JETS IN HOLOGRAPHY AN OVERVIEW. Wilke van der Schee. JET collaboration Satelite meeting, Montreal, June 26, 2015

Size: px
Start display at page:

Download "JETS IN HOLOGRAPHY AN OVERVIEW. Wilke van der Schee. JET collaboration Satelite meeting, Montreal, June 26, 2015"

Transcription

1 JETS IN HOLOGRAPHY AN OVERVIEW Work in progress in this talk is with Krishna Rajagopal and Andrey Sadofyev Wilke van der Schee JET collaboration Satelite meeting, Montreal, June 26, 2015

2 2/12 OUTLINE Early work Jets as strings and stopping distance Recent progress Defining energy loss: shooting string through a slab Lund model in AdS: strings with finite endpoint momentum Experimental comparisons? Too much energy loss? Outlook AdS: more about broadening then about energy loss? What about initial string conditions? Fit to pp data. quenching??

3 3/12 ACTIVE FIELD OF RESEARCH J. Casalderrey, D. Can Gulhan, J. Guilherme Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching R. Morad, W.A. Horowitz, Strong-coupling Jet Energy Loss from AdS/CFT (2014) A. Ficnar, S.S. Gubser and M. Gyulassy, Shooting String Holography of Jet Quenching at RHIC and LHC (2013)

4 4/12 EARLY WORK Drag force Force required for stationary moving string: Radiative loss through Wilson loop: Stopping distance for light quarks:

5 5/12 JET PRODUCTION Typical philosophy: Jet is result of hard event, as prescribed in pqcd Energy loss, through soft modes, and non-perturbative In AdS/CFT: jet = (classical) string Collisions within AdS will also lead to `jet-like (shooting) strings finite N c and l corrections can in principle be computed: Current status: Create string (quark-antiquark pair) with `jet-like properties Problem: initial condition string is 2 functions (position, velocity) Z. Zhang, D. Houa and H. Ren, The finite t Hooft coupling correction on the jet quenching parameter in a N = 4 SYM plasma (2012)

6 6/12 ENERGY LOSS BY A SLAB OF PLASMA Long standing problem: how to define energy jet in terms of string? In particular, how much energy has jet lost? Natural definition: size black hole = size QGP, shoot jet through Model evolution more realistically Part of string falls in black hole: dissipates into hydro modes Part of string can exit Here: static plasma with constant T (straightforward to improve) Attractive: final string in vacuum AdS is well understood Angle in AdS jet angle P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma (2014)

7 7/12 A LUND MODEL IN ADS Put all initial energy/momentum at endpoint ( quark) Natural from Lund model perspective. Also: minimal energy loss EOM: endpoint follows null geodesic, losing energy gradually Energy loss does not depend on energy jet Attractive: removes functional freedom of initial conditions Create string near horizon? (shooting strings) Natural place for original `nuclei to collide (perhaps not akin to pqcd?) Easier to have less energy loss/smaller opening angles A. Ficnar and S. Gubser, Finite momentum at string endpoints (2013)

8 8/12 REVISITING STOPPING DISTANCE Assumptions behind numerics identified: String shape in UV quickly in regime of (stationary) drag force calculation Endpoint moves along null geodesic Possible to do better Endpoint strings are not well described by stationary shape Possible to go about 19% further (already 11% in ) Shooting strings go about 88% further (but lot of fine-tuning!) A. Ficnar and S. Gubser, Finite momentum at string endpoints (2013) P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma (2008)

9 9/12 A TYPICAL EXAMPLE Try simulate `normal string, with most energy at endpoint: Shoot through slab of plasma (or dynamic spacetime) Naïve: constant 300 MeV plasma, length 4fm, create at 1fm Little bit of freedom: start at 5% from boundary-horizon distance Naïve: `t Hooft coupling 5.5, gives jet energy of 1 TeV

10 10/12 STRING EVOLUTION Black hole String endpoint (blue) follows null trajectory initially (red dashed) String endpoints change direction when energy vanishes `Snapback : especially relevant when string is moving upwards Can use geometric optics approximation at early and late times

11 11/12 JET ANGULAR SPECTRUM At late times string falls into AdS, straight lines for each s. Stress-energy on boundary due to `collection of AdS point particles : energy e, angle to center q, AdS angle a Left: 876 GeV (7% loss) angle ~ 0.01 Right: 462 GeV (52% loss) angle ~ 0.04 Y. Hatta, E. Iancu, A. Mueller and D. Triantafyllopoulos, Aspects of the UV/IR correspondence: energy broadening and string fluctuations (2010)

12 12/12 DISCUSSION Significant recent progress String through slab, jet broadening essential part of jets (in AdS) Lund-type model bring closer connection with (p)qcd How to compare N=4 SYM to QCD Compare at constant energy density or constant temperature? Problematic: energy loss does not scale with entropy density/dof! Naïve comparison with l 5.5 seems to fail (?) Initial conditions Reasonable progress: from two functions to a few parameters? Idea: fix initial conditions with pp collisions and see what happens Jet created in pqcd? Near boundary or near horizon? Outlook More quantitative comparisons with experiment, e.g. improved hybrid models Match to pp? through plasma? Finite coupling corrections in more realistic settings?

arxiv: v2 [nucl-th] 17 Feb 2016

arxiv: v2 [nucl-th] 17 Feb 2016 Evolution of the jet opening angle distribution in holographic plasma Krishna Rajagopal, Andrey V. Sadofyev and Wilke van der Schee 1 1 Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA MIT-CTP-4765

More information

DIRECTED FLOW IN HOLOGRAPHIC HEAVY ION COLLISIONS

DIRECTED FLOW IN HOLOGRAPHIC HEAVY ION COLLISIONS DIRECTED FLOW IN HOLOGRAPHIC HEAVY ION COLLISIONS TOWARDS MORE REALISTIC MODELS OF QGP FORMATION Based on work with Michał Heller, David Mateos, Jorge Casalderrey, Miquel Triana, Paul Romatschke, Scott

More information

COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS

COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS Towards more realistic models of the QGP thermalisation Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke and Scott Pratt

More information

Jet Quenching and Holographic Thermalization

Jet Quenching and Holographic Thermalization Jet Quenching and Holographic Thermalization Di-Lun Yang (Duke University) with Berndt Muller Outline Energy loss in the holographic picture Thermalization and gravitational collapse : The falling mass

More information

Jet correlations at RHIC via AdS/CFT (and entropy production)

Jet correlations at RHIC via AdS/CFT (and entropy production) Jet correlations at RHIC via AdS/CFT (and entropy production) Amos Yarom, Munich together with: S. Gubser and S. Pufu The quark gluon plasma at RHIC Measuring jets Measuring jets φ Measuring di-jets φ=π

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Far-from-equilibrium heavy quark energy loss at strong coupling

Far-from-equilibrium heavy quark energy loss at strong coupling Far-from-equilibrium heavy quark energy loss at strong coupling The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA TOWARDS MORE REALISTIC MODELS OF THE QGP THERMALISATION Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke, Scott Pratt and Peter

More information

FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY

FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY Towards more realistic models of the QGP thermalisation Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke and Scott Pratt References:

More information

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller Parton Energy Loss At Strong Coupling Berndt Müller Hard Probes 2010 Eilat, Israel: 10-15 October 2010 Overview Reminder: Jet quenching at weak coupling Micro-Primer: Strongly coupled AdS/CFT duality Jet

More information

QGP vs. AdS/CFT. Summer School on AdS/CFT Correspondence and its Applications. Tihany, 24-28th August 2009

QGP vs. AdS/CFT. Summer School on AdS/CFT Correspondence and its Applications. Tihany, 24-28th August 2009 QGP vs. AdS/CFT Summer School on AdS/CFT Correspondence and its Applications Tihany, 24-28th August 2009 Gergely Gábor Barnaföldi MTA KFKI RMKI This talk summarise several works... CAST Heavy quark B

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

Hard processes in AdS/CFT

Hard processes in AdS/CFT Hard processes in AdS/CFT Yoshitaka Hatta (Tsukuba U) Based on works done in collaboration with E. Iancu, T. Matsuo, A.H. Mueller, D. Triantafyllopoulos Outline Motivation High energy CD with a virtual

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Correspondence should be addressed to Zi-qiang Zhang; Received 20 November 2015; Revised 25 March 2016; Accepted 11 April 2016

Correspondence should be addressed to Zi-qiang Zhang; Received 20 November 2015; Revised 25 March 2016; Accepted 11 April 2016 High Energy Physics Volume 206, Article ID 950349, 4 pages http://dx.doi.org/0.55/206/950349 Research Article R 2 Corrections to the Jet Quenching Parameter Zi-qiang Zhang, De-fu Hou, 2 Yan Wu, and Gang

More information

Heavy ion collisions and black hole dynamics

Heavy ion collisions and black hole dynamics Gen Relativ Gravit (2007) 39:1533 1538 DOI 10.1007/s10714-007-0473-8 ESSAY Heavy ion collisions and black hole dynamics Steven S. Gubser Published online: 3 July 2007 Springer Science+Business Media, LLC

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

arxiv:hep-ph/ v2 20 Feb 2007

arxiv:hep-ph/ v2 20 Feb 2007 Heavy ion collisions and AdS/CFT arxiv:hep-ph/0702210v2 20 Feb 2007 1. Introduction Hong Liu Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: hong

More information

Jets of light hadrons via AdS/CFT correspondence

Jets of light hadrons via AdS/CFT correspondence Journal Physics: Conference Series PAPER OPEN ACCESS Jets light hadrons via AdS/CFT correspondence To cite this article: R Morad and W A Horowitz 2015 J. Phys.: Conf. Ser. 645 012007 Related content -

More information

Holography, thermalization and heavy-ion collisions I

Holography, thermalization and heavy-ion collisions I Holography, thermalization and heavy-ion collisions I Michał P. Heller Perimeter Institute for Theoretical Physics, Canada National Centre for Nuclear Research, Poland 1202.0981 [PRL 108 191601 (2012)]

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara Universal Peaks in Holographic Photon Production David Mateos University of California at Santa Barbara Plan Introduction and motivation. Phase transitions for fundamental matter. Photon production. Summary

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

The Trailing String in Confining Holographic Theories

The Trailing String in Confining Holographic Theories The Trailing String in Confining Holographic Theories p. 1 The Trailing String in Confining Holographic Theories Francesco Nitti APC, U. Paris VII Twelfth Workshop on Non-Perturbative Quantum Chromodynamics

More information

arxiv: v1 [hep-lat] 17 Sep 2013

arxiv: v1 [hep-lat] 17 Sep 2013 Jet quenching in a strongly interacting plasma A lattice approach arxiv:1309.4359v1 [hep-lat] 17 Sep 2013 Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014

More information

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT Sumit R Das (w/ Pallab Basu) (arxiv:1109.3909, to appear in JHEP) Quantum Quench Suppose we have a quantum field theory, whose parameters (like couplings

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

From things to strings?*

From things to strings?* From things to strings?* Alberto Accardi Jlab & Hampton U. Jlab Cake Seminar, 21 Nov 2007 Based on: AA, Belli, Martellini, Zeni, PLB 431 (1998) 127, NPB 505 (1997) 540 Fucito, Martellini, Zeni, NPB 496

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

5. a d*, Entanglement entropy and Beyond

5. a d*, Entanglement entropy and Beyond Motivation: role of higher curvature interactions on AdS/CFT calculations Overview: 1. Introductory remarks on c-theorem and CFT s 2. Holographic c-theorem I: Einstein gravity 3. Holographic c-theorem

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Jet Medium Interactions

Jet Medium Interactions Jet Medium Interactions Yasuki Tachibana Nishinippon Institute of Technology ( Central China Normal University) ATHIC 216, New Delhi, India, 19 February 216 Introduction Jet energy loss in QGP medium Bjorken

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Thermal Transport and Energy Loss in Non-critical Holographic QCD

Thermal Transport and Energy Loss in Non-critical Holographic QCD Thermal Transport and Energy Loss in Non-critical Holographic QCD Umut Gürsoy University of Utrecht DAMTP - Cambridge - November 5, 2009 U.G., E. Kiritsis, F. Nitti, L. Mazzanti ongoing U.G., E. Kiritsis,

More information

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Strongly coupled plasma - hydrodynamics, thermalization and nonequilibrium behavior

Strongly coupled plasma - hydrodynamics, thermalization and nonequilibrium behavior Strongly coupled plasma - hydrodynamics, thermalization and nonequilibrium behavior Jagiellonian University, Kraków E-mail: romuald@th.if.uj.edu.pl In this talk I will describe various features of time-dependent

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

Drag force from AdS/CFT

Drag force from AdS/CFT Drag force from AdS/CFT Shankhadeep Chakrabortty IOP (Bhubaneswar, India) USTC, He Fei, China January 5, 2012 Introduction Strong interaction QCD. Quarks and gluons (fundamental constituents in a confined

More information

Holographic Transport.

Holographic Transport. Holographic Transport. Andreas Karch (University of Washington, Seattle) (talk at UC Davis, 3/19/15) 1 Holography = Solvable Toy Model Solvable models of strong coupling dynamics. Study Transport, real

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Drag Force from AdS/CFT

Drag Force from AdS/CFT Drag Force from AdS/CFT Shankhadeep Chakrabortty IOP (Bhubaneswar, India) Nagoya University, JAPAN January 27, 2012 1 / 48 Outline Introduction. Gravity background: New black hole solution. Little about

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Learning about the QGP using Jets

Learning about the QGP using Jets Learning about the QGP using Jets Raghav Kunnawalkam Elayavalli (Rutgers University) http://physics.rutgers.edu/~raghav/ Nuclear Physics Seminar Oct 31st 2016 1 What are we trying to study? 2 3 Jets! 4

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Partons and Jets at Strong Coupling from AdS/CFT. 1 Introduction: From RHIC to lattice QCD

Partons and Jets at Strong Coupling from AdS/CFT. 1 Introduction: From RHIC to lattice QCD Partons and Jets at Strong Coupling from AdS/CFT Edmond Iancu Institut de Physique Théorique de Saclay F-91191 Gif-sur-Yvette, FRANCE 1 Introduction: From RHIC to lattice QCD Some of the experimental discoveries

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

Quirks. Z. Chacko University of Maryland, College Park

Quirks. Z. Chacko University of Maryland, College Park Quirks Z. Chacko University of Maryland, College Park Disclaimer Only a small portion of this talk is based on my own work, in collaboration with Burdman, Goh, Harnik and Krenke. In particular, I have

More information

Holographic signatures of. resolved cosmological singularities

Holographic signatures of. resolved cosmological singularities Holographic signatures of resolved cosmological singularities Norbert Bodendorfer LMU Munich based on work in collaboration with Andreas Schäfer, John Schliemann International Loop Quantum Gravity Seminar

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

Towards holographic heavy ion collisions

Towards holographic heavy ion collisions Towards holographic heavy ion collisions Michał P. Heller m.p.heller@uva.nl University of Amsterdam, The Netherlands & National Centre for Nuclear Research, Poland (on leave) based on 135.919 [hep-th]

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Quark Matter 2018 Review

Quark Matter 2018 Review Central China Normal University Institude of Particle Physics Quark Matter 218 Review Ao Luo aluo@mails.ccnu.edu.cn May 31, 218 Content 1 Introduction Jet structure observables Experimental results Some

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Heavy Ion Physics in AdS/CFT

Heavy Ion Physics in AdS/CFT Heavy Ion Physics in AdS/CFT Urs Achim Wiedemann CERN TH Porto, 9 Sept 2009 Viscosity: Bounds from theory Quantum field theory ; AdS/CFT η s > 1 4π Heavy Ion Phenomenology Arnold, Moore, Yaffe, JHEP 11

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Numerical solutions of AdS gravity: new lessons about dual equilibration processes at strong coupling

Numerical solutions of AdS gravity: new lessons about dual equilibration processes at strong coupling Numerical solutions of AdS gravity: new lessons about dual equilibration processes at strong coupling Michał P. Heller Universiteit van Amsterdam, the Netherlands & National Centre for Nuclear Research,

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

Shock waves in strongly coupled plasmas

Shock waves in strongly coupled plasmas Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arxiv:1004.3803 (S. Khlebnikov, G. Michalogiorgakis, M.K.) Q uantum G ravity in the Southern Cone V, Buenos A ires,2010

More information

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC Toward an Understanding of Hadron-Hadron Collisions From Feynman-Field to the LHC Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. XXIèmes Rencontres de Blois

More information

arxiv:nucl-th/ v2 8 Jun 2006

arxiv:nucl-th/ v2 8 Jun 2006 Acta Phys. Hung. A / (2005) 000 000 HEAVY ION PHYSICS Strange quark collectivity of φ meson at RHIC arxiv:nucl-th/0510095v2 8 Jun 2006 J. H. Chen 1,2, Y. G. Ma 1,a, G. L. Ma 1,2, H. Z. Huang 1,3, X. Z.

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

arxiv: v1 [nucl-th] 9 May 2018

arxiv: v1 [nucl-th] 9 May 2018 Joint R AA and v predictions for P b + P b collisions at the LHC within DREENA-C framework Dusan Zigic, 1 Igor Salom, 1 Jussi Auvinen, 1 Marko Djordjevic, and Magdalena Djordjevic 1 1 Institute of Physics

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

Holography for Heavy Quarks and Mesons at Finite Chemical Potential

Holography for Heavy Quarks and Mesons at Finite Chemical Potential Holography for Heavy Quarks and Mesons at Finite Chemical Potential, Ling Lin, Andreas Samberg, Konrad Schade Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

An introduction to medium induced gluon radiation. Edmond Iancu IPhT Saclay & CNRS

An introduction to medium induced gluon radiation. Edmond Iancu IPhT Saclay & CNRS Edmond Iancu IPhT Saclay & CNRS a review of some relatively old stuff (BDMPS Z, 995) & original work with J. Casalderrey Solana (arxiv:6.3864) June 24th, 2 Motivation 2 Antenna pattern 3 BDMPS Z 4 Interference

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University Progress in the MC simulation of jets and jet quenching Abhijit Majumder Wayne State University 5th JET collaboration meeting, UC Davis, June 17-18, 2013 Outline 1) Outline of project plan 2) Concise description

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Holographic entropy production

Holographic entropy production 1 1 School of Physics, University of Chinese Academy of Sciences ( 中国科学院大学物理学院 ) (Based on the joint work [arxiv:1204.2029] with Xiaoning Wu and Hongbao Zhang, which received an honorable mention in the

More information

Dynamics of heavy quarks in charged N = 4 SYM plasma

Dynamics of heavy quarks in charged N = 4 SYM plasma Dynamics of heavy quarks in charged N = 4 SYM plasma Aleksi Vuorinen University of Washington, Seattle & Technical University of Vienna C. Herzog and AV, arxiv:0708:0609 [hep-th] Outline N = 4 SYM and

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Jet evolution in a dense QCD medium. Edmond Iancu IPhT Saclay & CNRS. June 19, 2013

Jet evolution in a dense QCD medium. Edmond Iancu IPhT Saclay & CNRS. June 19, 2013 Jet evolution in a dense QCD medium Edmond Iancu IPhT Saclay & CNRS based on work with J.-P. Blaizot, P. Caucal, F. Dominguez, Y. Mehtar-Tani, A. H. Mueller, and G. Soyez (2013-18) 1.8 June 19, 2013 D(ω)/D

More information

Onset of Jet decoherence in dense QCD media

Onset of Jet decoherence in dense QCD media Onset of Jet decoherence in dense QCD media Yacine Mehtar-Tani In collaboration with Carlos A. Salgado and Konrad Tywoniuk PRL 106 (2011) arxiv:1009.2965 [he-h] arxiv:1102.4317 [he-h] Y. M.-T. and K. Tywoniuk,

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

Quantum Null Energy Condition A remarkable inequality in physics

Quantum Null Energy Condition A remarkable inequality in physics Quantum Null Energy Condition A remarkable inequality in physics Daniel Grumiller Institute for Theoretical Physics TU Wien Erwin-Schrödinger Institute, May 2018 1710.09837 Equalities in mathematics and

More information