Supplement to Covariance Matrix Estimation for Stationary Time Series

Size: px
Start display at page:

Download "Supplement to Covariance Matrix Estimation for Stationary Time Series"

Transcription

1 Supplement to Covariance Matrix Estimation for Stationary ime Series Han Xiao and Wei Biao Wu Department of Statistics 5734 S. University Ave Chicago, IL In this document we give the proofs of Remark 5 and Lemma 9 of the main article, as well as a few remarks on Lemma 9. All the equation, theorem, lemma and remark numbers refer to the main article. he equations and remarks introduced in this document are numbered with an S -prefix. Proof of Remark 5. Set b = 2 1 k=b +1 γ k. Define g,b (θ) = π 1 1 k=b +1 γ k cos(kθ). Since 1 B k=1 kγ k = O(B / ), if we can show that lim P { [ 2π min ˆf,B (θ) E ˆf ],B (θ) g,b (θ) θ } B log B 2 b /5 = 1, (S.1) then (31) will follow by using (30) and similar arguments as those which have led to the lower bound in heorem 2. Let k N be such that A k 1 B < A k. Define D = {θ [0, π] : cos(a k θ) 1/2}, then 2π g,b (θ) b /5 for θ D. Define λ,j = 2πj log(b ) 3 /A k, and set j = max{j : λ,j π}. Using the arguments of Liu and Wu (2010), if p is sufficiently large, we have P [ min 0 j j B where w = 2 log j and f,b (λ,j) Ef,B (λ,j) 2f(λ,j) x w z ] 1 e ex/2, z = (2 log j ) 1/2 (8 log j ) 1/2 (log log j + log(4π)). 1

2 H. Xiao, W.B. Wu/Supplementary File 2 Since the spectral density is bounded away from zero, i.e. ( ) f := min f(θ) A αk 1 θ 2π 4π, and j B /[2 log(b ) 3 ], it follows that { P min [f,b (λ 0 j j,j) Ef,B (λ,j)] f 2B log B hen (S.1) follows by noting that λ,j D for 0 j j. } 1. Proof of Lemma 9. Let w = m /2, and split Q into two parts as Q,1 = 1 X t s=t B a s,t X s and Q,2 = X t t s= a s,t X s, where we make the convention that if a term X s in the previous sum has the subscript s / [1, ], then that term should be replaced by zero. Define Q,1 and Q,2 similarly. We consider Q,2 first. Write Q,2 Q,2 = (X t X t s+w t ) a s,t H s w X s + (X s X s ) a s,t Xt s= t=s+1 + (X t X t t ) a s,t (X s H s w X s ) =: I + II + III. s= For the first term, write I = k=m +1 t P t k X t a s,t H s w X s. s= Since 2w m, we know for each fixed k > m + 1, ( ) t P t k X t a s,t H s w X s s= 1 t is a backward martingale difference sequence with respect to the filtration (F t k ) 1 t. It follows that by (38) I p/2 k=m +1 C p/2 δp (k) C p w B Θ p C p C p/2 Θ p B Θ p (m ).

3 H. Xiao, W.B. Wu/Supplementary File 3 Similarly we have II p/2 C B Θ p (m ). For the third term, using the arguments of Proposition 1 of Liu and Wu (2010), we have III EIII p/2 2 2 C p/2 C p B [Θ p (w ) p (m ) + Θ p (m ) p (w )]. Now we consider Q,1. Observe that Q,1 is nonzero only when B > w. Write Q,1 Q,1 = (X t X t ) + (X t X t ) 1 s=t B a s,t Xs + 1 (X s X s ) s+b t=s+w +1 a s,t Xt s=t B a s,t (X s X s ) =: IV + V + V I. Similarly as II and III, we have V p/2 C p/2 C p Θ p B Θ p (m ) and Write the term IV V I E(V I ) p/2 4 C p/2 C p B Θ p (m ) p (m ). IV = as m k=m +1 l=0 1 P t k X t s=t B a s,t P s l X s. For each fixed pair (k, l), if we remove the the pair (s, t) such that t k = s l from the sum 1 P t k X t a s,t P s l X s, s=t B then by (38) P t k X t t B s<,s l t k a s,t P s l X s 2 C p/2 C p B δ p (k)δ p (l). p/2 herefore, it remains to deal with the term P s lx s t Λ s a s,t P s l X t for 0 l m, where Λ s = [s (w (m l)), (s + B ) ]. Since the sequence (P s l X s t Λ s a s,t P s l X t ) indexed by s is (4B )-dependent, and ( 4B ) E 0 P s l X s a s,t P s l X t 2 4B δ p (l) Θ p (m ); t Λ s p/2 we have by (38) ( E s+b 0 P s l X s a s,t P s l X t) 4 2 C p/2 B δ p (l)θ p (m ). t=s+w +1 p/2 Putting these pieces together, the proof is complete.

4 H. Xiao, W.B. Wu/Supplementary File 4 Remark S.1. If Θ p (m) m α for some α > 0, then the bound becomes C p B m α. If m = O(B ), then this order of magnitude is optimal here, and cannot be improved in general. For example, consider the linear process X t = s=0 a sɛ t s and the quadratic form Q = X 1 s<t tx s 1 0<t s B, where a s = s (1+α), and ɛ s s are iid standard normal random variables. Observe that Q Q is also a quadratic form of ɛ s s which can be written as Q Q = b k,l ɛ k ɛ l, which implies that <k l 2 E 0 Q E 0 Q = 2 b 2 k,k + <k<l Elementary but tedious calculations show that for B < t < B and B /3 k 2B /3, we have b t,t (m +1) k B /3 B /3 a k k=1 b 2 k,l a m +k Cm α. It follows that E 0 Q E 0 Q C B m α, namely the order of magnitude is achieved. Remark S.2. A similar bound was obtained by Liu and Wu (2010): E 0 Q E 0 Q p/2 C p B p (m ). In term of the order of magnitude, our result is better, because Θ p (m) p (m). o be more precise, consider the condition Θ p (m) = O(m α ) for some α > 0, which is the assumption we use for heorem 4. Since Ψ p (m) Θ p (m), we have Ψ p (m) = O(m α ). Conversely, if Ψ p (m) = O(m α+1/2 ), then Θ p (m) = O(m α ). A proof was given by Wu and Zhao (2008). herefore, when using both Θ p (m) = O(m α ) and Ψ p (m) = O(m β ) as assumptions, we necessarily assume α > 0 and α β α + 1/2 to avoid redundancy. Under these two conditions we have p (m) m β/(1+α) min{δ p (k), Cm β } + Θ m ( m β/(1+α) + 1) Cm αβ/(1+α), which implies that p (m) = O(m αβ/(1+α) ). We shall give an example to show that the order cannot be improved. Define { k δ p (k) = (1+α) + 2 βn if k = 2 n for some n N k (1+α) otherwise.

5 H. Xiao, W.B. Wu/Supplementary File 5 It is easily seen that Θ p (m) m α and Ψ p (m) m β. herefore, p (2 n ) = min{k (1+α), 2 βn } 2 βn/(1+α) C (2 n ) αβ/(1+α). min{k (1+α), 2 βn } + Θ p ( 2 βn/(1+α) + 1) In particular, if we only put the condition on Θ p (m), then the largest exponent γ such that p (m) = O(m γ ) for any sequence satisfying Θ p (m) = O(m α ) is γ = α 2 /(1 + α). References Liu, W. and Wu, W. B. (2010). Asymptotics of spectral density estimates. Econometric heory Wu, W. B. and Zhao, Z. (2008). Moderate deviations for stationary processes. Statist. Sinica

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

Appendices to the paper "Detecting Big Structural Breaks in Large Factor Models" (2013) by Chen, Dolado and Gonzalo.

Appendices to the paper Detecting Big Structural Breaks in Large Factor Models (2013) by Chen, Dolado and Gonzalo. Appendices to the paper "Detecting Big Structural Breaks in Large Factor Models" 203 by Chen, Dolado and Gonzalo. A.: Proof of Propositions and 2 he proof proceeds by showing that the errors, factors and

More information

BERNOULLI DYNAMICAL SYSTEMS AND LIMIT THEOREMS. Dalibor Volný Université de Rouen

BERNOULLI DYNAMICAL SYSTEMS AND LIMIT THEOREMS. Dalibor Volný Université de Rouen BERNOULLI DYNAMICAL SYSTEMS AND LIMIT THEOREMS Dalibor Volný Université de Rouen Dynamical system (Ω,A,µ,T) : (Ω,A,µ) is a probablity space, T : Ω Ω a bijective, bimeasurable, and measure preserving mapping.

More information

MODERATE DEVIATIONS FOR STATIONARY PROCESSES

MODERATE DEVIATIONS FOR STATIONARY PROCESSES Statistica Sinica 18(2008), 769-782 MODERATE DEVIATIONS FOR STATIONARY PROCESSES Wei Biao Wu and Zhibiao Zhao University of Chicago and Pennsylvania State University Abstract: We obtain asymptotic expansions

More information

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω)

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω) Online Appendix Proof of Lemma A.. he proof uses similar arguments as in Dunsmuir 979), but allowing for weak identification and selecting a subset of frequencies using W ω). It consists of two steps.

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

University of Pavia. M Estimators. Eduardo Rossi

University of Pavia. M Estimators. Eduardo Rossi University of Pavia M Estimators Eduardo Rossi Criterion Function A basic unifying notion is that most econometric estimators are defined as the minimizers of certain functions constructed from the sample

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

UNIT ROOT TESTING FOR FUNCTIONALS OF LINEAR PROCESSES

UNIT ROOT TESTING FOR FUNCTIONALS OF LINEAR PROCESSES Econometric Theory, 22, 2006, 1 14+ Printed in the United States of America+ DOI: 10+10170S0266466606060014 UNIT ROOT TESTING FOR FUNCTIONALS OF LINEAR PROCESSES WEI BIAO WU University of Chicago We consider

More information

{ ϕ(f )Xt, 1 t n p, X t, n p + 1 t n, { 0, t=1, W t = E(W t W s, 1 s t 1), 2 t n.

{ ϕ(f )Xt, 1 t n p, X t, n p + 1 t n, { 0, t=1, W t = E(W t W s, 1 s t 1), 2 t n. Innovations, Sufficient Statistics, And Maximum Lielihood In ARM A Models Georgi N. Boshnaov Institute of Mathematics, Bulgarian Academy of Sciences 1. Introduction. Let X t, t Z} be a zero mean ARMA(p,

More information

More Empirical Process Theory

More Empirical Process Theory More Empirical Process heory 4.384 ime Series Analysis, Fall 2008 Recitation by Paul Schrimpf Supplementary to lectures given by Anna Mikusheva October 24, 2008 Recitation 8 More Empirical Process heory

More information

PROBABILITY AND MOMENT INEQUALITIES UNDER DEPENDENCE

PROBABILITY AND MOMENT INEQUALITIES UNDER DEPENDENCE Statistica Sinica 23 2013, 1257-1272 doi:http://dx.doi.org/10.5705/ss.2011.287 PROBABILITY AND MOMENT INEQUALITIES UNDER DEPENDENCE Weidong Liu, Han Xiao and Wei Biao Wu Shanghai Jiao Tong University,

More information

Critical percolation under conservative dynamics

Critical percolation under conservative dynamics Critical percolation under conservative dynamics Christophe Garban ENS Lyon and CNRS Joint work with and Erik Broman (Uppsala University) Jeffrey E. Steif (Chalmers University, Göteborg) PASI conference,

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Limit theorems for dependent regularly varying functions of Markov chains

Limit theorems for dependent regularly varying functions of Markov chains Limit theorems for functions of with extremal linear behavior Limit theorems for dependent regularly varying functions of In collaboration with T. Mikosch Olivier Wintenberger wintenberger@ceremade.dauphine.fr

More information

CONCEPT OF DENSITY FOR FUNCTIONAL DATA

CONCEPT OF DENSITY FOR FUNCTIONAL DATA CONCEPT OF DENSITY FOR FUNCTIONAL DATA AURORE DELAIGLE U MELBOURNE & U BRISTOL PETER HALL U MELBOURNE & UC DAVIS 1 CONCEPT OF DENSITY IN FUNCTIONAL DATA ANALYSIS The notion of probability density for a

More information

GMM and SMM. 1. Hansen, L Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p

GMM and SMM. 1. Hansen, L Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p GMM and SMM Some useful references: 1. Hansen, L. 1982. Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p. 1029-54. 2. Lee, B.S. and B. Ingram. 1991 Simulation estimation

More information

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017 Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION By Degui Li, Peter C. B. Phillips, and Jiti Gao September 017 COWLES FOUNDATION DISCUSSION PAPER NO.

More information

Department of Economics, Boston University. Department of Economics, Boston University

Department of Economics, Boston University. Department of Economics, Boston University Supplementary Material Supplement to Identification and frequency domain quasi-maximum likelihood estimation of linearized dynamic stochastic general equilibrium models : Appendix (Quantitative Economics,

More information

Incorporation of Sparsity Information in Large-scale Multiple Two-sample t Tests

Incorporation of Sparsity Information in Large-scale Multiple Two-sample t Tests Incorporation of Sparsity Information in Large-scale Multiple Two-sample t Tests Weidong Liu October 19, 2014 Abstract Large-scale multiple two-sample Student s t testing problems often arise from the

More information

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes.

LECTURE 10 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA. In this lecture, we continue to discuss covariance stationary processes. MAY, 0 LECTURE 0 LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA In this lecture, we continue to discuss covariance stationary processes. Spectral density Gourieroux and Monfort 990), Ch. 5;

More information

On singular values distribution of a matrix large auto-covariance in the ultra-dimensional regime. Title

On singular values distribution of a matrix large auto-covariance in the ultra-dimensional regime. Title itle On singular values distribution of a matrix large auto-covariance in the ultra-dimensional regime Authors Wang, Q; Yao, JJ Citation Random Matrices: heory and Applications, 205, v. 4, p. article no.

More information

1 The Glivenko-Cantelli Theorem

1 The Glivenko-Cantelli Theorem 1 The Glivenko-Cantelli Theorem Let X i, i = 1,..., n be an i.i.d. sequence of random variables with distribution function F on R. The empirical distribution function is the function of x defined by ˆF

More information

A remark on the maximum eigenvalue for circulant matrices

A remark on the maximum eigenvalue for circulant matrices IMS Collections High Dimensional Probability V: The Luminy Volume Vol 5 (009 79 84 c Institute of Mathematical Statistics, 009 DOI: 04/09-IMSCOLL5 A remark on the imum eigenvalue for circulant matrices

More information

Convergence of the long memory Markov switching model to Brownian motion

Convergence of the long memory Markov switching model to Brownian motion Convergence of the long memory Marov switching model to Brownian motion Changryong Bae Sungyunwan University Natércia Fortuna CEF.UP, Universidade do Porto Vladas Pipiras University of North Carolina February

More information

The diameter of a random Cayley graph of Z q

The diameter of a random Cayley graph of Z q The diameter of a random Cayley graph of Z q Gideon Amir Ori Gurel-Gurevich September 4, 009 Abstract Consider the Cayley graph of the cyclic group of prime order q with k uniformly chosen generators.

More information

Recursive Estimation of Time-Average Variance Constants Through Prewhitening

Recursive Estimation of Time-Average Variance Constants Through Prewhitening Recursive Estimation of Time-Average Variance Constants Through Prewhitening Wei Zheng a,, Yong Jin b, Guoyi Zhang c a Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis,

More information

Discussion of High-dimensional autocovariance matrices and optimal linear prediction,

Discussion of High-dimensional autocovariance matrices and optimal linear prediction, Electronic Journal of Statistics Vol. 9 (2015) 1 10 ISSN: 1935-7524 DOI: 10.1214/15-EJS1007 Discussion of High-dimensional autocovariance matrices and optimal linear prediction, Xiaohui Chen University

More information

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES ECO 513 Fall 2009 C. Sims CONDIIONAL EXPECAION; SOCHASIC PROCESSES 1. HREE EXAMPLES OF SOCHASIC PROCESSES (I) X t has three possible time paths. With probability.5 X t t, with probability.25 X t t, and

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

On the Grassmann modules for the symplectic groups

On the Grassmann modules for the symplectic groups On the Grassmann modules for the symplectic groups Bart De Bruyn Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 81 (S), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

9.1 Orthogonal factor model.

9.1 Orthogonal factor model. 36 Chapter 9 Factor Analysis Factor analysis may be viewed as a refinement of the principal component analysis The objective is, like the PC analysis, to describe the relevant variables in study in terms

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information

ASYMPTOTIC NORMALITY OF THE QMLE ESTIMATOR OF ARCH IN THE NONSTATIONARY CASE

ASYMPTOTIC NORMALITY OF THE QMLE ESTIMATOR OF ARCH IN THE NONSTATIONARY CASE Econometrica, Vol. 7, No. March, 004), 4 4 ASYMPOIC NORMALIY OF HE QMLE ESIMAOR OF ARCH IN HE NONSAIONARY CASE BY SØREN OLVER JENSEN AND ANDERS RAHBEK We establish consistency and asymptotic normality

More information

Jointly measurable and progressively measurable stochastic processes

Jointly measurable and progressively measurable stochastic processes Jointly measurable and progressively measurable stochastic processes Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 18, 2015 1 Jointly measurable stochastic processes

More information

Big Data Analytics: A New Perspective

Big Data Analytics: A New Perspective Big Data Analytics: A New Perspective A. Chudik ederal Reserve Bank of Dallas G. Kapetanios King s College London, University of London M. Hashem Pesaran USC Dornsife INE, and rinity College, Cambridge

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

Some functional (Hölderian) limit theorems and their applications (II)

Some functional (Hölderian) limit theorems and their applications (II) Some functional (Hölderian) limit theorems and their applications (II) Alfredas Račkauskas Vilnius University Outils Statistiques et Probabilistes pour la Finance Université de Rouen June 1 5, Rouen (Rouen

More information

Extreme inference in stationary time series

Extreme inference in stationary time series Extreme inference in stationary time series Moritz Jirak FOR 1735 February 8, 2013 1 / 30 Outline 1 Outline 2 Motivation The multivariate CLT Measuring discrepancies 3 Some theory and problems The problem

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Solutions to selected problems 1. Let A B R n. Show that int A int B but in general bd A bd B. Solution. Let x int A. Then there is ɛ > 0 such that B ɛ (x) A B. This shows x int B. If A = [0, 1] and

More information

Department of Economics, UCSD UC San Diego

Department of Economics, UCSD UC San Diego Department of Economics, UCSD UC San Diego itle: Spurious Regressions with Stationary Series Author: Granger, Clive W.J., University of California, San Diego Hyung, Namwon, University of Seoul Jeon, Yongil,

More information

Comparing Nested Predictive Regression Models with Persistent Predictors

Comparing Nested Predictive Regression Models with Persistent Predictors Comparing Nested Predictive Regression Models with Persistent Predictors Yan Ge y and ae-hwy Lee z November 29, 24 Abstract his paper is an extension of Clark and McCracken (CM 2, 25, 29) and Clark and

More information

On the Feedback Capacity of Stationary Gaussian Channels

On the Feedback Capacity of Stationary Gaussian Channels On the Feedback Capacity of Stationary Gaussian Channels Young-Han Kim Information Systems Laboratory Stanford University Stanford, CA 94305-950 yhk@stanford.edu Abstract The capacity of stationary additive

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

A Single-Pass Algorithm for Spectrum Estimation With Fast Convergence Han Xiao and Wei Biao Wu

A Single-Pass Algorithm for Spectrum Estimation With Fast Convergence Han Xiao and Wei Biao Wu 4720 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 57, NO 7, JULY 2011 A Single-Pass Algorithm for Spectrum Estimation With Fast Convergence Han Xiao Wei Biao Wu Abstract We propose a single-pass algorithm

More information

International Journal of Pure and Applied Mathematics Volume 63 No , STABILITY OF THE NULL SOLUTION OF THE EQUATION

International Journal of Pure and Applied Mathematics Volume 63 No , STABILITY OF THE NULL SOLUTION OF THE EQUATION International Journal of Pure and Applied Mathematics Volume 63 No. 4 010, 507-51 STABILITY OF THE NULL SOLUTION OF THE EQUATION ẋ(t) = a(t)x(t) + b(t)x([t]) Suzinei A.S. Marconato 1, Maria A. Bená 1 Department

More information

The loss function and estimating equations

The loss function and estimating equations Chapter 6 he loss function and estimating equations 6 Loss functions Up until now our main focus has been on parameter estimating via the maximum likelihood However, the negative maximum likelihood is

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it Statistics 300B Winter 08 Final Exam Due 4 Hours after receiving it Directions: This test is open book and open internet, but must be done without consulting other students. Any consultation of other students

More information

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0}

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0} VARIATION OF ITERATED BROWNIAN MOTION Krzysztof Burdzy University of Washington 1. Introduction and main results. Suppose that X 1, X 2 and Y are independent standard Brownian motions starting from 0 and

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

Proofs for Large Sample Properties of Generalized Method of Moments Estimators

Proofs for Large Sample Properties of Generalized Method of Moments Estimators Proofs for Large Sample Properties of Generalized Method of Moments Estimators Lars Peter Hansen University of Chicago March 8, 2012 1 Introduction Econometrica did not publish many of the proofs in my

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

STIT Tessellations via Martingales

STIT Tessellations via Martingales STIT Tessellations via Martingales Christoph Thäle Department of Mathematics, Osnabrück University (Germany) Stochastic Geometry Days, Lille, 30.3.-1.4.2011 Christoph Thäle (Uni Osnabrück) STIT Tessellations

More information

Model selection using penalty function criteria

Model selection using penalty function criteria Model selection using penalty function criteria Laimonis Kavalieris University of Otago Dunedin, New Zealand Econometrics, Time Series Analysis, and Systems Theory Wien, June 18 20 Outline Classes of models.

More information

Spectral Analysis of Random Processes

Spectral Analysis of Random Processes Spectral Analysis of Random Processes Spectral Analysis of Random Processes Generally, all properties of a random process should be defined by averaging over the ensemble of realizations. Generally, all

More information

Bregman Divergence and Mirror Descent

Bregman Divergence and Mirror Descent Bregman Divergence and Mirror Descent Bregman Divergence Motivation Generalize squared Euclidean distance to a class of distances that all share similar properties Lots of applications in machine learning,

More information

Periodic Orbits of Weakly Exact Magnetic Flows

Periodic Orbits of Weakly Exact Magnetic Flows Nonl. Analysis and Differential Equations, Vol. 1, 213, no. 2, 93-1 HIKARI Ltd, www.m-hikari.com Periodic Orbits of Weakly Exact Magnetic Flows Osvaldo Osuna Instituto de Física y Matemáticas, Universidad

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

Limiting behaviour of large Frobenius numbers. V.I. Arnold

Limiting behaviour of large Frobenius numbers. V.I. Arnold Limiting behaviour of large Frobenius numbers by J. Bourgain and Ya. G. Sinai 2 Dedicated to V.I. Arnold on the occasion of his 70 th birthday School of Mathematics, Institute for Advanced Study, Princeton,

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Abstract: We offer a proof of quadratic reciprocity that arises

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

f(x) f(z) c x z > 0 1

f(x) f(z) c x z > 0 1 INVERSE AND IMPLICIT FUNCTION THEOREMS I use df x for the linear transformation that is the differential of f at x.. INVERSE FUNCTION THEOREM Definition. Suppose S R n is open, a S, and f : S R n is a

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor)

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Matija Vidmar February 7, 2018 1 Dynkin and π-systems Some basic

More information

On the behavior of the population density for branching random. branching random walks in random environment. July 15th, 2011

On the behavior of the population density for branching random. branching random walks in random environment. July 15th, 2011 On the behavior of the population density for branching random walks in random environment Makoto Nakashima Kyoto University July 15th, 2011 Branching Processes offspring distribution P(N) = {{q(k)} k=0

More information

1 Some basic renewal theory: The Renewal Reward Theorem

1 Some basic renewal theory: The Renewal Reward Theorem Copyright c 27 by Karl Sigman Some basic renewal theory: The Renewal Reward Theorem Here, we will present some basic results in renewal theory such as the elementary renewal theorem, and then the very

More information

Expecting the Unexpected: Uniform Quantile Regression Bands with an application to Investor Sentiments

Expecting the Unexpected: Uniform Quantile Regression Bands with an application to Investor Sentiments Expecting the Unexpected: Uniform Bands with an application to Investor Sentiments Boston University November 16, 2016 Econometric Analysis of Heterogeneity in Financial Markets Using s Chapter 1: Expecting

More information

PRIME NUMBER THEOREM

PRIME NUMBER THEOREM PRIME NUMBER THEOREM RYAN LIU Abstract. Prime numbers have always been seen as the building blocks of all integers, but their behavior and distribution are often puzzling. The prime number theorem gives

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 23, 2018 Outline 1 Dirichlet

More information

Generalized Method of Moments Estimation

Generalized Method of Moments Estimation Generalized Method of Moments Estimation Lars Peter Hansen March 0, 2007 Introduction Generalized methods of moments (GMM) refers to a class of estimators which are constructed from exploiting the sample

More information

A One-Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models *

A One-Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 90 http://www.dallasfed.org/assets/documents/institute/wpapers/016/090.pdf A One-Covariate at a ime Multiple

More information

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1 FOURIER TRANSFORMS OF STATIONARY PROCESSES WEI BIAO WU September 8, 003 Abstract. We consider the asymptotic behavior of Fourier transforms of stationary and ergodic sequences. Under sufficiently mild

More information

Piecewise Constant Prediction

Piecewise Constant Prediction Piecewise Constant Prediction Erik Ordentlich Information heory Research Hewlett-Packard Laboratories Palo Alto, CA 94304 Email: erik.ordentlich@hp.com Marcelo J. Weinberger Information heory Research

More information

Submitted to the Brazilian Journal of Probability and Statistics

Submitted to the Brazilian Journal of Probability and Statistics Submitted to the Brazilian Journal of Probability and Statistics Multivariate normal approximation of the maximum likelihood estimator via the delta method Andreas Anastasiou a and Robert E. Gaunt b a

More information

Jackknife Empirical Likelihood Test for Equality of Two High Dimensional Means

Jackknife Empirical Likelihood Test for Equality of Two High Dimensional Means Jackknife Empirical Likelihood est for Equality of wo High Dimensional Means Ruodu Wang, Liang Peng and Yongcheng Qi 2 Abstract It has been a long history to test the equality of two multivariate means.

More information

Change-Point Estimation

Change-Point Estimation Change-Point Estimation. Asymptotic Quasistationary Bias For notational convenience, we denote by {S n}, for n, an independent copy of {S n } and M = sup S k, k

More information

A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models

A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models Tze Leung Lai, Stanford University Ching-Kang Ing, Academia Sinica, Taipei Zehao Chen, Lehman Brothers

More information

THE phenomena of time delays are often encountered in

THE phenomena of time delays are often encountered in 0 American Control Conference on O'Farrell Street San Francisco CA USA June 9 - July 0 0 Robust stability criteria for uncertain systems with delay and its derivative varying within intervals Luis Felipe

More information

Stat 710: Mathematical Statistics Lecture 40

Stat 710: Mathematical Statistics Lecture 40 Stat 710: Mathematical Statistics Lecture 40 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 40 May 6, 2009 1 / 11 Lecture 40: Simultaneous

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Econ 623 Econometrics II. Topic 3: Non-stationary Time Series. 1 Types of non-stationary time series models often found in economics

Econ 623 Econometrics II. Topic 3: Non-stationary Time Series. 1 Types of non-stationary time series models often found in economics Econ 623 Econometrics II opic 3: Non-stationary ime Series 1 ypes of non-stationary time series models often found in economics Deterministic trend (trend stationary): X t = f(t) + ε t, where t is the

More information