EDT 4 - Optics and Optical Instruments. Solutions

Size: px
Start display at page:

Download "EDT 4 - Optics and Optical Instruments. Solutions"

Transcription

1 EDT 4 - Optics and Optical Instruments Solutions. μ sin30 0 = μ 2sin r (Snell s law at st interface) μ 2sin r = μ 3sin45 0 (Snell s law at 2 nd interface) 30 0 μ Hence, μ sin30 0 = μ 3sin45 0 μ sin30 0 = μ 3sin45 0 μ 3 = μ sin30 0 sin45 0 μ 3 = 2. When image is at near point, r r 45 0 μ 2 μ 3 m = ( + D f e ) L f o Putting the values we get L = 20cm. 3. In case of option 2, if size of object is large compared to wavelength of light, all the wavelengths are scattered nearly equally. Other options are obvious. 4. As image is formed on screen, it is real image and hence inverted. Also image is four times the object. Hence, m = -4 u = -x & v = 00 x m = v u Hence, 00 x x x = 20cm. = 4 u = -20cm & v = 80cm f = v - u Hence f = 6cm. 5. Same as that of Q4. x 00 cm 6. For end A: u = -0cm & f = 20cm v = + f u Hence v = -20cm. For end B: u = -20cm & f = 20cm v = + f u Hence v = -60cm. B B 5 cm 0 cm A 60 cm 20 cm A

2 Hence image of end A say A is formed at distance 20cm from lens while that of B say B is formed at distance 60cm from lens. Therefore length of image = 60cm 20cm = 40cm 7. For first case, object distance is u and image distance is v. u + v = f.. () For second case, object distance is 3u and image distance is 5v. 3u + 5v = f From () and (2), u + = v 3u + 5v Hence, 2 3u = - 4 5v = - 0 v 2v.. (2) So f = u + v = u - 0 2u = 6u Hence f = 6u. As u is negative, focal length is negative and hence mirror is Concave. 8. For lens: u = -30cm v = + f u = + 20 ( 30) 30 cm 35 cm v = 60cm. So image formed by the lens is at 60cm from lens on right side of it. This image is beyond the mirror. So for mirror, it will act as a virtual object. Object distance in that case will be positive and will be (60-35)cm i.e. 25cm. For mirror: u = +25cm v = - f u = - ( 00) 25 v = -20cm. Hence final image will be formed at distance of 20cm from mirror towards left i.e. at distance of 5cm from lens and in between mirror and lens. 9. Informative. 0. u + v = f Differentiating both the sides, u 2 du v 2dv = 0

3 Hence, dv = v2 u 2 du = m2 du This formula can be used to find size of image along principle axis (dv) if length of object and image both are very small compared to u and v. Here du is the length of object which is kept along principle axis. Using mirror formula, we can get that v = -30cm. Hence m = v u = 2 Hence dv = ( 2 )2 du = 0.5mm. Real image is formed on the other side of element e. Means light rays are passing through e to meet each other on other side. So e must be a lens. Also magnification m = -2 & u = -60cm. v u = -2 Hence v = (-2)(-60) = 20cm. Using lens formula, = f v - = - u 20 ( 60) Hence f = 40cm. 2. When object is a virtual object, i.e. when converging rays of light are incident on optical element, object distance is taken as positive as it appears that object is kept on the other side. 3. Component of velocity parallel to mirror will not contribute anything to the velocity of object. Component of velocity perpendicular to the mirror = Vsinθ. So image will move towards mirror with Vsinθ and w.r.t. ground as mirror itself is moving, velocity of image will be 2Vsinθ. 4. Assume object is at distance x from principle axis at some time. As it is at center of curvature, image will also be formed at center of curvature. Hence magnification is - and so image will also be formed at distance x from principle axis as Image Height = Object Height. So principle axis moves away from object at speed u and image moves away from principle axis at same speed i.e. u. So velocity of image is 2u w.r.t. ground. 5. Apparent distance of object from mirror = (00-30) v = f u = ( 30) ( 90) Hence v = -45cm. So image is formed at distance of 45cm from the mirror. = 90cm. x x Object Image u

4 6. Refractive index of material is 2. Hence Critical angle θ C = sin - (/ 2) = As final light ray is grazing the surface, it must be incident at critical angle. Hence r = 45 0 r = A r = 30 0 μ = sini sinr sin i = 2 x (/2) = / 2 i = Consider particle to be at distance r from one of the face. Then from other face it is at (5-r) Apparent Depth = Real Depth/μ. Hence r/μ = 7 & (5-r)/μ = 5. Solving these equations we get, μ = 5/2 = Informative. 9. For red color: δ r = (μ r - )A For violet color: δ v = (μ v - )A Hence, angular separation between two color δ = δ v δ r = (μ v μ r)a = Informative. 2. Incoming ray is just totally internally reflected. So it must be incident at critical angle. sin i = μ 2/μ Also for internal reflection at second interface, sin(90 i) > μ 3/μ cos i > μ 3/μ cos 2 i > (μ 3/μ ) 2 sin 2 i > (μ 3/μ ) 2 (μ 2/μ ) 2 > (μ 3/μ ) μ 2 < μ μ Informative. Medium i i 90 - i 90 - i Medium 3 Medium Let the two angle of incidences be i and i 2. As for both of them deviation is same, when angle of incidence is i, angle of emergence will be i 2 and vice-versa. This is because light rays can be traced backward. δ = i + e A 45 = i + i 2 60 i + i 2 = 05 i - i 2 = 5. Given i = 60 0 & i 2 = 45 0

5 24. Refer question number Use the concept of refraction at spherical surfaces. μ = 3/2, μ 2 =, u = -5cm, R = -0cm μ 2 v - μ = μ 2 μ u R Putting the values, we get v = -4cm. So apparent depth is 4cm. 26. Person is suffering from Short-sightedness. Corrective lens should be such that if an object is at infinity, its image should be formed at 200cm. So focal length must be -200cm as lens has to be concave. Finally, power will be given by /f = 0.5D 27. There will be no refraction at first boundary as it is normal incidence. So angle of incidence at second boundary will be Also, as sin 45 0 = / 2 = /.4. So green and blue light are incident with an angle greater than critical angle while red is incident at an angle less than critical angle. Hence, green and blue light will undergo total internal reflection and come out from the bottom side while red will escape from the hypotenuse. 28. As images formed in two cases are of same size and one of them is real while other is virtual, magnifications in two cases can be taken as m and m. Hence m = v u = - v 2 u 2 From lens formula, f = v u = u ( u v ) So, u f = () m Similarly, Adding () and (2), f = (u + u 2 ) 2 u 2 f = (2) m 29. Let height of bird as perceived near the mirror when viewed from water be h B. Then h B = yμ + h Depth of image in the mirror = d I = h B = yμ + h Depth of image as seen by the bird d IB = yμ+h + y = 2y + h μ μ Velocity of image w.r.t. bird = d dt dib = d dt (2y + h μ ) = 2 dy dt = 2V 30. μ = 3/2, μ 2 = 4/3, R = 0cm μ 2 v - μ = μ 2 μ u R Putting the values we get, v = 2 3 ( u ) Bird y h

6 Image is real only if it is formed in region Y i.e. if v > 0. So we get that u > 0 => u < -80cm. So image will be virtual if distance between object and surface is less than 80cm. 3. Assumes powers of two lenses are 3P and -5P respectively. Effective power = 3P 5P = /0.6-2P = 0.6 P =.2 Hence individual powers are: 3P = 0.4 and -5P = So focal lengths are: 40cm and -24cm. 32. Informative. 33. Parallel beam incident on convex lens will form image at its focus. If this image is formed at the focus of concave lens, rays will emerge parallel to each other. So distance between lenses should be sum of the focal lengths of two lenses. d = 30cm + (-0cm) = 20cm. 34. m = f v f = f f u. For the first case, magnification is m when object distance is u while for the second case, magnification is m when image distance is 2u. So we get: f m = f u = f 2u f. Dividing numerator and denominator by f, m = r = 2r where r = u f Solving for r, we get r = 3/2 or r = 0. The case r = 0 will correspond to a spherical mirror where f i.e. when it is almost a plane mirror. Using values of r, we get values of m as -2 or. 35. As angle of incident is same as that of emergence, this is the case of minimum deviation. δ = δ min = i + e A = = 30 0 μ = sin(a+ δ min ) 2 sin( A 2 ) = 36. Informative. 37. Informative. 38. Informative. 39. Use lens formula. sin (60) sin (45) = All the colors having refractive index more than that of yellow, will get totally internally reflected. So only Orange and Red will make it into the air.

7 4. From lens maker s formula, f = (μ - )( ) = ( 3 ) ( ) = R R Hence f = 20cm. 42. Informative. 43. Graph of angle of deviation v/s angle of incidence is not symmetric about point of minimum deviation. So angle of minimum deviation will be closer to 37 0 than to So most possible value is δ 44. Informative. 45. Use mirror formula and formula for magnification. 37 δ min 53 i

8 8'DT_ 4- - Ne.. :'" (_-Ha-b a Itel 4.. ~CG k.aqo a re.v~~) ~46. CO C - C+fJ-- c+t -=-C-+fo'-- ~ k>ec~e it ca cy c_.-tf =- ~-+2- c h"a.i ~ (\>4-'- _~ ~. 2>ThmII>"'t"'" ~ # ~ -3 i IfM d, t \~U""' G,~. cd J)u ri~ j> - ~ i"'"w,2< +i"""-' t.aj e r= -tujo po_s Ih~,.,SoW)edt 2ItclAL (_ M~CJ--+ }.t) lacj() Wh ;c~ d)fer If) ~o~hi~ z:4 &0<)0e, ~.). HouJer~(" #,elr s!:::.e(q--t<j'i'-- at C'a r ~O'\r-' c f:,ittr, <> )~ "'f) ;;f,i>s -S"lIN-,i. e - ~ are (Ast Cl02nn IsoW)e.r.c. '""fk_e_ c be i CQ_-S;: (J) I ~ ~e_ ~ re. lr:co~\ec-t-. ' I so tty) e-r I~ - Rp(72_S~ <2 b 2? 0 is: mr;~ r:-> ww!c2_ CD rrt-o~ Pbsln'~~ N~~ F:~>.@i, ~ B~ e. i+ ta.vd"-g t> 5'NI V'L.0:0 e_5j.' vy--- _I-<aI~ ejjf Pr( C).-Hr 4,f~c }~~

9

10 8'0... al~ h~'cu_ g<5'<2b -th..rv~l Sf..3l ~ so 'h~7~~ c4- NJ:' cc«x.-' ~N' C;;;X(;' CJj_ CD cf) SH2- CJ,ac~ ~) 0#. ;) -=f-7;_ c$r Q~O' ~ ~ C\_~ _<coo -/ ~4 ~.@ ~9o, ~ ~?j,

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Chapter Ray Optics and Optical Instrument

Chapter Ray Optics and Optical Instrument Chapter Ray Optics and Optical Instrument Q1. Focal length of a convex lens of refractive index 1.5 is 2 cm. Focal length of the lens when immersed in a liquid of refractive index of 1.25 will be [1988]

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Since focal length = focal power

Since focal length = focal power RAY OPTICS PREVIOUS EAMCET BITS (ENGINEERING ). The two lenses of an achromatic doublet should have : [EAMCET 009 E] ) equal powers ) equal dispersive powers ) equal ratio of their power and dispersive

More information

LIGHT. A beam is made up of several rays. It maybe parallel, diverging (spreading out) or converging (getting narrower). Parallel Diverging Converging

LIGHT. A beam is made up of several rays. It maybe parallel, diverging (spreading out) or converging (getting narrower). Parallel Diverging Converging LIGHT Light is a form of energy. It stimulates the retina of the eye and produces the sensation of sight. We see an object when light leaves it and enters the eye. Objects such as flames, the sum and stars

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Moonbows. Friday somebody asked if rainbows can be seen at night.

Moonbows. Friday somebody asked if rainbows can be seen at night. Moonbows Friday somebody asked if rainbows can be seen at night. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 25 Moonbows Friday somebody asked if rainbows

More information

XII-S (NEW) - Paper-I

XII-S (NEW) - Paper-I XII-S (NEW) / CPT /9/08/6 NARAYANA I I T / P M T A C A D E M Y CPT T EST 5 XII-S (NEW) - Paper-I (JEE ADVANCE MDEL 03-P) ANSWER KEY PHYSICS CHEMISTRY MATHEMATICS Q.N. KEY Q.N. KEY Q.N. KEY. (A) (B) 4 (B).

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the DISPERSION VERY SHORT ANSWER QUESTIONS Q-1. What will be the spectrum of sun during a total solar eclipse? Q-2. Why the secondary rainbow is always fainter than the primary rainbow? Q-3. Two identical

More information

= 115V. = = = C/m 2

= 115V. = = = C/m 2 SPHS Class th Physics Solution. parallel-plate air capacitor has a plate area of cm and separation 5mm. potential difference of V is established between its plates by a battery. fter disconnecting a battery,

More information

Light.notebook May 03, 2016

Light.notebook May 03, 2016 Unit 4 Light LIGHT.1 Describe the ray model of light. 16.1 LIGHT.2 Predict the effect of distance on light s illuminance. 16.1 LIGHT.3 Explain polarization and the Doppler effect. 16.2 LIGHT.4 Describe

More information

ROINN NA FISICE Department of Physics

ROINN NA FISICE Department of Physics ROINN NA FISICE Department of 1.1 Astrophysics Telescopes Profs Gabuzda & Callanan 1.2 Astrophysics Faraday Rotation Prof. Gabuzda 1.3 Laser Spectroscopy Cavity Enhanced Absorption Spectroscopy Prof. Ruth

More information

Chapter 1. Ray Optics

Chapter 1. Ray Optics Chapter 1. Ray Optics Postulates of Ray Optics n c v A ds B Reflection and Refraction Fermat s Principle: Law of Reflection Fermat s principle: Light rays will travel from point A to point B in a medium

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

nr 2 nr 4 Correct Answer 1 Explanation If mirror is rotated by anglethan beeping incident ray fixed, reflected ray rotates by 2 Option 4

nr 2 nr 4 Correct Answer 1 Explanation If mirror is rotated by anglethan beeping incident ray fixed, reflected ray rotates by 2 Option 4 Q. No. A small plane mirror is placed at the centero a spherical screen o radius R. A beam o light is alling on the mirror. I the mirror makes n revolution per second, the speed o light on the screen ater

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

PHYSICS. Ray Optics. Mr Rishi Gopie

PHYSICS. Ray Optics. Mr Rishi Gopie Ray Optics Mr Rishi Gopie Ray Optics Nature of light Light is a form of energy which affects the human eye in such a way as to cause the sensation of sight. Visible light is a range of electromagnetic

More information

Physics 1252 Sec.A Exam #1A

Physics 1252 Sec.A Exam #1A Physics 1252 Sec.A Exam #1A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at RAY OPTICS - I

Get Discount Coupons for your Coaching institute and FREE Study Material at   RAY OPTICS - I RAY OPTICS - I 1. Refraction of Light 2. Laws of Refraction 3. Principle of Reversibility of Light 4. Refraction through a Parallel Slab 5. Refraction through a Compound Slab 6. Apparent Depth of a Liquid

More information

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 Concave mirrors Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 1 2 3 c F Point C: geometrical center of the mirror, F: focal point 2 Concave mirrors Which

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

School. Team Number. Optics

School. Team Number. Optics School Team Number Optics Physical Optics (30%) Proceed to the laser shoot (40%) when your team number is called. 1. What are the four colors used in the CMYK color model? (2 points) 2. Muscae Volitantes

More information

Physics 1252 Section Exam #1D

Physics 1252 Section Exam #1D Thu, 09 February 2017 Name: Physics 1252 Section 36501 Exam #1D Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

Physics 1252 Section Exam #1E

Physics 1252 Section Exam #1E Thu, 09 February 2017 Name: Physics 1252 Section 36501 Exam #1E Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

LESSON RAY OPTICS Introduction Note Ray of light Beam of light Reflection of Light by Spherical Mirrors Law of reflection Note:

LESSON RAY OPTICS Introduction Note Ray of light Beam of light Reflection of Light by Spherical Mirrors Law of reflection Note: 2 LESSON RAY OPTICS Introduction Electromagnetic radiation belonging to the region of the electromagnetic spectrum (wavelength of about 400 nm to 750 nm) is called light. Nature has endowed the human eye

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Physics 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Unit 4 Parent Guide: Waves. What is a wave?

Unit 4 Parent Guide: Waves. What is a wave? Unit 4 Parent Guide: Waves What is a wave? A wave is a disturbance or vibration that carries energy from one location to another. Some waves require a medium to transmit the energy whereas others can travel

More information

PHYS 1112 In-Class Exam #1, Version D

PHYS 1112 In-Class Exam #1, Version D PHYS 1112 In-Class Exam #1, Version D Tue. Feb. 4, 2014, 11:00am-12:15am This is a closed-book, closed-notes exam, but you are permitted to bring and use a clean copy of the official Formula Sheet for

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

More information

Grade 8 Science Unit 2: Optics Chapters 4, 5 and 6

Grade 8 Science Unit 2: Optics Chapters 4, 5 and 6 Grade 8 Science Unit 2: Optics Chapters 4, 5 and 6 At the end of this unit, students will be expected to 1. Provide examples of ideas and theories of light used in the past to explain observed properties.

More information

NCERT-XII / Unit- 09 Ray Optics

NCERT-XII / Unit- 09 Ray Optics REFLECTION OF LIGHT The laws o relection are.. (i) The incident ray, relected ray and the normal to the relecting surace at the point o incidence lie in the same plane (ii) The angle o relection (i.e.,

More information

PHYSICS PRACTICAL (CBSE) - X

PHYSICS PRACTICAL (CBSE) - X PHYSICS PRACTICAL (CBSE) - X Scientific Terminology / Definitions Absolute refractive index (m) : It is the refractive index of the medium with respect to air or vacuum. Amplitude (A) : It is the maximum

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11 MHS Physics Exam to go from grade 10 to grade 11 Sample Questions 1. non-luminous source of light is one which: 1. emits light by itself 2. carries light inside 3. reflects light coming from other objects

More information

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction Name: Exam #3 D#: Physics 140 Section #: hoose the best answer for each of Questions 1-19 below. Mark your answer on your scantron form using a # pencil. (5.6 pts each) 1. At a certain instant in time,

More information

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution PHY2049 Spring 2010 Profs. P. Avery, A. Rinzler, S. Hershfield Final Exam Solution 1. A proton traveling along the x axis (toward increasing x) has a speed of 1.0 10 5 m/s. At time t = 0 it enters a region

More information

Physics 1302, Exam 3 Review

Physics 1302, Exam 3 Review c V Andersen, 2006 1 Physics 1302, Exam 3 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Chapter K - Problems

Chapter K - Problems Chapter K - Problem Blinn College - Phyic 2426 - Terry Honan Problem K. A He-Ne (helium-neon) laer ha a wavelength of 632.8 nm. If thi i hot at an incident angle of 55 into a gla block with index n =.52

More information

Optical Physics of Rifle Scopes

Optical Physics of Rifle Scopes Optical Physics of Rifle Scopes A Senior Project By Ryan Perry Advisor, Dr. Glen Gillen Department of Physics, California Polytechnic University SLO June 8, 207 Approval Page Title: Optical Analysis of

More information

Optics. The refractive index of a material of a plain concave lens is 5/3, the radius of curvature is 0.3m. The focal length of the lens in air is ) 0.45 m ) 0.6 m 3) 0.75 m 4).0 m. The refractive index

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Physics 1212 Exam #4A (Final)

Physics 1212 Exam #4A (Final) Physics 1212 Exam #4A (Final) Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

LAB 10: OPTICAL MATERIALS AND DISPERSION I

LAB 10: OPTICAL MATERIALS AND DISPERSION I OPTI 202L - Geometrical and Instrumental Optics Lab LAB 10: OPTICAL MATERIALS AND DISPERSION I 10-1 Measuring the refractive index of a material is one of the most fundamental optical measurements, and

More information

Physics 1212 Exam #4B (Final)

Physics 1212 Exam #4B (Final) Physics 1212 Exam #4B (Final) Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

Physics 3312 Lecture 7 February 6, 2019

Physics 3312 Lecture 7 February 6, 2019 Physics 3312 Lecture 7 February 6, 2019 LAST TIME: Reviewed thick lenses and lens systems, examples, chromatic aberration and its reduction, aberration function, spherical aberration How do we reduce spherical

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

Physics 1212 Exam #1

Physics 1212 Exam #1 Physics 1212 Exam #1 Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, a non-progammable, non-algebra scientific calculator, and a

More information

EP 225 Waves, Optics, and Fields

EP 225 Waves, Optics, and Fields EP 225 Waves, Optics, and Fields Website: http://physics.usask.ca/~hirose/ep225/ contains Course outline Laboratory instruction Notes Past exams Animation Instructor: Akira Hirose Office Physics 66 akira.hirose@usask.ca

More information

Final Exam April 21, a) No books, notes, or other such materials are permitted.

Final Exam April 21, a) No books, notes, or other such materials are permitted. Phys 5 Spring 004 Name: Final Exam April, 004 INSTRUCTIONS: a) No books, notes, or other such materials are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations

More information

Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e

Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e Exam 3 Solutions Prof. Paul Avery Prof. Zongan iu Apr. 27, 2013 1. An electron and a proton, located far apart and initially at rest, accelerate toward each other in a location undisturbed by any other

More information

HUMAN EYE AND THE COLOURFUL WORLD

HUMAN EYE AND THE COLOURFUL WORLD HUMAN EYE AND THE COLOURFUL WORLD Class: 10 (Boys) Sub: PHYSICS NOTES The Human Eye: The human eye is a sensitive sense organ and acts like a camera, which enable us to capture the colourful picture of

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS

OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS Q-1. The difference in the focal lengths of the two lenses is larger in which case microscope or telescope? Q-2. What is the formula for angular magnification

More information

Physics 11: Additional Equations for the Final Celebration

Physics 11: Additional Equations for the Final Celebration Physics 11: Additional Equations for the Final Celebration Work: W = Fd cosθ Chapter 10: Energy and Work The unit of work is the Joule (J). 1 J = 1 Nm = 1 kg m /s Work can be +, -, or 0. Work Energy Theorem:

More information

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Final Practice Solutions Use the following information for problems 1 and. A beam of white light with frequency between 4.00 x 10 14 Hz and 7.90 x 10 14 Hz is incident on a sodium surface, which

More information

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes

More information

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t Objective: In general you will explore the basic principles of how simple telescopes and microscope work. Specifically, you will examine the fundamental principles of magnification of a single thin lens

More information

A system of two lenses is achromatic when the separation between them is

A system of two lenses is achromatic when the separation between them is L e c t u r e 1 5 1 Eyepieces Single eye lens in a telescope / microscope produces spherical and chromatic aberrations. The field of view is also narrow. The eye lens is replaced by a system of lenses

More information

EE 119 Homework 2. 4 o

EE 119 Homework 2. 4 o EE 119 Homework 2 Professor: Jeff Bokor TA: Xi Luo Due Tuesday, Feb 9 th 2010 (Please submit your answers in EE119 homework box located in 240 Cory Hall) 1. (a) In class, the angle of deviation (δ) has

More information

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference Exam Tue. Sep. 9, 5:30-7 pm, 45 Birge Covers.5-7,, 3.-4, 3.7, 4.-5, 6 + lecture, lab, discussion, HW Chap.5-7, Waves, interference, and diffraction Chap 3 Reflection, refraction, and image formation Chap

More information

Exam 4--PHYS 151--Spring 2017

Exam 4--PHYS 151--Spring 2017 Name: Exam 4--PHYS 151--Spring 2017 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Electromagnetic radiation is caused by a. electricity b. radioactive

More information

Amount of Aluminium required to get 56 Kg of Iron = 27 Kg Amount of Aluminium required to get 1120 Kg of Iron = = 30 o C

Amount of Aluminium required to get 56 Kg of Iron = 27 Kg Amount of Aluminium required to get 1120 Kg of Iron = = 30 o C IMPORTANT PROBLEMS IN PHYSICS FOR SSC MARCH 2016 1. What would be the final temperature of a mixture of 50 g of water at 20 o C temperature and 50 g of water at 40 o C temperature? A. Mass (m 1 ) 50 gm

More information

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below:

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below: Q1.(a) Draw a ray diagram for an astronomical refracting telescope in normal adjustment. Your diagram should show the paths of three non-axial rays passing through both lenses. Label the principal foci

More information

Physics 20 Work Plan

Physics 20 Work Plan Units/Topics Time Frame Major Learning Outcomes Unit Major Resource(s) Assessment methods Unit 2 Wave Motion A. Properties of waves 1. Wave terminology 2. Universal wave equation 3. Principle of Superposition

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

SECOND TERM (SA-11) SCIENCE (Tkeo y) (Fov Pmctice) CLASS X

SECOND TERM (SA-11) SCIENCE (Tkeo y) (Fov Pmctice) CLASS X CCE MODEL TEST PAPER 3 SECOND TERM (SA-11) SCIENCE (Tkeo y) (Fov Pmctice) CLASS X SECTION A 1. When a beam of white light passes through a glass prism, state the component of white. light which deviates

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

PHYS 408, Optics. Problem Set 4 - Spring Posted: Fri, March 4, 2016 Due: 5pm Thu, March 17, 2016

PHYS 408, Optics. Problem Set 4 - Spring Posted: Fri, March 4, 2016 Due: 5pm Thu, March 17, 2016 PHYS 408, Optics Problem Set 4 - Spring 06 Posted: Fri, March 4, 06 Due: 5pm Thu, March 7, 06. Refraction at a Spherical Boundary. Derive the M matrix of.4-6 in the textbook. You may use Snell s Law directly..

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

20. Aberration Theory

20. Aberration Theory 0. Aberration Theory Wavefront aberrations ( 파면수차 ) Chromatic Aberration ( 색수차 ) Third-order (Seidel) aberration theory Spherical aberrations Coma Astigmatism Curvature of Field Distortion Aberrations

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

Physics 101 Final Exam Problem Guide

Physics 101 Final Exam Problem Guide Physics 101 Final Exam Problem Guide Liam Brown, Physics 101 Tutor C.Liam.Brown@gmail.com General Advice Focus on one step at a time don t try to imagine the whole solution at once. Draw a lot of diagrams:

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

Exam 3--PHYS 202--S10

Exam 3--PHYS 202--S10 ame: Exam 3--PHYS 202--S0 Multiple Choice Identify the choice that best completes the statement or answers the question A person uses a convex lens that has a focal length of 25 cm to inspect a gem The

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Physics 104 Exam 3 April 24, Name ID # Section # TA Name

Physics 104 Exam 3 April 24, Name ID # Section # TA Name Physics 104 Exam 3 April 24, 2003 Name ID # Section # TA Name Fill in your name, student ID # (not your social security #), and section # (under ABC of special codes) on the Scantron sheet. Fill in the

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37 1984 36. The critical angle for a transparent material in air is 30. The index of refraction of the material is most nearly (A) 0.33 (B) 0.50 (C) 1.0 (D) 1.5 (E) 2.0 37. An object is placed as shown in

More information

Physics 1252 Section Exam #1D

Physics 1252 Section Exam #1D Thu, 01 February 2018 Name: Physics 1252 Section 45299 Exam #1D Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

Light - electromagnetic radiation

Light - electromagnetic radiation Astronomy & Light Astronomy is a science In science we know by doing experiments When multiple experiments give the same results we develop theories and laws In astronomy many of the experiments are done

More information

A) m B) m C) m D) m E) m. 5. Which one of the following circuits has the largest resistance?

A) m B) m C) m D) m E) m. 5. Which one of the following circuits has the largest resistance? Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

SET 2 Series : HRK/C H$moS> Z.

SET 2 Series : HRK/C H$moS> Z. SET 2 Series : HRK/C H$moS> Z. 31/2. Roll No. - 12 Code No. - - Candidates must write the Code on the title page of the answer-book. - - - - 36, - 15-10.15 10.15 10.30 - - Please check that this question

More information

Optics Purpose Discover the basics of geometric optics Understand the principles behind a refractor and a reflector telescope

Optics Purpose Discover the basics of geometric optics Understand the principles behind a refractor and a reflector telescope Name: Partner(s): 1102 or 3311: Desk # Date: Optics Purpose Discover the basics of geometric optics Understand the principles behind a refractor and a reflector telescope Equipment Various lenses and mirrors

More information

Matrix Operations - The idea of a matrix arises in this way. Suppose we have a pair of linear equations

Matrix Operations - The idea of a matrix arises in this way. Suppose we have a pair of linear equations Matrix Operations - The idea of a matrix arises in this way. Suppose we have a pair of linear equations U = Ax + By V = Cx + Dy where A,B,C and D are known constants and x and y are variables. We can write

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

Assignment 3 Due September 27, 2010

Assignment 3 Due September 27, 2010 Assignment 3 Due September 27, 2010 Text readings Stops section 5.3 Dispersing and Reflecting Prisms [sections 5.5.1 and 5.5.2] Optical systems section 5.7 Lens Aberrations [section 6.3] Be careful about

More information

Last Name: First Name Network-ID

Last Name: First Name Network-ID Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

More information

Telescopes. Bởi: OpenStaxCollege

Telescopes. Bởi: OpenStaxCollege Telescopes Bởi: OpenStaxCollege Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the unaided eye. Telescopes gather far more light

More information

CBSE PHYSICS QUESTION PAPER (2005)

CBSE PHYSICS QUESTION PAPER (2005) CBSE PHYSICS QUESTION PAPER (2005) (i) (ii) All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry one mark each, Questions 9 to 18 carry two marks each, Question 19 to 27

More information