Marginal consistency of constraint-based causal learning

Size: px
Start display at page:

Download "Marginal consistency of constraint-based causal learning"

Transcription

1 Marginal consistency of constraint-based causal learning nna Roumpelaki, Giorgos orboudakis, Sofia Triantafillou and Ioannis Tsamardinos University of rete, Greece.

2 onstraint-based ausal Learning Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 X 5 X 7

3 onstraint-based ausal Learning Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 X 5 X 7

4 onstraint-based ausal Learning Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 X 5 X 7 How important is the choice of variables in learning causal relationships? Would you have learnt the same relationships if you had chosen a subset of the variables?

5 Maximal ncestral Graphs Maximal ncestral Graphs apture the conditional independencies of the joint probability P over a set of variables under ausal Markov and aithfulness conditions irected edges denote causal ancestry. i-directed edges denote confounding. No directed cycles. No almost directed cycles. re closed under marginalization. G = V, is a MG, G[ L = V L, is also a MG. an also handle selection (not here). causes confounded

6 Partially Oriented ncestral Graphs Summarize pairwise features of a Markov equivalence class of MGs. ircles denote ambiguous endpoints. an be learnt from data using I. I: Sensitive to error propagation. Order-dependent (if you change the order of variables in the data set you get a different result). xtensions of I [4]: Order independent (ii) [1]: output does not depend on the order of the variables. onservative I (ci) [3]: Makes additional tests of independence for more robust orientations. orgoes orientations that are not supported by all tests. Majority rule (mi) [3]: conservative I that orients ambiguous triplets based on majority of test results for each triplet. causes in all Markov equivalent MGs and are either confounded or causes

7 What happens when you marginalize out variables? Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 X 5 X 7

8 What happens when you marginalize out variables? Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 marginal dataset without variables X 2, X 5 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 5 X 7 X 8 X 2 X 3 X 1 X6 X 4 X 5 X 7

9 What happens when you marginalize out variables? Measure X 1,, X 8 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 I X 8 X 3 X 2 X 1 X 6 X 4 marginal dataset without variables X 2, X 5 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 5 X 7 X 8 X 2 X 3 X 1 X6 X 4 X 5 X 7

10 inding Nnc P (X, Y) Nnc P : X is not an ancestor of Y in all MGs represented by P. X has no potentially directed path to Y. PG P

11 inding Nnc P (X, Y) Nnc P : X is not an ancestor of Y in all MGs represented by P. X has no potentially directed path to Y. (, ), (, ), (, ) PG P

12 inding Nnc P (X, Y) Nnc P : X is not an ancestor of Y in all MGs represented by P X has no potentially directed path to Y. (, ), (, ), (, ) (, ), (, ), (, ), (, ) PG P

13 inding Nnc P (X, Y) Nnc P : X is not an ancestor of Y in all MGs represented by P X has no potentially directed path to Y. (, ), (, ), (, ) (, ), (, ), (, ), (, ) (, ), (, ), (, ), (, ), (, ) PG P

14 inding nc P (X, Y) Nnc P : X is an ancestor of Y in all MGs represented by P. Take the transitive closure of directed edges in the PG.

15 inding nc P (X, Y) Nnc P : X is an ancestor of Y in all MGs represented by P. Take the transitive closure of directed edges in the PG.,,,,

16 inding nc P (X, Y) Nnc P : X is an ancestor of Y in all MGs represented by P. Take the transitive closure of directed edges in the PG.,,,,

17 inding nc P (X, Y) Nnc P : X is an ancestor of Y in all MGs represented by P. Take the transitive closure of directed edges in the PG.,,,, Some relations are not so obvious! causes in all MGs repr. by P.

18 inding nc P X Theorem: If (X,Y) is not in the transitive closure of PG P, X is an ancestor of Y if and only if U,V, U V such that: U V 1. There are uncovered potentially directed paths from X to Y via U and V in P, and 2. <U,X,V> is an unshielded definite non-collider in P. Y Uncovered potentially directed path (every triplet is an unshielded noncollider).

19 inding nc P (X, Y) Nnc P : X is an ancestor of Y in all MGs represented by P. Take the transitive closure of directed edges in the PG.,,,,,,,,,

20 mbiguous relationships If (X, Y) nc P Nnc P : mbiguous relationship. If you marginalize out variables, (non) ancestral relationships can become ambiguous.

21 original original Marginal onsistency Under perfect statistical knowledge: ncestral relations in the marginal are ancestral in the original PG (over V L) nc P[ L nc P V L (d=0, e=0) In reality: ncestral relations in the marginal can be: non-ancestral in the original PG (d). ambiguous in the original PG (e) Non-ancestral relations in the marginal nonancestral in the original PG (over V L) Nnc P[ L Nnc P V L (c=0, f=0) Non-ancestral relations in the marginal can be: ncestral in the original PG (c). ambiguous in the original PG (f) marginal marginal

22 xperiments 50 Gs of 20 variables. Graph density: 0.1 and 0.2. ontinuous data sets with 1000 samples. 100 random marginals of 18 and 15 variables. lgorithms used (pcalg) [2]: I ii mi

23 Results (ncestral relationships) 18 variables 15 variables density 0.1 density 0.2 ncestral in both. ncestral in marginal nonancestral in original. ncestral in marginal ambiguous in original.

24 Results (Non ncestral Relationships) 18 variables 15 variables density 0.1 density 0.2 Non-ncestral in both. Non-ncestral in marginal, ancestral in original. Non-ncestral in marginal ambiguous in original.

25 onclusions onstraint-based methods are sensitive to marginalization. onsistency of causal predictions drops for denser networks/smaller marginals.. Non-causal predictions are very consistent. Majority rule I outperforms other I variants.

26 Ranking based on marginal consistency an you use marginal consistency to find more robust predictions? re predictions that are frequent in the marginals more robust? ompare with bootstrapping.

27 Results 18 variables 15 variables bootstrapping density 0.1 density 0.2

28 onclusion/uture work Ranking by marginal consistency can help identify robust causal predictions. ootstrapping is more successful in ranking causal predictions (by a small margin). Ranking by marginals can become much faster by caching tests of independence. Try it for much larger data sets (number of variables). ombine with bootstrapping. Try to identify a marginal that maximizes marginal consistency. Try to identify a graph that is consistent for more marginals.

29 References 1. iego olombo and Marloes H Maathuis. Order-independent constraint-based causal structural learning. JMLR Markus Kalisch, Martin Mächler, iego olombo, Marloes H Maathuis, and Peter ühlmann. ausal inference using graphical models with the R package pcalg. JSS Joseph Ramsey, Jiji Zhang, and Peter Spirtes. djacency-faithfulness and conservative causal inference UI Peter Spirtes, lark Glymour, and Richard Scheines. ausation, Prediction,and Search. MIT Press, 2000.

Causal Discovery Methods Using Causal Probabilistic Networks

Causal Discovery Methods Using Causal Probabilistic Networks ausal iscovery Methods Using ausal Probabilistic Networks MINFO 2004, T02: Machine Learning Methods for ecision Support and iscovery onstantin F. liferis & Ioannis Tsamardinos iscovery Systems Laboratory

More information

Interpreting and using CPDAGs with background knowledge

Interpreting and using CPDAGs with background knowledge Interpreting and using CPDAGs with background knowledge Emilija Perković Seminar for Statistics ETH Zurich, Switzerland perkovic@stat.math.ethz.ch Markus Kalisch Seminar for Statistics ETH Zurich, Switzerland

More information

Towards an extension of the PC algorithm to local context-specific independencies detection

Towards an extension of the PC algorithm to local context-specific independencies detection Towards an extension of the PC algorithm to local context-specific independencies detection Feb-09-2016 Outline Background: Bayesian Networks The PC algorithm Context-specific independence: from DAGs to

More information

Using background knowledge for the estimation of total causal e ects

Using background knowledge for the estimation of total causal e ects Using background knowledge for the estimation of total causal e ects Interpreting and using CPDAGs with background knowledge Emilija Perkovi, ETH Zurich Joint work with Markus Kalisch and Marloes Maathuis

More information

Predicting causal effects in large-scale systems from observational data

Predicting causal effects in large-scale systems from observational data nature methods Predicting causal effects in large-scale systems from observational data Marloes H Maathuis 1, Diego Colombo 1, Markus Kalisch 1 & Peter Bühlmann 1,2 Supplementary figures and text: Supplementary

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

arxiv: v3 [stat.me] 3 Jun 2015

arxiv: v3 [stat.me] 3 Jun 2015 The Annals of Statistics 2015, Vol. 43, No. 3, 1060 1088 DOI: 10.1214/14-AOS1295 c Institute of Mathematical Statistics, 2015 A GENERALIZED BACK-DOOR CRITERION 1 arxiv:1307.5636v3 [stat.me] 3 Jun 2015

More information

Causal Structure Learning and Inference: A Selective Review

Causal Structure Learning and Inference: A Selective Review Vol. 11, No. 1, pp. 3-21, 2014 ICAQM 2014 Causal Structure Learning and Inference: A Selective Review Markus Kalisch * and Peter Bühlmann Seminar for Statistics, ETH Zürich, CH-8092 Zürich, Switzerland

More information

Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information

Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information Séverine Affeldt, Hervé Isambert Institut Curie, Research Center, CNRS, UMR68, 26 rue d Ulm, 75005,

More information

arxiv: v4 [math.st] 19 Jun 2018

arxiv: v4 [math.st] 19 Jun 2018 Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs Emilija Perković, Johannes Textor, Markus Kalisch and Marloes H. Maathuis arxiv:1606.06903v4

More information

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Robert E. Tillman Carnegie Mellon University Pittsburgh, PA rtillman@cmu.edu

More information

arxiv: v2 [cs.lg] 9 Mar 2017

arxiv: v2 [cs.lg] 9 Mar 2017 Journal of Machine Learning Research? (????)??-?? Submitted?/??; Published?/?? Joint Causal Inference from Observational and Experimental Datasets arxiv:1611.10351v2 [cs.lg] 9 Mar 2017 Sara Magliacane

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Measurement Error and Causal Discovery

Measurement Error and Causal Discovery Measurement Error and Causal Discovery Richard Scheines & Joseph Ramsey Department of Philosophy Carnegie Mellon University Pittsburgh, PA 15217, USA 1 Introduction Algorithms for causal discovery emerged

More information

Causal Reasoning with Ancestral Graphs

Causal Reasoning with Ancestral Graphs Journal of Machine Learning Research 9 (2008) 1437-1474 Submitted 6/07; Revised 2/08; Published 7/08 Causal Reasoning with Ancestral Graphs Jiji Zhang Division of the Humanities and Social Sciences California

More information

Generalized Do-Calculus with Testable Causal Assumptions

Generalized Do-Calculus with Testable Causal Assumptions eneralized Do-Calculus with Testable Causal Assumptions Jiji Zhang Division of Humanities and Social Sciences California nstitute of Technology Pasadena CA 91125 jiji@hss.caltech.edu Abstract A primary

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information

Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information Séverine A eldt, Hervé Isambert Institut Curie, Research Center, CNRS, UMR68, 26 rue d Ulm, 75005,

More information

Scalable Probabilistic Causal Structure Discovery

Scalable Probabilistic Causal Structure Discovery Scalable Probabilistic Causal Structure Discovery Dhanya Sridhar 1, Jay Pujara 2, Lise Getoor 1, 1 University of California Santa Cruz 2 University of Southern California {dsridhar,getoor}@soe.ucsc.edu,

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

arxiv: v2 [cs.lg] 11 Nov 2016

arxiv: v2 [cs.lg] 11 Nov 2016 Ancestral Causal Inference Sara Magliacane VU Amsterdam, University of Amsterdam sara.magliacane@gmail.com Tom Claassen Radboud University Nijmegen tomc@cs.ru.nl arxiv:606.07035v2 [cs.lg] Nov 206 Joris

More information

Causal Models with Hidden Variables

Causal Models with Hidden Variables Causal Models with Hidden Variables Robin J. Evans www.stats.ox.ac.uk/ evans Department of Statistics, University of Oxford Quantum Networks, Oxford August 2017 1 / 44 Correlation does not imply causation

More information

How Mega is the Mega? Measuring the Spillover Effects of WeChat by Machine Learning and Econometrics

How Mega is the Mega? Measuring the Spillover Effects of WeChat by Machine Learning and Econometrics How Mega is the Mega? Measuring the Spillover Effects of WeChat by Machine Learning and Econometrics Jinyang Zheng Michael G. Foster School of Business, University of Washington, zhengjy@uw.edu Zhengling

More information

Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming

Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming Antti Hyttinen and Frederick Eberhardt California Institute of Technology Pasadena, CA, USA Matti Järvisalo HIIT & Department

More information

Faithfulness of Probability Distributions and Graphs

Faithfulness of Probability Distributions and Graphs Journal of Machine Learning Research 18 (2017) 1-29 Submitted 5/17; Revised 11/17; Published 12/17 Faithfulness of Probability Distributions and Graphs Kayvan Sadeghi Statistical Laboratory University

More information

arxiv: v3 [cs.lg] 26 Jan 2017

arxiv: v3 [cs.lg] 26 Jan 2017 Ancestral Causal Inference Sara Magliacane VU Amsterdam & University of Amsterdam sara.magliacane@gmail.com Tom Claassen Radboud University Nijmegen tomc@cs.ru.nl arxiv:606.07035v3 [cs.lg] 26 Jan 207 Joris

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information

Learning Semi-Markovian Causal Models using Experiments

Learning Semi-Markovian Causal Models using Experiments Learning Semi-Markovian Causal Models using Experiments Stijn Meganck 1, Sam Maes 2, Philippe Leray 2 and Bernard Manderick 1 1 CoMo Vrije Universiteit Brussel Brussels, Belgium 2 LITIS INSA Rouen St.

More information

Identifiability assumptions for directed graphical models with feedback

Identifiability assumptions for directed graphical models with feedback Biometrika, pp. 1 26 C 212 Biometrika Trust Printed in Great Britain Identifiability assumptions for directed graphical models with feedback BY GUNWOONG PARK Department of Statistics, University of Wisconsin-Madison,

More information

Learning Multivariate Regression Chain Graphs under Faithfulness

Learning Multivariate Regression Chain Graphs under Faithfulness Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012 Learning Multivariate Regression Chain Graphs under Faithfulness Dag Sonntag ADIT, IDA, Linköping University, Sweden dag.sonntag@liu.se

More information

Local Structure Discovery in Bayesian Networks

Local Structure Discovery in Bayesian Networks 1 / 45 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Local Structure Discovery in Bayesian Networks Teppo Niinimäki, Pekka Parviainen August 18, 2012 University of Helsinki Department

More information

Lecture 24, Causal Discovery

Lecture 24, Causal Discovery Lecture 24, Causal Discovery 36-402, Advanced Data Analysis 21 April 2011 Contents 1 Testing DAGs 1 2 Causal Discovery with Known Variables 3 2.1 Causal Discovery with Hidden Variables.............. 5

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

Markov properties for directed graphs

Markov properties for directed graphs Graphical Models, Lecture 7, Michaelmas Term 2009 November 2, 2009 Definitions Structural relations among Markov properties Factorization G = (V, E) simple undirected graph; σ Say σ satisfies (P) the pairwise

More information

Causal Discovery. Richard Scheines. Peter Spirtes, Clark Glymour, and many others. Dept. of Philosophy & CALD Carnegie Mellon

Causal Discovery. Richard Scheines. Peter Spirtes, Clark Glymour, and many others. Dept. of Philosophy & CALD Carnegie Mellon Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour, and many others Dept. of Philosophy & CALD Carnegie Mellon Graphical Models --11/30/05 1 Outline 1. Motivation 2. Representation 3. Connecting

More information

Causal Inference for High-Dimensional Data. Atlantic Causal Conference

Causal Inference for High-Dimensional Data. Atlantic Causal Conference Causal Inference for High-Dimensional Data Atlantic Causal Conference Overview Conditional Independence Directed Acyclic Graph (DAG) Models factorization and d-separation Markov equivalence Structure Learning

More information

Conditional Independence test for categorical data using Poisson log-linear model

Conditional Independence test for categorical data using Poisson log-linear model MPRA Munich Personal RePEc Archive Conditional Independence test for categorical data using Poisson log-linear model Michail Tsagris University of Crete March 2017 Online at https://mpra.ub.uni-muenchen.de/79464/

More information

Equivalence in Non-Recursive Structural Equation Models

Equivalence in Non-Recursive Structural Equation Models Equivalence in Non-Recursive Structural Equation Models Thomas Richardson 1 Philosophy Department, Carnegie-Mellon University Pittsburgh, P 15213, US thomas.richardson@andrew.cmu.edu Introduction In the

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

Challenges (& Some Solutions) and Making Connections

Challenges (& Some Solutions) and Making Connections Challenges (& Some Solutions) and Making Connections Real-life Search All search algorithm theorems have form: If the world behaves like, then (probability 1) the algorithm will recover the true structure

More information

Inferring the Causal Decomposition under the Presence of Deterministic Relations.

Inferring the Causal Decomposition under the Presence of Deterministic Relations. Inferring the Causal Decomposition under the Presence of Deterministic Relations. Jan Lemeire 1,2, Stijn Meganck 1,2, Francesco Cartella 1, Tingting Liu 1 and Alexander Statnikov 3 1-ETRO Department, Vrije

More information

Experimental Design for Learning Causal Graphs with Latent Variables

Experimental Design for Learning Causal Graphs with Latent Variables Experimental Design for Learning Causal Graphs with Latent Variables Murat Kocaoglu Department of Electrical and Computer Engineering The University of Texas at Austin, USA mkocaoglu@utexas.edu Karthikeyan

More information

Causal Inference on Data Containing Deterministic Relations.

Causal Inference on Data Containing Deterministic Relations. Causal Inference on Data Containing Deterministic Relations. Jan Lemeire Kris Steenhaut Sam Maes COMO lab, ETRO Department Vrije Universiteit Brussel, Belgium {jan.lemeire, kris.steenhaut}@vub.ac.be, sammaes@gmail.com

More information

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Peter Bühlmann joint work with Jonas Peters Nicolai Meinshausen ... and designing new perturbation

More information

arxiv: v1 [math.st] 6 Jul 2015

arxiv: v1 [math.st] 6 Jul 2015 A Complete Generalized Adjustment Criterion ariv:1507.01524v1 [math.st] 6 Jul 2015 Emilija Perković Seminar for Statistics Johannes Textor Theoretical Biology & Bioinformatics Markus Kalisch Seminar for

More information

Constraint-based Causal Discovery with Mixed Data

Constraint-based Causal Discovery with Mixed Data Noname manuscript No. (will be inserted by the editor) Constraint-based Causal Discovery with Mixed Data Michail Tsagris Giorgos Borboudakis Vincenzo Lagani Ioannis Tsamardinos Received: date / Accepted:

More information

Constraint-based causal discovery with mixed data

Constraint-based causal discovery with mixed data https://doi.org/10.1007/s41060-018-0097-y REGULAR PAPER Constraint-based causal discovery with mixed data Michail Tsagris 1 Giorgos Borboudakis 1,2 Vincenzo Lagani 1,2 Ioannis Tsamardinos 1,2,3,4 Received:

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is an author's version which may differ from the publisher's version. For additional information about this

More information

Learning of Causal Relations

Learning of Causal Relations Learning of Causal Relations John A. Quinn 1 and Joris Mooij 2 and Tom Heskes 2 and Michael Biehl 3 1 Faculty of Computing & IT, Makerere University P.O. Box 7062, Kampala, Uganda 2 Institute for Computing

More information

Tutorial: Causal Model Search

Tutorial: Causal Model Search Tutorial: Causal Model Search Richard Scheines Carnegie Mellon University Peter Spirtes, Clark Glymour, Joe Ramsey, others 1 Goals 1) Convey rudiments of graphical causal models 2) Basic working knowledge

More information

arxiv: v1 [cs.ai] 16 Aug 2016

arxiv: v1 [cs.ai] 16 Aug 2016 Evaluating Causal Models by Comparing Interventional Distributions arxiv:1608.04698v1 [cs.ai] 16 Aug 2016 Dan Garant dgarant@cs.umass.edu College of Information and Computer Sciences University of Massachusetts

More information

Stochastic Complexity for Testing Conditional Independence on Discrete Data

Stochastic Complexity for Testing Conditional Independence on Discrete Data Stochastic Complexity for Testing Conditional Independence on Discrete Data Alexander Marx Max Planck Institute for Informatics, and Saarland University Saarbrücken, Germany amarx@mpi-inf.mpg.de Jilles

More information

Noisy-OR Models with Latent Confounding

Noisy-OR Models with Latent Confounding Noisy-OR Models with Latent Confounding Antti Hyttinen HIIT & Dept. of Computer Science University of Helsinki Finland Frederick Eberhardt Dept. of Philosophy Washington University in St. Louis Missouri,

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 1: Introduction to Graphical Models Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ epartment of ngineering University of ambridge, UK

More information

A review of some recent advances in causal inference

A review of some recent advances in causal inference A review of some recent advances in causal inference Marloes H. Maathuis and Preetam Nandy arxiv:1506.07669v1 [stat.me] 25 Jun 2015 Contents 1 Introduction 1 1.1 Causal versus non-causal research questions.................

More information

arxiv: v6 [math.st] 3 Feb 2018

arxiv: v6 [math.st] 3 Feb 2018 Submitted to the Annals of Statistics HIGH-DIMENSIONAL CONSISTENCY IN SCORE-BASED AND HYBRID STRUCTURE LEARNING arxiv:1507.02608v6 [math.st] 3 Feb 2018 By Preetam Nandy,, Alain Hauser and Marloes H. Maathuis,

More information

Generalized Measurement Models

Generalized Measurement Models Generalized Measurement Models Ricardo Silva and Richard Scheines Center for Automated Learning and Discovery rbas@cs.cmu.edu, scheines@andrew.cmu.edu May 16, 2005 CMU-CALD-04-101 School of Computer Science

More information

Causal Discovery with Latent Variables: the Measurement Problem

Causal Discovery with Latent Variables: the Measurement Problem Causal Discovery with Latent Variables: the Measurement Problem Richard Scheines Carnegie Mellon University Peter Spirtes, Clark Glymour, Ricardo Silva, Steve Riese, Erich Kummerfeld, Renjie Yang, Max

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

The Inflation Technique for Causal Inference with Latent Variables

The Inflation Technique for Causal Inference with Latent Variables The Inflation Technique for Causal Inference with Latent Variables arxiv:1609.00672 (Elie Wolfe, Robert W. Spekkens, Tobias Fritz) September 2016 Introduction Given some correlations between the vocabulary

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Joint estimation of linear non-gaussian acyclic models

Joint estimation of linear non-gaussian acyclic models Joint estimation of linear non-gaussian acyclic models Shohei Shimizu The Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan Abstract A linear

More information

Copula PC Algorithm for Causal Discovery from Mixed Data

Copula PC Algorithm for Causal Discovery from Mixed Data Copula PC Algorithm for Causal Discovery from Mixed Data Ruifei Cui ( ), Perry Groot, and Tom Heskes Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands {R.Cui,

More information

Package CausalFX. May 20, 2015

Package CausalFX. May 20, 2015 Type Package Package CausalFX May 20, 2015 Title Methods for Estimating Causal Effects from Observational Data Version 1.0.1 Date 2015-05-20 Imports igraph, rcdd, rje Maintainer Ricardo Silva

More information

Causal Inference in the Presence of Latent Variables and Selection Bias

Causal Inference in the Presence of Latent Variables and Selection Bias 499 Causal Inference in the Presence of Latent Variables and Selection Bias Peter Spirtes, Christopher Meek, and Thomas Richardson Department of Philosophy Carnegie Mellon University Pittsburgh, P 15213

More information

Causal Inference & Reasoning with Causal Bayesian Networks

Causal Inference & Reasoning with Causal Bayesian Networks Causal Inference & Reasoning with Causal Bayesian Networks Neyman-Rubin Framework Potential Outcome Framework: for each unit k and each treatment i, there is a potential outcome on an attribute U, U ik,

More information

Robustification of the PC-algorithm for Directed Acyclic Graphs

Robustification of the PC-algorithm for Directed Acyclic Graphs Robustification of the PC-algorithm for Directed Acyclic Graphs Markus Kalisch, Peter Bühlmann May 26, 2008 Abstract The PC-algorithm ([13]) was shown to be a powerful method for estimating the equivalence

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Markovian Combination of Decomposable Model Structures: MCMoSt

Markovian Combination of Decomposable Model Structures: MCMoSt Markovian Combination 1/45 London Math Society Durham Symposium on Mathematical Aspects of Graphical Models. June 30 - July, 2008 Markovian Combination of Decomposable Model Structures: MCMoSt Sung-Ho

More information

Pairwise Cluster Comparison for Learning Latent Variable Models

Pairwise Cluster Comparison for Learning Latent Variable Models Pairwise Cluster Comparison for Learning Latent Variable Models Nuaman Asbeh Industrial Engineering and Management Ben-Gurion University of the Negev Beer-Sheva, 84105, Israel Boaz Lerner Industrial Engineering

More information

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE

JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE JOINT PROBABILISTIC INFERENCE OF CAUSAL STRUCTURE Dhanya Sridhar Lise Getoor U.C. Santa Cruz KDD Workshop on Causal Discovery August 14 th, 2016 1 Outline Motivation Problem Formulation Our Approach Preliminary

More information

Detecting marginal and conditional independencies between events and learning their causal structure.

Detecting marginal and conditional independencies between events and learning their causal structure. Detecting marginal and conditional independencies between events and learning their causal structure. Jan Lemeire 1,4, Stijn Meganck 1,3, Albrecht Zimmermann 2, and Thomas Dhollander 3 1 ETRO Department,

More information

Bounding the False Discovery Rate in Local Bayesian Network Learning

Bounding the False Discovery Rate in Local Bayesian Network Learning Bounding the False Discovery Rate in Local Bayesian Network Learning Ioannis Tsamardinos Dept. of Computer Science, Univ. of Crete, Greece BMI, ICS, Foundation for Research and Technology, Hellas Dept.

More information

Causal Discovery of Linear Cyclic Models from Multiple Experimental Data Sets with Overlapping Variables

Causal Discovery of Linear Cyclic Models from Multiple Experimental Data Sets with Overlapping Variables Causal Discovery of Linear Cyclic Models from Multiple Experimental Data Sets with Overlapping Variables Antti Hyttinen HIIT & Dept. of Computer Science University of Helsinki Finland Frederick Eberhardt

More information

Undirected Graphical Models

Undirected Graphical Models Readings: K&F 4. 4.2 4.3 4.4 Undirected Graphical Models Lecture 4 pr 6 20 SE 55 Statistical Methods Spring 20 Instructor: Su-In Lee University of Washington Seattle ayesian Network Representation irected

More information

Learning Latent Variable Models by Pairwise Cluster Comparison: Part I Theory and Overview

Learning Latent Variable Models by Pairwise Cluster Comparison: Part I Theory and Overview Journal of Machine Learning Research 17 2016 1-52 Submitted 9/14; Revised 5/15; Published 12/16 Learning Latent Variable Models by Pairwise Cluster Comparison: Part I Theory and Overview Nuaman Asbeh Department

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Fast and Accurate Causal Inference from Time Series Data

Fast and Accurate Causal Inference from Time Series Data Fast and Accurate Causal Inference from Time Series Data Yuxiao Huang and Samantha Kleinberg Stevens Institute of Technology Hoboken, NJ {yuxiao.huang, samantha.kleinberg}@stevens.edu Abstract Causal inference

More information

Day 3: Search Continued

Day 3: Search Continued Center for Causal Discovery Day 3: Search Continued June 15, 2015 Carnegie Mellon University 1 Outline Models Data 1) Bridge Principles: Markov Axiom and D-separation 2) Model Equivalence 3) Model Search

More information

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges 1 PRELIMINARIES Two vertices X i and X j are adjacent if there is an edge between them. A path

More information

Using Descendants as Instrumental Variables for the Identification of Direct Causal Effects in Linear SEMs

Using Descendants as Instrumental Variables for the Identification of Direct Causal Effects in Linear SEMs Using Descendants as Instrumental Variables for the Identification of Direct Causal Effects in Linear SEMs Hei Chan Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

More information

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour

Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS. Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 1 Strategies for Discovering Mechanisms of Mind using fmri: 6 NUMBERS Joseph Ramsey, Ruben Sanchez Romero and Clark Glymour 2 The Numbers 20 50 5024 9205 8388 500 3 fmri and Mechanism From indirect signals

More information

Comparing Bayesian Networks and Structure Learning Algorithms

Comparing Bayesian Networks and Structure Learning Algorithms Comparing Bayesian Networks and Structure Learning Algorithms (and other graphical models) marco.scutari@stat.unipd.it Department of Statistical Sciences October 20, 2009 Introduction Introduction Graphical

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 3 1 Gaussian Graphical Models: Schur s Complement Consider

More information

Learning the Structure of Linear Latent Variable Models

Learning the Structure of Linear Latent Variable Models Journal (2005) - Submitted /; Published / Learning the Structure of Linear Latent Variable Models Ricardo Silva Center for Automated Learning and Discovery School of Computer Science rbas@cs.cmu.edu Richard

More information

CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK

CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK CAUSAL DISCOVERY UNDER NON-STATIONARY FEEDBACK by Eric V. Strobl B.A. in Molecular & Cell Biology, University of California at Berkeley, 2009 B.A. in Psychology, University of California at Berkeley, 2009

More information

arxiv: v4 [stat.ml] 2 Dec 2017

arxiv: v4 [stat.ml] 2 Dec 2017 Distributional Equivalence and Structure Learning for Bow-free Acyclic Path Diagrams arxiv:1508.01717v4 [stat.ml] 2 Dec 2017 Christopher Nowzohour Seminar für Statistik, ETH Zürich nowzohour@stat.math.ethz.ch

More information

Inference of Cause and Effect with Unsupervised Inverse Regression

Inference of Cause and Effect with Unsupervised Inverse Regression Inference of Cause and Effect with Unsupervised Inverse Regression Eleni Sgouritsa Dominik Janzing Philipp Hennig Bernhard Schölkopf Max Planck Institute for Intelligent Systems, Tübingen, Germany {eleni.sgouritsa,

More information

LEARNING MARGINAL AMP CHAIN GRAPHS UNDER FAITHFULNESS REVISITED

LEARNING MARGINAL AMP CHAIN GRAPHS UNDER FAITHFULNESS REVISITED LEARNING MARGINAL AMP HAIN GRAPHS UNER FAITHFULNESS REVISITE JOSE M. PEÑA AIT, IA LINKÖPING UNIVERSITY, SWEEN JOSE.M.PENA@LIU.SE MANUEL GÓMEZ-OLMEO EPT. OMPUTER SIENE AN ARTIFIIAL INTELLIGENE UNIVERSITY

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

arxiv: v3 [stat.me] 10 Mar 2016

arxiv: v3 [stat.me] 10 Mar 2016 Submitted to the Annals of Statistics ESTIMATING THE EFFECT OF JOINT INTERVENTIONS FROM OBSERVATIONAL DATA IN SPARSE HIGH-DIMENSIONAL SETTINGS arxiv:1407.2451v3 [stat.me] 10 Mar 2016 By Preetam Nandy,,

More information

On Learning Causal Models from Relational Data

On Learning Causal Models from Relational Data Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) On Learning Causal Models from Relational Data Sanghack Lee and Vasant Honavar Artificial Intelligence Research Laboratory

More information

Causal Inference on Discrete Data via Estimating Distance Correlations

Causal Inference on Discrete Data via Estimating Distance Correlations ARTICLE CommunicatedbyAapoHyvärinen Causal Inference on Discrete Data via Estimating Distance Correlations Furui Liu frliu@cse.cuhk.edu.hk Laiwan Chan lwchan@cse.euhk.edu.hk Department of Computer Science

More information

Bayesian Networks Representation and Reasoning

Bayesian Networks Representation and Reasoning ayesian Networks Representation and Reasoning Marco F. Ramoni hildren s Hospital Informatics Program Harvard Medical School (2003) Harvard-MIT ivision of Health Sciences and Technology HST.951J: Medical

More information

On Causal Explanations of Quantum Correlations

On Causal Explanations of Quantum Correlations On Causal Explanations of Quantum Correlations Rob Spekkens Perimeter Institute From XKCD comics Quantum Information and Foundations of Quantum Mechanics workshop Vancouver, July 2, 2013 Simpson s Paradox

More information

PC Algorithm for Nonparanormal Graphical Models

PC Algorithm for Nonparanormal Graphical Models Journal of Machine Learning Research 14 (2013) 3365-3383 Submitted 7/12; Revised 6/13; Published 11/13 PC Algorithm for Nonparanormal Graphical Models Naftali Harris Department of Statistics Stanford University

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

GEOMETRY OF THE FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 1

GEOMETRY OF THE FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 1 The Annals of Statistics 2013, Vol. 41, No. 2, 436 463 DOI: 10.1214/12-AOS1080 Institute of Mathematical Statistics, 2013 GEOMETRY OF THE FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 1 BY CAROLINE UHLER,

More information

Bayesian Network Structure Learning and Inference Methods for Handwriting

Bayesian Network Structure Learning and Inference Methods for Handwriting Bayesian Network Structure Learning and Inference Methods for Handwriting Mukta Puri, Sargur N. Srihari and Yi Tang CEDAR, University at Buffalo, The State University of New York, Buffalo, New York, USA

More information