p! ( p (mod p Ed of Poof Kostti Busch - LSU 4 6

63 RSA (Rivest-Shmi-Adlem cyptosystem MEET YOU IN THE PARK f ecyptio decyptio e ( mod f ( d mod p q,e e public keys Lge pimes p q, d, e pivte keys Kostti Busch - LSU 5 Ecyptio emple: p 4 q 59 e p q 57 gcd( e,( p ( q gcd(,4 58 Messge to ecypt: STOP Tslte to equivlet umbes Goup ito blocks of two umbes Kostti Busch - LSU 6 6

64 89 45 Apply ecyptio fuctio to ech block f ( e mod Ecypted messge: 8 8 mod 57 f (89 89 mod 57 8 f (45 45 mod 57 8 Kostti Busch - LSU 7 M Messge decyptio : oigil block of the messge C :espective ecypted block C M e (mod We wt to fid M by kowig C, p, q, e Kostti Busch - LSU 64

65 d :ivese of e modulo ( p ( q de (mod( p ( q by defiitio of coguet de k( p ( q Ivese eists becuse gcd( e,( p ( q gcd( e,( p ( q se t( p ( q se mod( p ( q d s Kostti Busch - LSU 9 C M e (mod C d e d M (mod de k( p ( q C d M de M k ( p( q (mod Kostti Busch - LSU 65

66 Vey likely it holds gcd( M, p p (becuse is lge pime d is smll M gcd( M, p By Femt s little theoem M p (mod p Kostti Busch - LSU M p (mod p p k ( q k ( q M (mod p M M (mod p M p k ( q M M (mod p M k ( p( q M (mod p Kostti Busch - LSU 66

67 We showed: M k ( p( q M (mod p By symmety, whe eplcig with : p q M k ( p( q M (mod q By the Chiese emide poblem: M k ( p( q M (mod pq M (mod Kostti Busch - LSU We showed: C M d M k ( p( q k ( p( q (mod M (mod C d M (mod I othe wods: M C d mod Kostti Busch - LSU 4 67

68 Decyptio emple: p 4 59 p q q 57 e gcd( e,( p ( q gcd(,4 58 We c compute: d f ( C C d mod 8 97 mod mod = STOP Kostti Busch - LSU 5 68

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS4: Discrete Mthemtics for Computer Sciece I Dept. Iformtio & Computer Sci., J Stelovsky sed o slides y Dr. Bek d Dr. Still Origils y Dr. M. P. Frk d Dr. J.L. Gross Provided y McGrw-Hill 3- Quiz. gcd(84,96).

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov Intoduction Common Divisos Discete Mathematics Andei Bulatov Discete Mathematics Common Divisos 3- Pevious Lectue Integes Division, popeties of divisibility The division algoithm Repesentation of numbes

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication Next. Covered bsics of simple desig techique (Divided-coquer) Ch. of the text.. Next, Strsse s lgorithm. Lter: more desig d coquer lgorithms: MergeSort. Solvig recurreces d the Mster Theorem. Similr ide

More information

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that Divisibility DEFINITION: If a and b ae integes with a 0, we say that a divides b if thee is an intege c such that b = ac. If a divides b, we also say that a is a diviso o facto of b. NOTATION: d n means

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - PROGRESSIONS CONTENTS Be able to apply algebaic techiques Aithmetic pogessio (AP): fist

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

The Exponential Function

The Exponential Function The Epoetil Fuctio Defiitio: A epoetil fuctio with bse is defied s P for some costt P where 0 d. The most frequetly used bse for epoetil fuctio is the fmous umber e.788... E.: It hs bee foud tht oyge cosumptio

More information

Disjoint Sets { 9} { 1} { 11} Disjoint Sets (cont) Operations. Disjoint Sets (cont) Disjoint Sets (cont) n elements

Disjoint Sets { 9} { 1} { 11} Disjoint Sets (cont) Operations. Disjoint Sets (cont) Disjoint Sets (cont) n elements Disjoit Sets elemets { x, x, } X =, K Opeatios x Patitioed ito k sets (disjoit sets S, S,, K Fid-Set(x - etu set cotaiig x Uio(x,y - make a ew set by combiig the sets cotaiig x ad y (destoyig them S k

More information

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds.

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds. Jso Mille 8 Udestd the piciples, popeties, d techiques elted to sequece, seies, summtio, d coutig sttegies d thei pplictios to polem solvig. Polomil Diffeece Theoem: f is polomil fuctio of degee iff fo

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8.

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8. Mathematics. Solved Eamples JEE Mai/Boads Eample : Fid the coefficiet of y i c y y Sol: By usig fomula of fidig geeal tem we ca easily get coefficiet of y. I the biomial epasio, ( ) th tem is c T ( y )

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer Presettio for use with the textook, Algorithm Desig d Applictios, y M. T. Goodrich d R. Tmssi, Wiley, 25 Divide-d-Coquer Divide-d-Coquer Divide-d coquer is geerl lgorithm desig prdigm: Divide: divide the

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Trial division, Pollard s p 1, Pollard s ρ, and Fermat s method. Christopher Koch 1. April 8, 2014

Trial division, Pollard s p 1, Pollard s ρ, and Fermat s method. Christopher Koch 1. April 8, 2014 Iteger Divisio Algorithm ad Cogruece Iteger Trial divisio,,, ad with itegers mod Iverses mod Multiplicatio ad GCD Iteger Christopher Koch 1 1 Departmet of Computer Sciece ad Egieerig CSE489/589 Algorithms

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autr Kw Bejmi Rigsby http://m.mthforcollege.com Trsformig Numericl Methods Eductio for STEM Udergrdutes http://m.mthforcollege.com . solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information