AMPT Phenomenology with Chiral Effect

Size: px
Start display at page:

Download "AMPT Phenomenology with Chiral Effect"

Transcription

1 AMPT Phenomenology with Chiral Effect Guo-Liang Ma Shanghai Institute of Applied Physics, Chinese Academy of Sciences This work is in collaboration with Xu-Guang Huang, Yu-Gang Ma, Qi-Ye Shou, and Bin Zhang. 1

2 Outline Introduction AMPT results on CME [1] G.-L. Ma and B. Zhang, PLB 700 (2011) 39 [arxiv: ]. [2] Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) [arxiv: ]. AMPT results on CMW [3] G.-L. Ma, PLB 735 (2014) 383 [arxiv: ]. AMPT results on CESE [4] G.-L. Ma and X.-G. Huang, arxiv: Summary 2

3 chiral magnetic effect=> dipole charge separation dipole PRL 103, (2009) RHIC data are consistent with the CME expectation that charges could be distributed asymmetrically w.r.t reaction plane, i.e. dipole charge separation. Non-flow/non-parity effects: largely cancel out Directed flow: vanishes if measured in a symmetric rapidity range P-even quantity: still sensitive to charge separation 3

4 chiral magnetic wave =>quadrupole charge separation Chiral magnetic wave Yannis Burnier, Dmitri Kharzeev, Jinfeng Liao, Ho-Ung Yee, PRL 107, (2011) quadrupole STAR preliminary STAR preliminary RHIC-STAR data are consistent with the CMW expectation, i.e. quadrupole charge separation 4

5 Charge asymmetry slope r of pion v2 RHIC-STAR data can be described by the CMW expectations with different CMW duration times. UrQMD can not reproduce the slopes r. 5

6 chiral electric separation effect => quadrupole charge separation X.G.Huang and J.F.Liao, PRL 110, (2013) Chiral electric separation effect (CESE) : E-field induces an axial current, i.e. a chirality separation. CESE+CME+in-plane CSE=>a new type of quadrupole charge separation in Cu+Au. How to observe CESE experimentally? 6

7 A multiphase transport (AMPT) model Melting AMPT Model (1) initial condition (2) parton cascade [2<->2 elastic collisions] (3) hadronization (4) hadronic rescatterings Z. -W. Lin et al., PRC 72 (2005) Resonance decays only are employed to ensure charge conservation, without hadron rescatterings. 7

8 (I)AMPT results on CME [1] G.-L. Ma and B. Zhang, PLB 700 (2011) 39 [arxiv: ]. [2] Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) [arxiv: ]. 8

9 The AMPT model with dipole charge separation (1) Introduction G.-L. Ma, B. Zhang, PLB 700 (2011) 39 dipole dipole charge separation u u u u We include initial dipole charge separation mechanism into AMPT model. We switch the p y values of a percentage of the downward moving u quarks with those of the upward moving u-bar quarks, and likewise for d-bar and d quarks, where the percentage is a relative ratio with respect to the total number of quarks. We focus on final state effects on the charge separation, including parton cascade, hadronization, resonance decays after B and E vanish quickly. 9

10 AMPT results on <cos(φα+φβ)> G.-L. Ma, B. Zhang, PLB 700 (2011) 39 An initial charge separation ~10% can describe same-charge data in the presence of strong final state interactions. But ~10% only can describe opposite-charge correlation for 60-70%. From a percentage of charge separation of 10% in the beginning 1-2% percentage at the end. 10

11 CME vs trans. mom. conservation The AMPT result without initial charge separation is very close to the expectation of trans. mom. conservation [dashed: <cos(φ α +φ β )>=-v 2 /N]. TMC can partly account for data, and an initial 10% dipole charge separation are needed.=> CME+pT conservation ~ experimental data 11

12 AMPT results on Δη and pt dependences of <cos(φα+φβ)> G.-L. Ma, B. Zhang, PLB 700 (2011) 39 =(pt α +pt β )/2 AMPT results with an initial charge separation of 10% can describe Δη and pt dependences of same-charge data. AMPT results without initial charge separation are consistent with the expectation from TMC [dashed: <cos(φ α +φ β )> p + n (n=2~3)], however n=2.2( for 0%) n=1.5(for 10%). 12

13 The AMPT model with local dipole charge separation (1) Introduction dipole local dipole charge separation Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) We include initial local dipole charge separation mechanism into AMPT model. Within a same metastable domain, we switch the p y values of the downward moving u quarks with those of the upward moving u-bar quarks, and likewise for d-bar and d quarks. We compare the results from local dipole charge separation with the previous global case and exp. data. We aim to extract the information about the properties of metastable domains, such as number and size of domains. 13

14 <cos(φα+φβ)> from AMPT with local dipole charge separation Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) A domain-based charge separation improves the description of opposite-charge correlation. 14

15 How many domains Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) The domain production rate is consistent with charge separation percentage. We use all possible domains for each centrality bin. It is possible to improve it by adjusting the centrality dependence of domain rate. 15

16 How big the total volume of domains Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) The size and number of metastable domains should be relatively small in the early stage of QGP. 16

17 (II)AMPT results on CMW G.-L. Ma, PLB 735 (2014) 383 [arxiv: ]. 17

18 The AMPT model with quadrupole charge separation (1) Introduction G.-L. Ma, PLB 735 (2014) 383 quadrupole quadrupole charge separation How to include initial quadrupole charge separation into the AMPT model: I switch the positions (x,y,z) of a percentage of the small- y u quarks with those of large- y u-bar quarks, and likewise for d-bar and d quarks for Ach>-0.01 events; A contrary manner for Ach<-0.01 events. The goal is to learn some properties of chiral magnetic wave through how final charge asymmetry of pion v2 depends on the quadrupole percentage after B and E vanish. 18

19 Initial charge quadrupole distribution G.-L. Ma, PLB 735 (2014) 383 Yannis Burnier, Dmitri Kharzeev, Jinfeng Liao, Ho-Ung Yee,PRL 107, (2011) Initial partonic net charge distribution changes with quadrupole percentage. 19

20 Charge asymmetry of pion v2 G.-L. Ma, PLB 735 (2014) 383 The Ach asymmetry between pion+/- v2 appears for a non-zero initial charge quadrupole. 20

21 Δv2 vs Ach G.-L. Ma, PLB 735 (2014) 383 No charge asymmetry of pion v2 for 0%. Δv2 increases with Ach for non-zero percentages. Δv2 increases faster with larger percentage. 21

22 Stage evolution for charge asymmetry of v2 G.-L. Ma, PLB 735 (2014) 383 r= / r= / r= / r= / exp. data: r= / The slope r is around zero initially. The slope r appears after parton cascade. The slope r increases after coalescence. The slope r is largely weaken due to resonance decays. 22

23 A helpful constraint on CMW G.-L. Ma, PLB 735 (2014) 383 0% <1% 1-2% 1-2% 2-3% 2-3%? 3-4%?% centrality bin 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% initial quad. perc. 0% <1% 1-2% 1-2% 2-3% 2-3% 3-4%?% It gives a constraint (<4%) to the centrality dependence of initial quadrupole percentage. 23

24 (III)AMPT results on CESE G.-L. Ma and X.-G. Huang, arxiv:

25 The AMPT model with CESE charge separation (1) Introduction y E G.-L. Ma and X.-G. Huang, arxiv: Au Cu x CESE+CME+in-pla CSE charge separation quadrupole We include different kinds of initial charge separations, e.g. CESE+CME +in-plane CSE, into the Cu+Au initial condition of the AMPT model. To observe the embedded effects in the final state, what are possible observables? 25

26 The different inputs of initial charge separation (1) Introduction Cu+Au 200 GeV G.-L. Ma and X.-G. Huang, arxiv: Cu+Cu 200 GeV (a) Normal (b) CME (c) in-plane CSE (d) CESE+CME+in-plane CSE (e) CESE+2xCME+in-plane CSE (f) CESE+CME+2xin-plane CSE Six different kinds of initial charge separations as the Cu+Au initial conditions. b-dependent initial charge separation percentage f% is taken by fitting Cu+Cu data, i.e. f=1.56b/fm. 26

27 <cos(ϕa+ϕβ)> from different initial chiral effects G.-L. Ma and X.-G. Huang, arxiv: <cos(ϕa+ϕβ)> is a sensitive probe for CME and in-plane CSE. In-plane CSE reverses the sign of the signal of CME. <cos(ϕa+ϕβ)> is not sensitive to CESE. 27

28 1st proposed CESE observable: <cos[2(ϕa+ϕβ)]> E y G.-L. Ma and X.-G. Huang, arxiv: Au ψc Cu -ψc x ζaβ=<cos[2(ϕa+ϕβ)]> For CME or in-plane CSE: ζopp=ζsame~<cos(4ψd)>, Δζ=ζopp-ζsame~0 For CESE: ζopp~1 and ζsame~ <cos(4ψc)>, Δζ=1-<cos(4ψc)> Δζ=ζopp-ζsame is a clear signal for the CESE. Once CESE happens, Δζ increases from central to peripheral Cu+Au collisions. 28

29 2nd proposed CESE observable: <Ψ2 + -Ψ2 - > E y G.-L. Ma and X.-G. Huang, arxiv: Au ψc Cu -ψc x Ψn +/- +/- +/- [Ψ2 + (Ψ2 - ) is the 2nd event plane angle reconstructed by final positivecharge (negative-charge) hadrons.] Once the CESE happens, <Ψ2 + -Ψ2 - >~2<ψc> increases from central to peripheral centrality bin. 29

30 Summary Final state interactions reduce the CME signal, the percentage of initial dipole charge separation could be large~10%. Domain-based AMPT results indicates that the size and number of metastable domains should be relatively small. The slope r of charge asymmetry of pion v2 is sensitive to the percentage of the initial quadrupole charge separation, which gives a helpful constraint (<4%) to the CMW effect. Cu+Au provides us a good chance to disentangle CESE and other chiral effects through the proposed observables. 30

31 Thanks for your attention! 31

The Λ Global Polarization with the AMPT model

The Λ Global Polarization with the AMPT model The Λ Global Polarization with the AMPT model Hui Li ( 李慧 ) University of Science and Technology of China Cooperators: Xiao-Liang Xia, Long-Gang Pang, Qun Wang arxiv: 1704.01507 Outline Introduction The

More information

Probing QCD Matter with QED Fields

Probing QCD Matter with QED Fields XQCD2014, Stony Brook, June 21, 2014 Probing QCD Matter with QED Fields Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center Research Supported by NSF Outline * Brief Introduction

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

arxiv: v2 [nucl-th] 3 Apr 2018

arxiv: v2 [nucl-th] 3 Apr 2018 Predictions for isobaric collisions at s NN = GeV from a multiphase transport model Wei-Tian Deng, 1 Xu-Guang Huang,, 3 Guo-Liang Ma, 4 and Gang Wang 5 1 School of Physics, Huazhong University of Science

More information

CMS results on CME and CMW in ppb and PbPb

CMS results on CME and CMW in ppb and PbPb CMS results on CME and CMW in ppb and PbPb Wei Li Rice University UCLA Chirality Workshop March 27 30 Chiral Magnetic Effect in HI Electric current induced by magnetic field (analogous to Ohm s law ) -

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model

Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model You Zhou Institute Of Particle Physics HuaZhong Normal University (CCNU) 1 全国高能学会学术年会 @ 南昌大学 Outline Introduction Results and

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

arxiv:nucl-th/ v2 8 Jun 2006

arxiv:nucl-th/ v2 8 Jun 2006 Acta Phys. Hung. A / (2005) 000 000 HEAVY ION PHYSICS Strange quark collectivity of φ meson at RHIC arxiv:nucl-th/0510095v2 8 Jun 2006 J. H. Chen 1,2, Y. G. Ma 1,a, G. L. Ma 1,2, H. Z. Huang 1,3, X. Z.

More information

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC (for the STAR Collaboration) University of California, Los Angeles E-mail: lwen@physics.ucla.edu Searches for the chiral effects

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

A study of φ-meson spin alignment with the AMPT model

A study of φ-meson spin alignment with the AMPT model A study of φ-meson spin alignment with the AMPT model Shaowei Lan 1 Zi-Wei Lin 1,2, Shusu Shi 1, Xu Sun 1 1 Central China Normal University 2 East Carolina University Outline Introduction Modified AMPT

More information

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Vladimir Skokov March 2, 2016 VSkokov@bnl.gov B in HIC QCD Workshop 1 / 23 Outline Introduction Magnetic field at early stage and evolution Magnetic

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Momentum Correlations in Nuclear Collisions

Momentum Correlations in Nuclear Collisions Momentum Correlations in Nuclear Collisions By: Patrick Carzon Advisors: Sean Gavin, George Moschelli August 2016 1 Introduction Covariance is a measure of how linearly two things change with each other.

More information

Kent Riley Yale University 6/25/2012

Kent Riley Yale University 6/25/2012 Kent Riley Yale University 6/25/2012 Motivation Azimuthal correlations of charged particles A probe for Local Parity Violation (LPV) Charge separation effects due to the Chiral Magnetic Effect (CME) should

More information

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

Phenomenology of anomalous chiral transports in heavy-ion collisions

Phenomenology of anomalous chiral transports in heavy-ion collisions Phenomenology of anomalous chiral transports in heavy-ion collisions Xu-Guang Huang 1,2 1 Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433, China 2

More information

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point Experimental Approach to the QCD Phase Diagram & Search for the Critical Point / LBNL, Berkeley The John Cramer Symposium University of Washington, Seattle, September 10-11, 2009 Outline : QCD phase diagram

More information

arxiv: v1 [nucl-th] 7 Dec 2016

arxiv: v1 [nucl-th] 7 Dec 2016 Study of chiral vortical and magnetic effects in the anomalous transport model Yifeng Sun 1, and Che Ming Ko 1, 1 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College

More information

Study QCD phase diagram from an extended AMPT model

Study QCD phase diagram from an extended AMPT model Study QCD phase diagram from an extended AMPT model Jun Xu 1, ( 徐骏 ) 1.Shanghai Advanced Research Institute, Chinese Academy of Sciences.Shanghai Institute of Applied Physics, Chinese Academy of Sciences

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Transport Model Description of Flow

Transport Model Description of Flow Transport Model Description of Flow Che-Ming Ko Texas A&M University Transport model (AMPT) Parton coalescence Elliptic flow Collaborators: Z.W. Lin, S. Pal, B. Zhang, B.A. Li: PRC 61, 067901 (00); 64,

More information

Two-particle correlation with triggered di-jet

Two-particle correlation with triggered di-jet Two-particle correlation with triggered di-jet Guo-Liang Ma (SINAP) Thanks to X. N. Wang (LBNL), Y. G. Ma (SINAP), X. Z. Cai (SINAP) and S. Zhang (SINAP) 1 Some physics Jet correlation tell us p T trig

More information

Quark Matter 2018 Review

Quark Matter 2018 Review Central China Normal University Institude of Particle Physics Quark Matter 218 Review Ao Luo aluo@mails.ccnu.edu.cn May 31, 218 Content 1 Introduction Jet structure observables Experimental results Some

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J ) Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J ) Wayne State REU 2012 Research Advisor: Joern Putschke Research Undergraduate: Joshua

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information

Recent Result on Pentaquark Searches from

Recent Result on Pentaquark Searches from Recent Result on Pentaquark Searches from STAR @RHIC Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration Pentaquark Workshop @JLab, Oct. 2005

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Recent results from the NA61/SHINE experiment

Recent results from the NA61/SHINE experiment Recent results from the NA6/SHINE experiment Emil Kaptur for the NA6/SHINE collaboration University of Silesia October 7, 5 of 5 Outline NA6/SHINE experiment Selected results from energy scan (,,, 8, 58

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Global polarization of Λ and Λ hyperons in Pb Pb collisions at s NN = 2.76 TeV

Global polarization of Λ and Λ hyperons in Pb Pb collisions at s NN = 2.76 TeV Global polarization of and hyperons in Pb Pb collisions at s NN = 2.76 TeV Maxim Konyushikhin Wayne State University On behalf of the ALICE collaboration March 29, 27 QCD Chirality Workshop 27 Outline

More information

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration Report from PHENIX Xiaochun He Georgia State University For the PHENIX Collaboration Outline PHENIX status New PHENIX Results Jet and π 0 Heavy flavor Direct Photon & Flow 2 PHENIX Data Taking Mission

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Analysis of fixed target collisions with the STAR detector

Analysis of fixed target collisions with the STAR detector Analysis of fixed target collisions with the STAR detector Brooke Haag for the STAR Collaboration Hartnell College / University of California, Davis Presented at the Meeting of the California Section of

More information

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES (c) 2017 Rom. Rep. Phys. (for accepted papers only) FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES O. RISTEA 1, C. RISTEA 1,2,a, A. JIPA 1, T. PETRUSE 1, T. ESANU 3, M. CALIN

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev QCD Chirality 2017, UCLA, March 27-30, 2017 CME Theory: what next? D. Kharzeev 1 Many new theoretical and experimental developments since QCD Chirality 2016 Excellent talks at this Workshop demonstrate

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Quarkonia and open heavy-flavour production in high multiplicity pp collisions

Quarkonia and open heavy-flavour production in high multiplicity pp collisions Quarkonia and open heavy-flavour production in high multiplicity pp collisions Sarah Porteboeuf-Houssais for the ALICE Collaboration QGP France, Etretat, 9-12 Septembre 2013 Physics motivations in the

More information

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at and S Hadrons Quark Anselm Vossen 1 CP-Violation in quark Fragmentation 2 Transitions in the QCD vacuum carry net chirality

More information

Small systems Resonances hadronic phase partonic phase?

Small systems Resonances hadronic phase partonic phase? Christina Markert University of Texas at Austin Small systems Resonances hadronic phase partonic phase? NeD-216, Phuket, Thailand, 31 Oct - 5 Nov 216 1 Phase diagram of nuclear matter (QCD) NeD-216, Phuket,

More information

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Gunther Roland - MIT Supercomputing RHIC Physics TIFR, Mumbai Dec 5-9 2005 This talk dn/dη/ Pseudorapidity Hadron

More information

HF Production and Dynamics in AMPT

HF Production and Dynamics in AMPT HF Production and Dynamics in AMPT Zi-Wei Lin Department of Physics East Carolina University INT Program INT-17-1b Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks May 1 - June 8, 2017

More information

Quarkonium results in pa & AA: from RHIC to LHC

Quarkonium results in pa & AA: from RHIC to LHC International School of Nuclear Physics 38 th course Nuclear matter under extreme conditions relativistic heavy-ion collisions September 2016 Quarkonium results in pa & AA: from RHIC to LHC Roberta Arnaldi

More information

Directed and elliptic flow from Au+Au collisions at 200 GeV and azimuthal correlations in p+p and d+au collisions at 200 GeV

Directed and elliptic flow from Au+Au collisions at 200 GeV and azimuthal correlations in p+p and d+au collisions at 200 GeV Directed and elliptic flow from Au+Au collisions at 200 GeV and azimuthal correlations in p+p and d+au collisions at 200 GeV Aihong Tang for the Collaboration 1 Directed flow (v1) Picture: UrQMD X Z r

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

The Chiral Magnetic Effect in Heavy Ion Collisions From Hydrodynamic Simulations

The Chiral Magnetic Effect in Heavy Ion Collisions From Hydrodynamic Simulations Macalester Journal of Physics and Astronomy Volume 5 Issue 1 Spring 2017 Article 5 May 2017 The Chiral Magnetic Effect in Heavy Ion Collisions From Hydrodynamic Simulations Elias Lilleskov Macalester College,

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

EVENT BY EVENT PHYSICS IN ALICE

EVENT BY EVENT PHYSICS IN ALICE EVENT BY EVENT PHYSICS IN ALICE Panos Christakoglou NIKHEF - Utrecht University for the ALICE Collaboration 1 MOTIVATION The nature and the time evolution of the hot and dense system created in a heavy-ion

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Leszek Adamczyk On behalf of STAR Collaboration September 7, 2016 RHIC AA: Au+Au, Cu+Cu,

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Beam Energy Scan Program in STAR Experimental Approach to the QCD Phase Diagram

Beam Energy Scan Program in STAR Experimental Approach to the QCD Phase Diagram Beam Energy Scan Program in STAR Experimental Approach to the QCD Phase Diagram Grazyna Odyniec / LBNL, Berkeley for STAR Collaboration Central Au+Au @ 7.7 GeV event in STAR TPC CPOD 2010, Dubna, Russia,

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Review of collective flow at RHIC and LHC

Review of collective flow at RHIC and LHC Review of collective flow at RHIC and LHC Jaap Onderwaater 29 November 2012 J. Onderwaater (EMMI,GSI) Collective flow 29 November 2012 1 / 37 Heavy ion collision stages Outline Heavy ion collisions and

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

arxiv: v2 [nucl-th] 15 Jun 2017

arxiv: v2 [nucl-th] 15 Jun 2017 EPJ manuscript No. (will be inserted by the editor) Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model Liang Zheng 1a, Hui Li 1, Hong Qin, Qi-Ye Shou 1b, and Zhong-Bao

More information

Results on heavy ion collisions at LHCb

Results on heavy ion collisions at LHCb Results on heavy ion collisions at LHCb Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow 28th Rencontres de Blois 29.05-03.06 2016 Outline LHCb - general purpose forward experiment Physics

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Exploring dense matter at FAIR: The CBM Experiment

Exploring dense matter at FAIR: The CBM Experiment Exploring dense matter at FAIR: The CBM Experiment What s it all about Landmarks of the QCD phase diagram: deconfinement phase transition chiral phase transition critical point 2 Signatures of phase transition

More information

Physics with Heavy-Ion Beams at SppC

Physics with Heavy-Ion Beams at SppC Physics with Heavy-Ion Beams at SppC Guang-You Qin Central China Normal University Workshop on Physics at the CEPC/SppC August 10-1, 015 IHEP, Beijing Many thanks to Qun Wang, Xin-Nian Wang, Nu Xu Outline

More information

arxiv: v2 [nucl-ex] 8 Sep 2016

arxiv: v2 [nucl-ex] 8 Sep 2016 An experimental review on elliptic flow of strange and multi-strange hadrons in relativistic heavy ion collisions Shusu Shi 1 1 Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle

More information

MAGNETIC FIELDS EVERYWHERE

MAGNETIC FIELDS EVERYWHERE MAY 1, 016 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (015) pp. 1-09] May 1, 016 Universe www.mpifr-bonn.mpg.de Current galactic magnetic fields ~ 10-6 G Current magnetic fields

More information

Heavy Flavor Results from STAR

Heavy Flavor Results from STAR Heavy Flavor Results from STAR Wei Xie for STAR Collaboration (PURDUE University, West Lafayette) Open Heavy Flavor Production D meson direct measurement Non-photonic electron Heavy Quarkonia Production

More information

Thermal vorticity and spin polarization in heavy-ion collisions

Thermal vorticity and spin polarization in heavy-ion collisions Thermal vorticity and spin polarization in heavy-ion collisions ergy range from s = 7.7 GeV to GeV is of the order of s, surpassing the vorticity of any other known fluid [5]. The STAR measurement opened

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

arxiv: v1 [hep-ex] 22 Jun 2009

arxiv: v1 [hep-ex] 22 Jun 2009 CPC(HEP & NP), 29, 33(X): 1 7 Chinese Physics C Vol. 33, No. X, Xxx, 29 Recent results on nucleon resonance electrocouplings from the studies of π + π p electroproduction with the CLAS detector V. I. Mokeev

More information

arxiv:nucl-ex/ v1 13 Dec 2005

arxiv:nucl-ex/ v1 13 Dec 2005 The Ratio Σ /Λ at RHIC arxiv:nucl-ex/58v 3 Dec 5 G. Van Buren for the STAR Collaboration Dept. of Physics, Brookhaven National Laboratory, Upton, NY 973-5 USA E-mail: gene@bnl.gov Abstract While yields

More information

CHARGE CONSERVATION IN RHIC AND CONTRIBUTIONS TO LOCAL PARITY VIOLATION OBSERVABLES. Soeren Schlichting

CHARGE CONSERVATION IN RHIC AND CONTRIBUTIONS TO LOCAL PARITY VIOLATION OBSERVABLES. Soeren Schlichting CHARGE CONSERVATION IN RHIC AND CONTRIBUTIONS TO LOCAL PARITY VIOLATION OBSERVABLES By Soeren Schlichting A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

(Some) Bulk Properties at RHIC

(Some) Bulk Properties at RHIC (Some) Bulk Properties at RHIC Many thanks to organizers! Kai Schweda, University of Heidelberg / GSI Darmstadt 1/26 EMMI workshop, St. Goar, 31 Aug 3 Sep, 2009 Kai Schweda Outline Introduction Collectivity

More information

Fluctuations: Experiment

Fluctuations: Experiment Fluctuations: Experiment MIT QCD in the RHIC Era - ITP/UCSB April 8-12 2002 Fluctuations: Experiment Survey of experimental results Global fluctuations of intensive variables Energy and centrality dependence

More information