Causal Discovery Methods Using Causal Probabilistic Networks

Size: px
Start display at page:

Download "Causal Discovery Methods Using Causal Probabilistic Networks"

Transcription

1 ausal iscovery Methods Using ausal Probabilistic Networks MINFO 2004, T02: Machine Learning Methods for ecision Support and iscovery onstantin F. liferis & Ioannis Tsamardinos iscovery Systems Laboratory epartment of iomedical Informatics Vanderbilt University 276

2 esire for ausal Knowledge iagnosis Knowing that people with cancer often have yellowstained fingers and feel fatigue, diagnose lung cancer Prevention Need to know that Smoking causes lung cancer to reduce the risk of cancer Treatment Knowing that the presence of protein X causes cancer, inactivate protein X, using medicine Y that causes X to be inactive ausal Knowledge NOT required ausal Knowledge required 277

3 Importance of ausal iscovery Today What SNP combination causes what disease How genes and proteins are organized in complex causal regulatory networks How behaviour causes disease How genotype causes differences in response to treatment How the environment modifies or even supersedes the normal causal function of genes 278

4 What is ausality? Thousands of years old problem, still debated Operational Informal efinition: ssume the existence of a mechanism M capable of setting values for a variable. We say that can be manipulated by M to take the desired values. Variable causes variable, if: in a hypothetical randomized controlled experiment in which is randomly manipulated via M (i.e., all possible values a i of are randomly assigned to via M) we would observe in the sample limit that P(= b = a i ) P(= b =a j ) for some i j. efinition is stochastic Problems: self-referencing, ignores time-dependence, variables that need to be co-manipulated, etc. 279

5 ausation and ssociation What is the relationship between the two? If causes, are and always associated? If is associated with are they always causes or effects of each other? (directly?, indirectly?, conditionally, unconditionally?) 280

6 Statistical Indistinguishability SMOKING LUNG S1 GN SMOKING LUNG S2 GN S3 SMOKING LUNG 281

7 RNOMIZ ONTROLL TRILS SMOKING LUNG S1 GN SMOKING GN LUNG S2 S3 ssociation is still retained even after manipulating Smoking SMOKING LUNG 282

8 RTs re not always feasible! Unethical (smoking) ostly/time consuming (gene manipulation, epidemiology) Impossible (astronomy) xtremely large number 283

9 Large-Scale ausal iscovery without RTs? Heuristics to the rescue What is a heuristic? When the heuristic condition holds, most probably a causal association holds 284

10 Pitfalls of ausal Heuristics If is a robust and strong predictor of T then is likely a cause of T - xample: Feature selection - xample: Predictive Rules - In the example: Tuberculosis is a strong predictor of Lung ancer (when Haemoptysis is included as a predictor), but not causally associated with Lung ancer Lung a Tuberculosis Haemoptysis 285

11 Pitfalls of ausal Heuristics The closer and T are in a causal sense, the stronger their correlation (localizes causality as well) Poor Fitness may be a stronger predictor (univariately) to lung cancer than either Occupation or Smoking individually; yet the latter predictors are causally closer to Lung ancer Smoking Fatigue Occupation Lung ancer Poor Fitness nemia Stress (Potentially) Smallest predictor set with optimal accuracy 286

12 The Problem with ausal iscovery ausal heuristics are unreliable ausation is difficult to define RTs are not always doable Major causal knowledge does not have RT backing! 287

13 Formal omputational ausal iscovery from Observational ata Formal algorithms exist! Most are based on a graphical-probabilistic language called ausal Probabilistic Networks (a.k.a. ausal ayesian Networks ) Well-characterized properties of What types of causal relations they can learn Under which conditions What kind of errors they may make 288

14 Types of ausal iscovery Questions What will be the effect of a manipulation to the system Is causing, causing, or neither? Is causing directly (no other observed variables interfere)? What is the smallest set of variables for optimally effective manipulation of? an we infer the presence of hidden confounder factors/variables? 289

15 Formal Language for Representing ausality ayesian Networks dges: probabilistic dependence Markov ondition: node N is independent from non-descendants given its parents Probabilistic reasoning ausal ayesian Networks dges represent direct causal effects ausal Markov ondition: node N is independent from nondescendants given its direct causes Probabilistic reasoning + causal inferences 290

16 ausal ayesian Networks There may be many (non-causal) Ns that capture the same distribution. ll such Ns have the same edges (ignoring direction) same v- structures Statistically equivalent G G G 291

17 ausal ayesian Networks If there is a (faithful) ausal ayesian Network that captures the data generation process, it has to have the same edges and same v-structures as any (faithful) ayesian Network that is induced by the data. We can infer what the direct causal relations are We can infer some of the directions of the edges Gene1 Gene2 Gene1 Gene2 Gene3 Gene1 Gene2 292

18 Faithfulness When d-separation independence Intuitively, an open path between and means there is association between them in the data Previous discussion holds for faithful Ns only Faithful N is a very large class of Ns 293

19 Learning ayesian Networks: onstraint-ased pproach n edge X Y (of unknown direction) exists, if and only if for all sets of nodes S, ep(x, Y S) (allows discovery of the edges) Test all subsets. If ep(x,y s) holds, add the edge, otherwise do not. If structure contains F, ep(x, Y S), then F and for every set S that F 294

20 Learning ayesian Networks: onstraint-ased pproach Tests of conditional dependences and independencies from the data stimation using G 2 statistic, conditional mutualinformation, etc. Infer structure and orientation from results of tests ased on the assumption these tests are accurate The larger the number of nodes in the conditioning set, the more samples are required to estimate the dependence, Ind(,,,) more sample than Ind(,,) For relatively sparse networks, we can d-separate two nodes conditioned on a couple of variables (sample requirements in the low hundreds) 295

21 Learning ayesian Networks: Searchand-Score Score each possible structure ayesian score: P(Structure ata) Search in the space of all possible Ns structures to find the one that maximizes score. Search space too large. Greedy or local search is typical. Greedy search: add, delete, or reverse the edge that increases the score the most. 296

22 The P algorithm (Spirtes, Glymour, Scheines 1993) Phase I: dge detection Start with a fully connected undirected network For each subset of variables of size n=0, 1, For each remaining edge If there is a subset S of variables still connected to or of size n such Ind(; S), remove edge Phase II: dge orientation For every possible V-structure with missing If ep(, ), orient While no more orientations possible If and missing, orient it as If there is a path. orient the edge as 297

23 Trace xample of the P True Graph urrent candidate graph Start with a fully connected undirected network 298

24 Trace xample of the P True Graph urrent candidate graph For subsets of size 0 For each remaining edge If there is a subset S of variables still connected to or of size n such Ind(; S), remove edge No independencies discovered 299

25 Trace xample of the P True Graph urrent candidate graph For subsets of size 1 For each remaining edge If there is a subset S of variables still connected to or of size n such Ind(; S), remove edge Ind(, ) Ind(, ) Ind(, ) Ind(, ) 300

26 Trace xample of the P True Graph urrent candidate graph For subsets of size 2 For each remaining edge If there is a subset S of variables still connected to or of size n such Ind(; S), remove edge Ind(,,) 301

27 Trace xample of the P True Graph urrent candidate graph Phase II: dge orientation For every possible V-structure: with missing If ep(, ), orient ondition does not hold 302

28 Trace xample of the P True Graph urrent candidate graph Phase II: dge orientation For every possible V-structure: with missing If ep(, ), orient ondition does not hold 303

29 Trace xample of the P True Graph urrent candidate graph Phase II: dge orientation For every possible V-structure with missing If ep(, ), orient ondition does not hold 304

30 Trace xample of the P True Graph urrent candidate graph Phase II: dge orientation For every possible V-structure with missing If ep(, ), orient ondition holds 305

31 Trace xample of the P True Graph urrent candidate graph Final output! 306

32 Min-Max Hill limbing algorithm rown,tsamardinos, liferis, MedInfo 2004 ased on the same ideas as P and uses tests of conditional independence Uses different search strategy to identify interesting independence relations Similar quality results as P but scales up to tens of thousands of variables (P can only handle a couple of hundred variables) 307

33 Local ausal iscovery Max-Min Parents and hildren: returns the parents and children of a target variable Tsamardinos, liferis, Statnikov K 2003 Scales-up to tens of thousands of variables F G I H J K L 308

34 Local ausal iscovery Max-Min Markov lanket: returns the parents and children of a target variable Scales-up to tens of thousands of variables HITON (liferis, Tsamardinos, Statnikov MI 2003) close variant: different heuristic+wrapping with a classifier to optimize for variable selection tasks F G I H J K L 309

35 Local ausal iscovery- ifferent Flavor Mani&ooper 2000, 2001, Silverstein, rin, Motwani, Ullman Rule 1:,, pairwise dependent, Ind(, ), has no causes within the observed variables (e.g. temperature in a gene expression experiment), then Α Rule 2: ep(, ), ep(, ), Ind(, ), ep(, ), then iscovers a coarser causal model (ancestor relations and indirect causality) 310

36 FI ausal iscovery with Hidden onfounders SOIL NV. GN OUPTION SMOKING LUNG Ind(S,L ) ep(s,l SM) Ind(SM,O ) ep(sm,o L) The only consistent model with all tests is one that has a hidden confounder 311

37 Other ausal iscovery lgorithms Large body of work in ayesian (or other) search and score methods; still similar set of assumptions (Neapolitan 2003) Learning with linear Structural quation Models in systems in static equilibria (allows feedback loops) (Richardson, Spirtes 1999) Learning in the presence of selection bias (ooper 1995) Learning from mixtures of experimental and observational data (ooper, Yoo, 1999) 312

38 onclusions It is possible to perform causal discovery from observational data without Randomized ontrolled Trials! Heuristic methods are typically used instead of formal causal discovery methods; their properties and their relative efficacy are unknown ausal discovery algorithms also make assumptions but have well-characterized properties There is a plethora of different algorithms with different properties and assumptions for causal discovery There is still plenty of work to be done 313

39 Suggested Further Reading Neapolitan, Learning ayesian Networks, Prentice Hall, 2003 d. Glymour, ooper, omputation, ausation, and iscovery, I Press/MIT Press, 1999 d. Jordan, Learning in Graphical Models, MIT Press, 1998 Spirtes, Glymour, Scheines, ausation, Prediction, Search, MIT Press

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 1: Introduction to Graphical Models Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ epartment of ngineering University of ambridge, UK

More information

Marginal consistency of constraint-based causal learning

Marginal consistency of constraint-based causal learning Marginal consistency of constraint-based causal learning nna Roumpelaki, Giorgos orboudakis, Sofia Triantafillou and Ioannis Tsamardinos University of rete, Greece. onstraint-based ausal Learning Measure

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Local Structure Discovery in Bayesian Networks

Local Structure Discovery in Bayesian Networks 1 / 45 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Local Structure Discovery in Bayesian Networks Teppo Niinimäki, Pekka Parviainen August 18, 2012 University of Helsinki Department

More information

Bayesian Networks Representation and Reasoning

Bayesian Networks Representation and Reasoning ayesian Networks Representation and Reasoning Marco F. Ramoni hildren s Hospital Informatics Program Harvard Medical School (2003) Harvard-MIT ivision of Health Sciences and Technology HST.951J: Medical

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Learning Semi-Markovian Causal Models using Experiments

Learning Semi-Markovian Causal Models using Experiments Learning Semi-Markovian Causal Models using Experiments Stijn Meganck 1, Sam Maes 2, Philippe Leray 2 and Bernard Manderick 1 1 CoMo Vrije Universiteit Brussel Brussels, Belgium 2 LITIS INSA Rouen St.

More information

Feature Selection and Discovery Using Local Structure Induction: Algorithms, Applications, and Challenges

Feature Selection and Discovery Using Local Structure Induction: Algorithms, Applications, and Challenges Feature Selection and Discovery Using Local Structure Induction: Algorithms, Applications, and Challenges Constantin F. Aliferis, M.D., P.h.D Assistant Professor, Department of Biomedical Informatics Vanderbilt

More information

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network.

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network. ecall from last time Lecture 3: onditional independence and graph structure onditional independencies implied by a belief network Independence maps (I-maps) Factorization theorem The Bayes ball algorithm

More information

Bayesian Networks 3 D-separation. D-separation

Bayesian Networks 3 D-separation. D-separation ayesian Networks 3 D-separation 1 D-separation iven a graph, we would like to read off independencies The converse is easier to think about: when does an independence statement not hold? g. when can X

More information

Example: multivariate Gaussian Distribution

Example: multivariate Gaussian Distribution School of omputer Science Probabilistic Graphical Models Representation of undirected GM (continued) Eric Xing Lecture 3, September 16, 2009 Reading: KF-chap4 Eric Xing @ MU, 2005-2009 1 Example: multivariate

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Bayesian Networks Learning From Data

Bayesian Networks Learning From Data Bayesian Networks earning From Data Marco F. Ramoni hildren s ospital Informatics Program arvard Medical School ST951 (2003) arvard-mit Division of ealth Sciences and Technology ST.951J: Medical Decision

More information

Structure learning in human causal induction

Structure learning in human causal induction Structure learning in human causal induction Joshua B. Tenenbaum & Thomas L. Griffiths Department of Psychology Stanford University, Stanford, CA 94305 jbt,gruffydd @psych.stanford.edu Abstract We use

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

Measurement Error and Causal Discovery

Measurement Error and Causal Discovery Measurement Error and Causal Discovery Richard Scheines & Joseph Ramsey Department of Philosophy Carnegie Mellon University Pittsburgh, PA 15217, USA 1 Introduction Algorithms for causal discovery emerged

More information

Probabilistic Causal Models

Probabilistic Causal Models Probabilistic Causal Models A Short Introduction Robin J. Evans www.stat.washington.edu/ rje42 ACMS Seminar, University of Washington 24th February 2011 1/26 Acknowledgements This work is joint with Thomas

More information

Challenges (& Some Solutions) and Making Connections

Challenges (& Some Solutions) and Making Connections Challenges (& Some Solutions) and Making Connections Real-life Search All search algorithm theorems have form: If the world behaves like, then (probability 1) the algorithm will recover the true structure

More information

Tutorial: Causal Model Search

Tutorial: Causal Model Search Tutorial: Causal Model Search Richard Scheines Carnegie Mellon University Peter Spirtes, Clark Glymour, Joe Ramsey, others 1 Goals 1) Convey rudiments of graphical causal models 2) Basic working knowledge

More information

Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach

Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach Stijn Meganck 1, Philippe Leray 2, and Bernard Manderick 1 1 Vrije Universiteit Brussel, Pleinlaan 2,

More information

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 13 24 march 2017 Reasoning with Bayesian Networks Naïve Bayesian Systems...2 Example

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Bayesian Network Modelling

Bayesian Network Modelling Bayesian Network Modelling with Examples scutari@stats.ox.ac.uk Department of Statistics November 28, 2016 What Are Bayesian Networks? What Are Bayesian Networks? A Graph and a Probability Distribution

More information

Causal Inference in the Presence of Latent Variables and Selection Bias

Causal Inference in the Presence of Latent Variables and Selection Bias 499 Causal Inference in the Presence of Latent Variables and Selection Bias Peter Spirtes, Christopher Meek, and Thomas Richardson Department of Philosophy Carnegie Mellon University Pittsburgh, P 15213

More information

Identifiability assumptions for directed graphical models with feedback

Identifiability assumptions for directed graphical models with feedback Biometrika, pp. 1 26 C 212 Biometrika Trust Printed in Great Britain Identifiability assumptions for directed graphical models with feedback BY GUNWOONG PARK Department of Statistics, University of Wisconsin-Madison,

More information

Markovian Combination of Decomposable Model Structures: MCMoSt

Markovian Combination of Decomposable Model Structures: MCMoSt Markovian Combination 1/45 London Math Society Durham Symposium on Mathematical Aspects of Graphical Models. June 30 - July, 2008 Markovian Combination of Decomposable Model Structures: MCMoSt Sung-Ho

More information

Bayesian & Markov Networks: A unified view

Bayesian & Markov Networks: A unified view School of omputer Science ayesian & Markov Networks: unified view Probabilistic Graphical Models (10-708) Lecture 3, Sep 19, 2007 Receptor Kinase Gene G Receptor X 1 X 2 Kinase Kinase E X 3 X 4 X 5 TF

More information

Causal Reasoning with Ancestral Graphs

Causal Reasoning with Ancestral Graphs Journal of Machine Learning Research 9 (2008) 1437-1474 Submitted 6/07; Revised 2/08; Published 7/08 Causal Reasoning with Ancestral Graphs Jiji Zhang Division of the Humanities and Social Sciences California

More information

Learning Multivariate Regression Chain Graphs under Faithfulness

Learning Multivariate Regression Chain Graphs under Faithfulness Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012 Learning Multivariate Regression Chain Graphs under Faithfulness Dag Sonntag ADIT, IDA, Linköping University, Sweden dag.sonntag@liu.se

More information

Causal Structure Learning and Inference: A Selective Review

Causal Structure Learning and Inference: A Selective Review Vol. 11, No. 1, pp. 3-21, 2014 ICAQM 2014 Causal Structure Learning and Inference: A Selective Review Markus Kalisch * and Peter Bühlmann Seminar for Statistics, ETH Zürich, CH-8092 Zürich, Switzerland

More information

Towards an extension of the PC algorithm to local context-specific independencies detection

Towards an extension of the PC algorithm to local context-specific independencies detection Towards an extension of the PC algorithm to local context-specific independencies detection Feb-09-2016 Outline Background: Bayesian Networks The PC algorithm Context-specific independence: from DAGs to

More information

Naïve Bayes Classifiers

Naïve Bayes Classifiers Naïve Bayes Classifiers Example: PlayTennis (6.9.1) Given a new instance, e.g. (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong ), we want to compute the most likely hypothesis: v NB

More information

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation Journal of Machine Learning Research 11 (2010) 171-234 Submitted 7/07; Revised 2/08; Published 1/10 Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification

More information

Causal Discovery. Beware of the DAG! OK??? Seeing and Doing SEEING. Properties of CI. Association. Conditional Independence

Causal Discovery. Beware of the DAG! OK??? Seeing and Doing SEEING. Properties of CI. Association. Conditional Independence eware of the DG! Philip Dawid niversity of Cambridge Causal Discovery Gather observational data on system Infer conditional independence properties of joint distribution Fit a DIRECTED CCLIC GRPH model

More information

Local Probability Models

Local Probability Models Readings: K&F 3.4, 5.~5.5 Local Probability Models Lecture 3 pr 4, 2 SE 55, Statistical Methods, Spring 2 Instructor: Su-In Lee University of Washington, Seattle Outline Last time onditional parameterization

More information

Bounding the False Discovery Rate in Local Bayesian Network Learning

Bounding the False Discovery Rate in Local Bayesian Network Learning Bounding the False Discovery Rate in Local Bayesian Network Learning Ioannis Tsamardinos Dept. of Computer Science, Univ. of Crete, Greece BMI, ICS, Foundation for Research and Technology, Hellas Dept.

More information

Noisy-OR Models with Latent Confounding

Noisy-OR Models with Latent Confounding Noisy-OR Models with Latent Confounding Antti Hyttinen HIIT & Dept. of Computer Science University of Helsinki Finland Frederick Eberhardt Dept. of Philosophy Washington University in St. Louis Missouri,

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Causal Effect Evaluation and Causal Network Learning

Causal Effect Evaluation and Causal Network Learning and Peking University, China June 25, 2014 and Outline 1 Yule-Simpson paradox Causal effects Surrogate and surrogate paradox 2 and Outline Yule-Simpson paradox Causal effects Surrogate and surrogate paradox

More information

Inferring the Causal Decomposition under the Presence of Deterministic Relations.

Inferring the Causal Decomposition under the Presence of Deterministic Relations. Inferring the Causal Decomposition under the Presence of Deterministic Relations. Jan Lemeire 1,2, Stijn Meganck 1,2, Francesco Cartella 1, Tingting Liu 1 and Alexander Statnikov 3 1-ETRO Department, Vrije

More information

Causal Discovery by Computer

Causal Discovery by Computer Causal Discovery by Computer Clark Glymour Carnegie Mellon University 1 Outline 1. A century of mistakes about causation and discovery: 1. Fisher 2. Yule 3. Spearman/Thurstone 2. Search for causes is statistical

More information

On Causal Explanations of Quantum Correlations

On Causal Explanations of Quantum Correlations On Causal Explanations of Quantum Correlations Rob Spekkens Perimeter Institute From XKCD comics Quantum Information and Foundations of Quantum Mechanics workshop Vancouver, July 2, 2013 Simpson s Paradox

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April Probabilistic Graphical Models Guest Lecture by Narges Razavian Machine Learning Class April 14 2017 Today What is probabilistic graphical model and why it is useful? Bayesian Networks Basic Inference

More information

A Decision Theoretic View on Choosing Heuristics for Discovery of Graphical Models

A Decision Theoretic View on Choosing Heuristics for Discovery of Graphical Models A Decision Theoretic View on Choosing Heuristics for Discovery of Graphical Models Y. Xiang University of Guelph, Canada Abstract Discovery of graphical models is NP-hard in general, which justifies using

More information

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues Bayesian Networks in Epistemology and Philosophy of Science Lecture 1: Bayesian Networks Center for Logic and Philosophy of Science Tilburg University, The Netherlands Formal Epistemology Course Northern

More information

Towards Association Rules with Hidden Variables

Towards Association Rules with Hidden Variables Towards Association Rules with Hidden Variables Ricardo Silva and Richard Scheines Gatsby Unit, University College London, WCN AR London, UK Machine Learning Department, Carnegie Mellon, Pittsburgh PA,

More information

Undirected Graphical Models 4 Bayesian Networks and Markov Networks. Bayesian Networks to Markov Networks

Undirected Graphical Models 4 Bayesian Networks and Markov Networks. Bayesian Networks to Markov Networks Undirected Graphical Models 4 ayesian Networks and Markov Networks 1 ayesian Networks to Markov Networks 2 1 Ns to MNs X Y Z Ns can represent independence constraints that MN cannot MNs can represent independence

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

Causal Inference & Reasoning with Causal Bayesian Networks

Causal Inference & Reasoning with Causal Bayesian Networks Causal Inference & Reasoning with Causal Bayesian Networks Neyman-Rubin Framework Potential Outcome Framework: for each unit k and each treatment i, there is a potential outcome on an attribute U, U ik,

More information

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers:

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers: Bayesian Inference The purpose of this document is to review belief networks and naive Bayes classifiers. Definitions from Probability: Belief networks: Naive Bayes Classifiers: Advantages and Disadvantages

More information

Causal Discovery. Richard Scheines. Peter Spirtes, Clark Glymour, and many others. Dept. of Philosophy & CALD Carnegie Mellon

Causal Discovery. Richard Scheines. Peter Spirtes, Clark Glymour, and many others. Dept. of Philosophy & CALD Carnegie Mellon Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour, and many others Dept. of Philosophy & CALD Carnegie Mellon Graphical Models --11/30/05 1 Outline 1. Motivation 2. Representation 3. Connecting

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 473: rtificial Intelligence Spring 2012 ayesian Networks Dan Weld Outline Probabilistic models (and inference) ayesian Networks (Ns) Independence in Ns Efficient Inference in Ns Learning Many slides

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges 1 PRELIMINARIES Two vertices X i and X j are adjacent if there is an edge between them. A path

More information

Discovering Causal Relations in the Presence of Latent Confounders. Antti Hyttinen

Discovering Causal Relations in the Presence of Latent Confounders. Antti Hyttinen Department of Computer Science Series of Publications A Report A-2013-4 Discovering Causal Relations in the Presence of Latent Confounders Antti Hyttinen To be presented, with the permission of the Faculty

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Learning the Structure of Linear Latent Variable Models

Learning the Structure of Linear Latent Variable Models Journal (2005) - Submitted /; Published / Learning the Structure of Linear Latent Variable Models Ricardo Silva Center for Automated Learning and Discovery School of Computer Science rbas@cs.cmu.edu Richard

More information

arxiv: v2 [cs.lg] 9 Mar 2017

arxiv: v2 [cs.lg] 9 Mar 2017 Journal of Machine Learning Research? (????)??-?? Submitted?/??; Published?/?? Joint Causal Inference from Observational and Experimental Datasets arxiv:1611.10351v2 [cs.lg] 9 Mar 2017 Sara Magliacane

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is an author's version which may differ from the publisher's version. For additional information about this

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

Interpreting and using CPDAGs with background knowledge

Interpreting and using CPDAGs with background knowledge Interpreting and using CPDAGs with background knowledge Emilija Perković Seminar for Statistics ETH Zurich, Switzerland perkovic@stat.math.ethz.ch Markus Kalisch Seminar for Statistics ETH Zurich, Switzerland

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, etworks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Outline. Spring It Introduction Representation. Markov Random Field. Conclusion. Conditional Independence Inference: Variable elimination

Outline. Spring It Introduction Representation. Markov Random Field. Conclusion. Conditional Independence Inference: Variable elimination Probabilistic Graphical Models COMP 790-90 Seminar Spring 2011 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Outline It Introduction ti Representation Bayesian network Conditional Independence Inference:

More information

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014 10-708: Probabilistic Graphical Models 10-708, Spring 2014 1 : Introduction Lecturer: Eric P. Xing Scribes: Daniel Silva and Calvin McCarter 1 Course Overview In this lecture we introduce the concept of

More information

Bayesian Networks. Axioms of Probability Theory. Conditional Probability. Inference by Enumeration. Inference by Enumeration CSE 473

Bayesian Networks. Axioms of Probability Theory. Conditional Probability. Inference by Enumeration. Inference by Enumeration CSE 473 ayesian Networks CSE 473 Last Time asic notions tomic events Probabilities Joint distribution Inference by enumeration Independence & conditional independence ayes rule ayesian networks Statistical learning

More information

CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK

CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK by Eric V. Strobl B.A. in Molecular & Cell Biology, University of California at Berkeley, 2009 B.A. in Psychology, University of California at Berkeley, 2009

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Causal Inference. Prediction and causation are very different. Typical questions are:

Causal Inference. Prediction and causation are very different. Typical questions are: Causal Inference Prediction and causation are very different. Typical questions are: Prediction: Predict Y after observing X = x Causation: Predict Y after setting X = x. Causation involves predicting

More information

Carnegie Mellon Pittsburgh, Pennsylvania 15213

Carnegie Mellon Pittsburgh, Pennsylvania 15213 A Tutorial On Causal Inference Peter Spirtes August 4, 2009 Technical Report No. CMU-PHIL-183 Philosophy Methodology Logic Carnegie Mellon Pittsburgh, Pennsylvania 15213 1. Introduction A Tutorial On Causal

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Equivalence in Non-Recursive Structural Equation Models

Equivalence in Non-Recursive Structural Equation Models Equivalence in Non-Recursive Structural Equation Models Thomas Richardson 1 Philosophy Department, Carnegie-Mellon University Pittsburgh, P 15213, US thomas.richardson@andrew.cmu.edu Introduction In the

More information

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining Regularization Fall 2017 Assignment 2 Admin 2 late days to hand in tonight, answers posted tomorrow morning. Extra office hours Thursday at 4pm (ICICS 246). Midterm

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Faithfulness of Probability Distributions and Graphs

Faithfulness of Probability Distributions and Graphs Journal of Machine Learning Research 18 (2017) 1-29 Submitted 5/17; Revised 11/17; Published 12/17 Faithfulness of Probability Distributions and Graphs Kayvan Sadeghi Statistical Laboratory University

More information

An Introduction to Bayesian Networks: Representation and Approximate Inference

An Introduction to Bayesian Networks: Representation and Approximate Inference An Introduction to Bayesian Networks: Representation and Approximate Inference Marek Grześ Department of Computer Science University of York Graphical Models Reading Group May 7, 2009 Data and Probabilities

More information

Causality II: How does causal inference fit into public health and what it is the role of statistics?

Causality II: How does causal inference fit into public health and what it is the role of statistics? Causality II: How does causal inference fit into public health and what it is the role of statistics? Statistics for Psychosocial Research II November 13, 2006 1 Outline Potential Outcomes / Counterfactual

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Cavities. Independence. Bayes nets. Why do we care about variable independence? P(W,CY,T,CH) = P(W )P(CY)P(T CY)P(CH CY)

Cavities. Independence. Bayes nets. Why do we care about variable independence? P(W,CY,T,CH) = P(W )P(CY)P(T CY)P(CH CY) ayes nets S151 David Kauchak Fall 2010 http://www.xkcd.com/801/ Some material borrowed from: Sara Owsley Sood and others Independence Two variables are independent if knowing the values of one, does not

More information

Markov properties for directed graphs

Markov properties for directed graphs Graphical Models, Lecture 7, Michaelmas Term 2009 November 2, 2009 Definitions Structural relations among Markov properties Factorization G = (V, E) simple undirected graph; σ Say σ satisfies (P) the pairwise

More information

Undirected Graphical Models

Undirected Graphical Models Readings: K&F 4. 4.2 4.3 4.4 Undirected Graphical Models Lecture 4 pr 6 20 SE 55 Statistical Methods Spring 20 Instructor: Su-In Lee University of Washington Seattle ayesian Network Representation irected

More information

Generalized Measurement Models

Generalized Measurement Models Generalized Measurement Models Ricardo Silva and Richard Scheines Center for Automated Learning and Discovery rbas@cs.cmu.edu, scheines@andrew.cmu.edu May 16, 2005 CMU-CALD-04-101 School of Computer Science

More information

The Role of Assumptions in Causal Discovery

The Role of Assumptions in Causal Discovery The Role of Assumptions in Causal Discovery Marek J. Druzdzel Decision Systems Laboratory, School of Information Sciences and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260,

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Bayesian Networks Representing Joint Probability Distributions 2 n -1 free parameters Reducing Number of Parameters: Conditional Independence

More information