18.1 a) calculate the total electromagnetic energy inside an oven of volume 1m heated to a temperature of

Size: px
Start display at page:

Download "18.1 a) calculate the total electromagnetic energy inside an oven of volume 1m heated to a temperature of"

Transcription

1 . a) calculate the total electromagnetic energy inside an oven of volume m heated to a temperature of F a se equation. 6 F plug in..9 J a Jm b) Show that the thermal energy of the air in the oven is a factor of approximately larger than the electromagnetic energy hermal energy nr λ which is..969 times l arg er than + J ( a). a) Calculate for the Earth, assuming the Earth to be blacbody. max From equation. λ.9 m m 9 max b) Calculate the temperature at which the human eye is most sensitive to a wavelength of nm.9 m m.. a) Find the frequency at which the radiant energy per unit frequency interval of a blacbody is a maximum. How does this compare with the frequency at which the radiant energy per unit wavelength interval is maximum? From equ.

2 h u() v C e dv( u) the occurs at max dv d e + e e e e e which leads to h.. h c this is different from v calculated through λ max.96 h b) Find the frequency at which the cosmic bacground radiation is a maximum and compare your results with that shown in Figure.. Assume that.... S max

3 .) Assume that the radiation from the sun can be regarded as blacbody radiation. he radiant energy per wavelength interval has minimum at nm. a) Estimate the temperature of the sun. b) Calculate the total radiant power emitted by the sun. (he radius of the sun is approximately m λ max nm 9 Plan' s cons tan t h 6.66 Speed of light c m a) emperature of the sun? We now that λmax emperature of the sun 6 b) otal radiant power of sun e? emperature of the sun 6 Radius of the sun r m Stefan-oltzmann Constant δ.6 wm We now that e δτ for sun e δτ r e.6 e.9 e.6 e.6 otal radiant 6 ( wm ) ( 6) ( m). watts (.9) megawatts power emitted by sun e.6 megawatts

4 .) a) Calculate the number of photons in equilibrium in a cavity of volume m held at a temperature K b) Compare this number with the number of molecules the same volume of an ideal gas contains at SP olume of the cavity m emperature of the Cavity Standard emperature olume at SP.d m.l a) umber of photons? We now that Ν v Ν v Ν. where x K Integrated value of x e x K. dx. K x e. dx. umber of photons. x.

5 b) umber of photons. (perm ) of photons A? of molecules At SP.dm.m m contains 6. contains 6. contains 6.. molecules umber of molecules.6 ( perm ) of photons of molecules ( perm ) ( perm ) of photons. of molecules..6

6 .6) assume that the universe is spherical cavity with radius 6 m and temperature.k. How many thermally excited photons are there in the universe? se equation (.6) ( ).) the chemical potential of a boson gas at temperature is approximately -.. Determine the mean number of bosons f ( ε ) in a single particle states having energies of (a), (b)., (c)., (d)., (e). f ( ε ) ( ε µ ) e ε as an example ε µ (. ). we now f ( ε ).. e e.96 others followthe above approach!

7 .) se the result of problem. to show that a) z K, Solution: Result of problem. is () K K this valuein eq put c h K c h K,, b) ( ) ( ). (),, µ µ µ K this valuein eq put K from K c)

8 () ( ) ( ) () S K S eq in and of values Put a problem From b problem from S d)

9 z P + We nowthat z Put this valuein eq P P P We now P, ( ) ( ) ( ) ( ) ( ) ( ), Put this valuein eq ( ) ( ) () ( ).) a) Find the chemical potential of a ilomole of He gas at SP. Express your answer in joules and in electron-volts solution: umber of Helium ( He ) atoms at SP ilomole olume of ilomole of He Standard emperature at SP. dm 6. 6 Mass of He atom m

10 Chemical Potential µ? We now that m µ h 6.6. µ ( 6.66 ) µ.6 J. µ.9ev b) se Equation (.) to show that the mean occupancy of a single particle states having energy solution: is. at SP Energy ε Chemical Potential µ. Mean Occupancy of a single particle f ( ε )? From eq (.) f ( ε ) e( ε µ ) +. e.9 e 69.6 f. ( ε ) Mean occupancy of a sin gle particle f ( ε ).

11 . a) an ideal boson gas consists of He atoms whose ose temperature is. K. Find the boson concentration, the number of bosons per cubic meter. se equation. m.6 h m.6 h.6. inm (. ) m. ( 6.6 ). b) What percentage of the bosons are in the ground state at temperature of - K? use equation (.) In ose-einstein condensation experiment, rubidium - atoms were cooled down to a temperature of nk. he atoms were confined to a volume of approximately m umber of rubidium- atoms emperature nk 9 olume m Mass of rubidium- atom a) Calculate the ose temperature?

12 We now that h m.6.. ( 6.66 ).6 6 osonemperature b) Determine how many atoms were in the ground state at nk emperature otal of atoms 6 9 oson emperature.6 6 We now of atoms in ground state? o o 9.9 [. ] of atoms in ground state (c) Calculate the ratio, where nk and where the ground state energy ε is given by ε ε h m emperature nk

13 Energy ε h Mass of rubidium atom. olume m K Ratio? ε h ε. 6. ε.. ( 6.66 ) ( ).6. K. K.6 K ε K Ratio ε 9

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Lecture 2 Blackbody radiation

Lecture 2 Blackbody radiation Lecture 2 Blackbody radiation Absorption and emission of radiation What is the blackbody spectrum? Properties of the blackbody spectrum Classical approach to the problem Plancks suggestion energy quantisation

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chapter 9 Problem Solutions

Chapter 9 Problem Solutions Chapter 9 Problem Solutions. At what temperature would one in a thousand of the atoms in a gas of atomic hydrogen be in the n energy level? g( ε ), g( ε ) Then, where 8 n ( ε ) ( ε )/ kt kt e ε e ε / n(

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

Ph 136: Solution for Chapter 2 3.6 Observations of Cosmic Microwave Radiation from a Moving Earth [by Alexander Putilin] (a) let x = hν/kt, I ν = h4 ν 3 c 2 N N = g s h 3 η = 2 η (for photons) h3 = I ν

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2014 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

CPO Science Foundations of Physics. Unit 8, Chapter 26

CPO Science Foundations of Physics. Unit 8, Chapter 26 CPO Science Foundations of Physics Unit 8, Chapter 26 Unit 8: Matter and Energy Chapter 26 Heat Transfer 26.1 Heat Conduction 26.2 Convection 26.3 Radiation Chapter 26 Objectives 1. Explain the relationship

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect Modern Physics Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect Ron Reifenberger Professor of Physics Purdue University 1 I. Blackbody

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In what way does the photoelectric effect support the particle theory

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012)

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012) - HH64 - Photons and Planck Radiation Law Hsiu-Hau Lin hsiuhau.lin@gmail.com (Oct 23, 212) Quantum theory begins with the Planck radiation law for thermal radiation at di erent frequencies, u! = ~ 2 c

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2013 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

Dimensionless Constants and Blackbody Radiation Laws

Dimensionless Constants and Blackbody Radiation Laws EJTP 8, No. 25 (21179 388 Electronic Journal of Theoretical Physics Dimensionless Constants and Blacbody Radiation Laws Ke Xiao P.O. Box 961, Manhattan Beach, CA 9267, USA Received 6 July 21, Accepted

More information

Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

Lecture Outline. Energy 9/25/12

Lecture Outline. Energy 9/25/12 Introduction to Climatology GEOGRAPHY 300 Solar Radiation and the Seasons Tom Giambelluca University of Hawai i at Mānoa Lauren Kaiser 09/05/2012 Geography 300 Lecture Outline Energy Potential and Kinetic

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-

More information

Measuring the Temperature of the Sun

Measuring the Temperature of the Sun Measuring the Temperature of the Sun Purpose: In this lab you will measure the solar flux, the amount of energy per unit area per unit time that reaches the Earth from the Sun. From this, you will calculate

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

PHYSICS 2002 Practice Final - 1

PHYSICS 2002 Practice Final - 1 PHYSICS 2002 Practice Final - 1 Instructions: a. Print your name and student number below, then sign your name as it appears on your LSU I.D. card. b. Print and bubble in your name (LAST NAME FIRST), student

More information

Lecture 10 Planck Distribution

Lecture 10 Planck Distribution Lecture 0 Planck Distribution We will now consider some nice applications using our canonical picture. Specifically, we will derive the so-called Planck Distribution and demonstrate that it describes two

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

points Points <40. Results of. Final Exam. Grade C D,F C B

points Points <40. Results of. Final Exam. Grade C D,F C B Results of inal Exa 5 6 7 8 9 points Grade C D, Points A 9- + 85-89 7-8 C + 6-69 -59 < # of students Proble (che. equilibriu) Consider the following reaction: CO(g) + H O(g) CO (g) + H (g) In equilibriu

More information

Blackbody Radiation. George M. Shalhoub

Blackbody Radiation. George M. Shalhoub Blackbody Radiation by George M. Shalhoub LA SALLE UNIVERSIY 900 West Olney Ave. Philadelphia, PA 94 shalhoub@lasalle.edu Copyright 996. All rights reserved. You are welcome to use this document in your

More information

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name:

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Remote Sensing C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: Instructions: DO NOT BEGIN UNTIL GIVEN PERMISSION. DO

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS)

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) LECTURE NOTES on Heat Transfer III B. Tech II Semester (JNTUA-R15) Mr. K.SURESH, Assistant Professor CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati 517

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

Phys 344 Ch 7 Lecture 6 April 6 th, HW29 51,52 HW30 58, 63 HW31 66, 74. w ε w. π ε ( ) ( )

Phys 344 Ch 7 Lecture 6 April 6 th, HW29 51,52 HW30 58, 63 HW31 66, 74. w ε w. π ε ( ) ( ) Phys Ch 7 Lecture 6 April 6 th,009 1 Mon. /6 Wed. /8 Fri. /10 Mon. /1 Review 7. Black Body Radiation he Rest 7. Debye Solids 7.6 Bose-Einstein Condensate HW9 1, HW0 8, 6 HW1 66, 7 HW6,7,8 HW9,0,1 Equipment:

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Which picture shows the larger flux of blue circles?

Which picture shows the larger flux of blue circles? Which picture shows the larger flux of blue circles? 33% 33% 33% 1. Left 2. Right 3. Neither Left Right Neither This Week: Global Climate Model Pt. 1 Reading: Chapter 3 Another Problem Set Coming Towards

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 16, 17 (8:3 a.m. - 9:45 a.m.) PLACE: RB 11 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions: This

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

Name... Class... Date...

Name... Class... Date... Radiation and temperature Specification reference: P6.3 Black body radiation (physics only) Aims This is an activity that has been designed to help you improve your literacy skills. In this activity you

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Modern Physics Departmental Exam Last updated November 2013

Modern Physics Departmental Exam Last updated November 2013 Modern Physics Departmental Exam Last updated November 213 87 1. Recently, 2 rubidium atoms ( 37 Rb ), which had been compressed to a density of 113 atoms/cm 3, were observed to undergo a Bose-Einstein

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 16, 17 (8:3 a.m. - 9:45 a.m.) PLACE: RB 11 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions: This

More information

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only.

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. cen54261_ch21.qxd 1/25/4 11:32 AM Page 95 95 Vacuum chamber Hot object Radiation FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. Person 3 C Radiation Air 5 C Fire 9 C FIGURE

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

Physics 161 Homework 7 - Solutions Wednesday November 16, 2011

Physics 161 Homework 7 - Solutions Wednesday November 16, 2011 Physics 161 Homework 7 - s Wednesday November 16, 2011 Make sure your name is on every page, and please box your final answer Because we will be giving partial credit, be sure to attempt all the problems,

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING - II Dr. A. Bhattacharya The Radiation Framework The information about features on the Earth s surface using RS depends on measuring energy emanating from the

More information

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C 1. A circular rod of length L = 2 meter and diameter d=2 cm is composed of a material with a heat conductivity of! = 6 W/m-K. One end is held at 100 C, the other at 0 C. At what rate does the bar conduct

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

1 Electromagnetic Energy in Eyeball

1 Electromagnetic Energy in Eyeball µoβoλα Rewrite: 216/ First Version: Spring 214 Blackbody Radiation of the Eyeball We consider Purcell s back of the envelope problem [1] concerning the blackbody radiation emitted by the human eye, and

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY CHEM 330 B. O. Owaga Classical physics Classical physics is based on three assumptions i. Predicts precise trajectory for particles with precisely specified

More information

GE510 Physical Principles of the Envt

GE510 Physical Principles of the Envt GE510 Physical Principles of the Envt Earth s Energy Balance: 1. Types and key properties of energy 2. Blackbody radiation revisited and Wein s displacement law 3. Transformations of the sun s radiant

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class.

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class. WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE Homework #4 is due today at the beginning of class. PHYSICS 1104 PERIOD 5 How are temperatures measured? How do atoms and molecules act at different

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Reminders Topics For Today s Class Project 1 due November 12 th after and during Lab. Extra-credit Homework online.

More information

Dual Nature of Matter and Radiation 9. The work function of a certain metal is 3.3 J. Then the maximum kinetic energy of photoelectrons emitted by incident radiation of wavelength 5 A is- ).48 ev ).4 ev

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 204 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

Problem Set 3: Solutions

Problem Set 3: Solutions PH 53 / LeClair Spring 013 Problem Set 3: Solutions 1. In an experiment to find the value of h, light at wavelengths 18 and 431 nm were shone on a clean sodium surface. The potentials that stopped the

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Period 13: Earth as an Energy System

Period 13: Earth as an Energy System Name Section Period 13: Earth as an Energy System 13.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE SUBJECT CODE PH 05 PHYSICAL SCIENCE TEST SERIES # Quantum, Statistical & Thermal Physics Timing: 3: H M.M: 00 Instructions. This test

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information