A Dynamic Level-k Model in Games

Size: px
Start display at page:

Download "A Dynamic Level-k Model in Games"

Transcription

1 Dynamic Level-k Model in Games Teck Ho and Xuanming Su UC erkeley March, 2010 Teck Hua Ho 1

2 4-stage Centipede Game Outcome Round % 30.3% 35.9% 20.0% 7.6% % 41.2% 38.2% 10.3% 2.2% ackward Induction 100% 0% 0% 0% 0% March, 2010 Teck Hua Ho 2

3 6-Stage Centipede Game Outcome Round % 5.5% 17.2% 33.1% 33.1% 9.00% 2.10% % 7.4% 22.8% 44.1% 16.9% 6.60% 0.70% ackward Induction 100% 0% 0% 0% 0% 0% 0% March, 2010 Teck Hua Ho 3

4 Outline ackward did induction i and dits systematic violations il i Dynamic Level-k model and the main theoretical results The centipede game Resolving well-known paradoxes: o o Cooperation in finitely repeated prisoner ss dilemma Chain-store paradox n empirical application: The centipede game lternative explanations o o Reputation-based story Social preferences March, 2010 Teck Hua Ho 4

5 ackward Induction Principle ackward did induction is the most widely idl accepted tdprinciple il to generate prediction in dynamic games of complete information Extensive-form games (e.g., Centipede) Finitely repeated games (e.g., Repeated PD and chain-store paradox) Multi-person dynamic programming For the principle p to work, every yplayer must be willingness to bet on others rationality March, 2010 Teck Hua Ho 5

6 Violations of ackward Induction Well-known violations in economic experiments include: ( ): Passing in the centipede game Cooperation in the finitely repeated PD Chain-store paradox Likely to be a failure of mutual consistency condition (different people make initial different bets on others rationality) March, 2010 Teck Hua Ho 6

7 Standard ssumptions in Equilibrium nalysis ssumptions ackward DLk Solution Method Induction Model Strategic Thinking X X est Response X X Mutual Consistency X? Instant t Equilibration X? March, 2010 Teck Hua Ho 7

8 Notations S : Total number of subgames (indexed by s) I : Total number of players (indexed by i) N s : Total number of players who are active at subgame s S = 4, I = 2, N = N = N = N = = 1 March, 2010 Teck Hua Ho 8

9 Deviation from ackward Induction δ ( I 1 L 1,..., L, G ) = ) S s 1 N s i 1 S N s 1 i D s ( L, L = = D s (L i,l ) = 1, 0, a ( L i ) a ( L otherwise ) 0 δ (.) 1 March, 2010 Teck Hua Ho 9

10 Examples Examples } { } { }; { T T T T L T P L T P L E ] 0 1 [1 ),, ( },,, { },,,, { };,,, { = = = = = G L L T T T T L T P L T P L δ Ex1: 1 0 ] 0 0 [1 ) ( },,, { },,,, { };,,, { = = = G L L T T T T L T T L T P L δ Ex2: March, 2010 Teck Hua Ho ] 0 0 [1 ),, ( = = G L L δ

11 Systematic Violation 1: Limited Induction δ ( L, L, G ) < δ ( L, L, G ( 4 G6 ) March, 2010 Teck Hua Ho 11

12 Limited Induction in Centipede Game Figure 1: Deviation in 4-stage versus 6-stage game (1 st round) March, 2010 Teck Hua Ho 12

13 Systematic Violation 2: Time Unraveling δ ( L ( t ), L ( t ), G ) 0 as t March, 2010 Teck Hua Ho 13

14 Time Unraveling in Centipede Game Figure 2: Deviation in 1 st vs. 10 th round of the 4-stage game March, 2010 Teck Hua Ho 14

15 Outline ackward did induction i and dits systematic violations il i Level-k model and the main theoretical results The centipede game Resolving well-known paradoxes: o o Cooperation in finitely repeated prisoner ss dilemma Chain-store paradox n empirical application: The centipede game lternative explanations o o Reputation-based story Social preferences March, 2010 Teck Hua Ho 15

16 Research question To develop a good descriptive model to predict the probability of player i (i=1,,i) choosing strategy j at subgame s (s=1,.., S) in any dynamic game of complete information P ij (s) March, 2010 Teck Hua Ho 16

17 Criteria of a Good Model Nests backward induction as a special case ehavioral plausible Heterogeneous in their bets on others rationality Captures limited induction and time unraveling Fits data well Simple (with as few parameters as the data would allow) March, 2010 Teck Hua Ho 17

18 Standard ssumptions in Equilibrium nalysis ssumptions ackward Hierarchical Induction Strategizing Solution Method Strategic Thinking X X est Response X X Mutual Consistency X Heterogenous ets Instant Equilibration X Learning March, 2010 Teck Hua Ho 18

19 Dynamic Level-kk Model: Summary Players choose rule from a rule hierarchy h Players make differential initial bets on others chosen rules fter each game play, players observe others rules (e.g., strategy method) Players update their beliefs on rules chosen by others Players always choose a rule to maximize their subjective expected utility in each round March, 2010 Teck Hua Ho 19

20 Dynamic Level-k Model: Rule Hierarchy Players choose rule from a rule hierarchy h generated dby bestresponses Rule hierarchy: L, L1, L2,... 0 L L ( ) k = R Lk 1 Restrict t L 0 to follow behavior proposed in the existing literature L = I March, 2010 Teck Hua Ho 20

21 Dynamic Level-k Model: Poisson Initial elief Different people make different initial i i bets on others chosen rules Poisson distributed initial beliefs: f ( K) = e τ K λ K! λ : average belief of rules used by opponents f(k) fraction of players think that their opponents use L k-1 rule. March, 2010 Teck Hua Ho 21

22 Dynamic Level-k model: elief Updating at the End of Round t Initial belief strength: N k (0) = β Update after observing which rule opponent chose i i N ( t ) = Ν ( t 1 ) + I(k,t) 1 k k i k ( t ) = S N k ' = 0 i k N ( t) i k ( t) I(k, t) = 1 if opponent chose L k and 0 otherwise ayesian updating involving a multi-nomial distribution with a Dirichlet prior (Fudenberg and Levine, 1998; Camerer and Ho, 1999) March, 2010 Teck Hua Ho 22

23 Dynamic Level-k model: : Optimal lrule in Round dt+1 Optimal rule k * : k * = arg max k = 1,.., S S S s= 1 k ' = 1 i k ' ( t) π ( a ks, a k ' s ) Let the specified action of rule L k at subgame s be a ks March, 2010 Teck Hua Ho 23

24 The Centipede Game (Rule Hierarchy) Player Player (P,-,P-) (,, (-,P,-,P),,, (P,-,P-) (P,-,T,-) (P,-,T,-) (T,-,T,-) (-,P,-,T) (-,T,-,P) (-,T,-,T) (-,T,-,T) March, 2010 Teck Hua Ho 24

25 Player in 4-Stage Centipede Game N i k(t) β=0.5 Round (t) L 0 L 1 L 2 L 3 L 4 Rule Used by Opponent Optimal Rule (Player ) 0 β L 2 1 β 1 L 3 L 2 2 β 2 L 3 L 2 3 β 3 L 3 L 4 March, 2010 Teck Hua Ho 25

26 Dynamic Level-kk Model: Summary Players choose rule from a rule hierarchy h Players make differential initial bets on others chosen rules fter each game play, players observe others rules (e.g., strategy method) Players update their beliefs on rules chosen by others Players always choose a rule to maximize their subjective expected utility in each round 2-paramter extension of backward induction (λ and β) March, 2010 Teck Hua Ho 26

27 Main Theoretical Results: Limited Induction δ ( L, L, G ) < δ ( L, L, G ) ( 4 G6 March, 2010 Teck Hua Ho 27

28 Main Theoretical Results: Time Unraveling δ ( L ( t ), L ( t ), G ) 0 as t March, 2010 Teck Hua Ho 28

29 Iterated Prisoner ss Dilemma (Rule Hierarchy) 33 3,3 05 0,5 5,0 1,1 Level Strategy 0 TFT* 1 TFT,D 2 TFT,D,D 3 TFT,D,D,D K TFT,D 1,D k * Kreps et al (1982) March, 2010 Teck Hua Ho 29

30 Main Theoretical Results δ ( L, L, GT ) < δ ( L, L, GT '); T' > T March, 2010 Teck Hua Ho 30

31 Main Theoretical Results δ ( L ( t), L ( t), G) 0 as t March, 2010 Teck Hua Ho 31

32 Properties of Level-0 Rule Maximize group payoff: level-0 player always chooses a decision that if others do the same will lead to the largest total payoff for the group (e.g., TFT in RPD) Protect individual id payoff: While maximizing i i group payoff, a level-0 player also ensures that the chosen decision rule is robust against continued exploitation by others (e.g., TFT in RPD) March, 2010 Teck Hua Ho 32

33 Chain-Store Paradox (Rule Hierarchy) E OUT IN 5 1 CS FIGHT SHRE Level Chain Store (CS) Entrant 0 FIGHT(F) GTR: OUT unless CSi is observed to share (then F,F,F,..,F,F,S 1 ENTER(E) 2 F,F,F,..,F,S,S GRE, E 3 FF F,F,,..F,S,S,S FSSS GTR,E,E E K F,..,F,S 1,..,S k GTR,E 1,..,E k-1 March, 2010 Teck Hua Ho 33

34 Main Theoretical Results March, 2010 Teck Hua Ho 34

35 Outline ackward did induction i and dits systematic violations il i Level-k model and the main theoretical results The centipede game Resolving well-known paradoxes: o o Cooperation in finitely repeated prisoner ss dilemma Chain-store paradox n empirical application: The centipede game lternative explanations o o Reputation-based story Social preferences March, 2010 Teck Hua Ho 35

36 4-Stage versus 6-Stage Centipede Games March, 2010 Teck Hua Ho 36

37 Empirical Regularities Outcome Round % 6.2% 30.3% 3% 35.9% 20.0% 0% 76% 7.6% % 41.2% 38.2% 10.3% 2.2% Outcome Round % 5.5% 17.2% 33.1% 33.1% 9.00% 2.10% % 7.4% 22.8% 44.1% 16.9% 6.60% 0.70% March, 2010 Teck Hua Ho 37

38 Dynamic Level-k Model s Prediction in 4-stage game March, 2010 Teck Hua Ho 38

39 Dynamic Level-k Model s Prediction in 6-stage game March, 2010 Teck Hua Ho 39

40 MLE Model Estimates Special cases are rejected oth heterogeneity and learning are important March, 2010 Teck Hua Ho 40

41 Model Predictions March, 2010 Teck Hua Ho 41

42 lternative 1: Gang of Four s Story y( (Kreps, et al, 1982) large θ = proportion of altruistic players (level 0 players) March, 2010 Teck Hua Ho 42

43 Gang of Four s Predictions (LL=-955.7) March, 2010 Teck Hua Ho 43

44 lternative 2: Social Preferences March, 2010 Teck Hua Ho 44

45 Conclusions Dynamic level-k l model lis an empirical i alternative to I Captures limited induction and time unraveling Explains violations of I in centipede game Explains paradoxical behaviors in 2 well-known games (cooperation finitely fiitl repeated tdpd, chain-store hi paradox) Dynamic level-k model can be considered a tracing procedure for backward induction (since the former converges to the latter as time goes to infinity) March, 2010 Teck Hua Ho 45

A Dynamic Level-k Model in Games

A Dynamic Level-k Model in Games A Dynamic Level-k Model in Games Teck-Hua Ho and Xuanming Su September 21, 2010 Backward induction is the most widely accepted principle for predicting behavior in dynamic games. In experiments, however,

More information

Other-Regarding Preferences: Theory and Evidence

Other-Regarding Preferences: Theory and Evidence Other-Regarding Preferences: Theory and Evidence June 9, 2009 GENERAL OUTLINE Economic Rationality is Individual Optimization and Group Equilibrium Narrow version: Restrictive Assumptions about Objective

More information

ECO421: Reputation. Marcin P ski. March 29, 2018

ECO421: Reputation. Marcin P ski. March 29, 2018 ECO421: Reputation Marcin P ski March 29, 2018 Plan Chain store game Model of reputation Reputations in innite games Applications Model No pure strategy equilibria Mixed strategy equilibrium Basic model

More information

Evolutionary Game Theory

Evolutionary Game Theory Evolutionary Game Theory ISI 330 Lecture 18 1 ISI 330 Lecture 18 Outline A bit about historical origins of Evolutionary Game Theory Main (competing) theories about how cooperation evolves P and other social

More information

Extensive Form Games with Perfect Information

Extensive Form Games with Perfect Information Extensive Form Games with Perfect Information Pei-yu Lo 1 Introduction Recap: BoS. Look for all Nash equilibria. show how to nd pure strategy Nash equilibria. Show how to nd mixed strategy Nash equilibria.

More information

First Prev Next Last Go Back Full Screen Close Quit. Game Theory. Giorgio Fagiolo

First Prev Next Last Go Back Full Screen Close Quit. Game Theory. Giorgio Fagiolo Game Theory Giorgio Fagiolo giorgio.fagiolo@univr.it https://mail.sssup.it/ fagiolo/welcome.html Academic Year 2005-2006 University of Verona Summary 1. Why Game Theory? 2. Cooperative vs. Noncooperative

More information

Game Theory and its Applications to Networks - Part I: Strict Competition

Game Theory and its Applications to Networks - Part I: Strict Competition Game Theory and its Applications to Networks - Part I: Strict Competition Corinne Touati Master ENS Lyon, Fall 200 What is Game Theory and what is it for? Definition (Roger Myerson, Game Theory, Analysis

More information

Belief-based Learning

Belief-based Learning Belief-based Learning Algorithmic Game Theory Marcello Restelli Lecture Outline Introdutcion to multi-agent learning Belief-based learning Cournot adjustment Fictitious play Bayesian learning Equilibrium

More information

Higher Order Beliefs in Dynamic Environments

Higher Order Beliefs in Dynamic Environments University of Pennsylvania Department of Economics June 22, 2008 Introduction: Higher Order Beliefs Global Games (Carlsson and Van Damme, 1993): A B A 0, 0 0, θ 2 B θ 2, 0 θ, θ Dominance Regions: A if

More information

BELIEFS & EVOLUTIONARY GAME THEORY

BELIEFS & EVOLUTIONARY GAME THEORY 1 / 32 BELIEFS & EVOLUTIONARY GAME THEORY Heinrich H. Nax hnax@ethz.ch & Bary S. R. Pradelski bpradelski@ethz.ch May 15, 217: Lecture 1 2 / 32 Plan Normal form games Equilibrium invariance Equilibrium

More information

6.254 : Game Theory with Engineering Applications Lecture 13: Extensive Form Games

6.254 : Game Theory with Engineering Applications Lecture 13: Extensive Form Games 6.254 : Game Theory with Engineering Lecture 13: Extensive Form Games Asu Ozdaglar MIT March 18, 2010 1 Introduction Outline Extensive Form Games with Perfect Information One-stage Deviation Principle

More information

Lectures Road Map

Lectures Road Map Lectures 0 - Repeated Games 4. Game Theory Muhamet Yildiz Road Map. Forward Induction Examples. Finitely Repeated Games with observable actions. Entry-Deterrence/Chain-store paradox. Repeated Prisoners

More information

Extensive games (with perfect information)

Extensive games (with perfect information) Extensive games (with perfect information) (also referred to as extensive-form games or dynamic games) DEFINITION An extensive game with perfect information has the following components A set N (the set

More information

Industrial Organization Lecture 3: Game Theory

Industrial Organization Lecture 3: Game Theory Industrial Organization Lecture 3: Game Theory Nicolas Schutz Nicolas Schutz Game Theory 1 / 43 Introduction Why game theory? In the introductory lecture, we defined Industrial Organization as the economics

More information

Solving Extensive Form Games

Solving Extensive Form Games Chapter 8 Solving Extensive Form Games 8.1 The Extensive Form of a Game The extensive form of a game contains the following information: (1) the set of players (2) the order of moves (that is, who moves

More information

Game Theory. Professor Peter Cramton Economics 300

Game Theory. Professor Peter Cramton Economics 300 Game Theory Professor Peter Cramton Economics 300 Definition Game theory is the study of mathematical models of conflict and cooperation between intelligent and rational decision makers. Rational: each

More information

Economics 201A Economic Theory (Fall 2009) Extensive Games with Perfect and Imperfect Information

Economics 201A Economic Theory (Fall 2009) Extensive Games with Perfect and Imperfect Information Economics 201A Economic Theory (Fall 2009) Extensive Games with Perfect and Imperfect Information Topics: perfect information (OR 6.1), subgame perfection (OR 6.2), forward induction (OR 6.6), imperfect

More information

Bargaining Efficiency and the Repeated Prisoners Dilemma. Bhaskar Chakravorti* and John Conley**

Bargaining Efficiency and the Repeated Prisoners Dilemma. Bhaskar Chakravorti* and John Conley** Bargaining Efficiency and the Repeated Prisoners Dilemma Bhaskar Chakravorti* and John Conley** Published as: Bhaskar Chakravorti and John P. Conley (2004) Bargaining Efficiency and the repeated Prisoners

More information

Basic Game Theory. Kate Larson. January 7, University of Waterloo. Kate Larson. What is Game Theory? Normal Form Games. Computing Equilibria

Basic Game Theory. Kate Larson. January 7, University of Waterloo. Kate Larson. What is Game Theory? Normal Form Games. Computing Equilibria Basic Game Theory University of Waterloo January 7, 2013 Outline 1 2 3 What is game theory? The study of games! Bluffing in poker What move to make in chess How to play Rock-Scissors-Paper Also study of

More information

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 More on strategic games and extensive games with perfect information Block 2 Jun 12, 2016 Food for thought LUPI Many players

More information

Long-Run versus Short-Run Player

Long-Run versus Short-Run Player Repeated Games 1 Long-Run versus Short-Run Player a fixed simultaneous move stage game Player 1 is long-run with discount factor δ actions a A a finite set 1 1 1 1 2 utility u ( a, a ) Player 2 is short-run

More information

Negotiation: Strategic Approach

Negotiation: Strategic Approach Negotiation: Strategic pproach (September 3, 007) How to divide a pie / find a compromise among several possible allocations? Wage negotiations Price negotiation between a seller and a buyer Bargaining

More information

Bayesian Games and Mechanism Design Definition of Bayes Equilibrium

Bayesian Games and Mechanism Design Definition of Bayes Equilibrium Bayesian Games and Mechanism Design Definition of Bayes Equilibrium Harsanyi [1967] What happens when players do not know one another s payoffs? Games of incomplete information versus games of imperfect

More information

Games with Perfect Information

Games with Perfect Information Games with Perfect Information Yiling Chen September 7, 2011 Non-Cooperative Game Theory What is it? Mathematical study of interactions between rational and self-interested agents. Non-Cooperative Focus

More information

Extensive Form Games with Perfect Information

Extensive Form Games with Perfect Information Extensive Form Games with Perfect Information Levent Koçkesen 1 Extensive Form Games The strategies in strategic form games are speci ed so that each player chooses an action (or a mixture of actions)

More information

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class.

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class. Political Economy of Institutions and Development: 14.773 Problem Set 1 Due Date: Thursday, February 23, in class. Answer Questions 1-3. handed in. The other two questions are for practice and are not

More information

Satisfaction Equilibrium: Achieving Cooperation in Incomplete Information Games

Satisfaction Equilibrium: Achieving Cooperation in Incomplete Information Games Satisfaction Equilibrium: Achieving Cooperation in Incomplete Information Games Stéphane Ross and Brahim Chaib-draa Department of Computer Science and Software Engineering Laval University, Québec (Qc),

More information

Basics of Game Theory

Basics of Game Theory Basics of Game Theory Giacomo Bacci and Luca Sanguinetti Department of Information Engineering University of Pisa, Pisa, Italy {giacomo.bacci,luca.sanguinetti}@iet.unipi.it April - May, 2010 G. Bacci and

More information

Cooperation in Social Dilemmas through Position Uncertainty

Cooperation in Social Dilemmas through Position Uncertainty Cooperation in Social Dilemmas through Position Uncertainty Andrea Gallice and Ignacio Monzón Università di Torino and Collegio Carlo Alberto North American Summer Meetings of the Econometric Society St.

More information

Extensive Form Games I

Extensive Form Games I Extensive Form Games I Definition of Extensive Form Game a finite game tree X with nodes x X nodes are partially ordered and have a single root (minimal element) terminal nodes are z Z (maximal elements)

More information

Economics 703 Advanced Microeconomics. Professor Peter Cramton Fall 2017

Economics 703 Advanced Microeconomics. Professor Peter Cramton Fall 2017 Economics 703 Advanced Microeconomics Professor Peter Cramton Fall 2017 1 Outline Introduction Syllabus Web demonstration Examples 2 About Me: Peter Cramton B.S. Engineering, Cornell University Ph.D. Business

More information

Algorithms for cautious reasoning in games

Algorithms for cautious reasoning in games Algorithms for cautious reasoning in games Geir B. Asheim a Andrés Perea b October 16, 2017 Abstract We provide comparable algorithms for the Dekel-Fudenberg procedure, iterated admissibility, proper rationalizability

More information

Iterated Strict Dominance in Pure Strategies

Iterated Strict Dominance in Pure Strategies Iterated Strict Dominance in Pure Strategies We know that no rational player ever plays strictly dominated strategies. As each player knows that each player is rational, each player knows that his opponents

More information

Prisoner s Dilemma. Veronica Ciocanel. February 25, 2013

Prisoner s Dilemma. Veronica Ciocanel. February 25, 2013 n-person February 25, 2013 n-person Table of contents 1 Equations 5.4, 5.6 2 3 Types of dilemmas 4 n-person n-person GRIM, GRIM, ALLD Useful to think of equations 5.4 and 5.6 in terms of cooperation and

More information

A Game-Theoretic Analysis of Games with a Purpose

A Game-Theoretic Analysis of Games with a Purpose A Game-Theoretic Analysis of Games with a Purpose The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version

More information

EVOLUTIONARY STABILITY FOR TWO-STAGE HAWK-DOVE GAMES

EVOLUTIONARY STABILITY FOR TWO-STAGE HAWK-DOVE GAMES ROCKY MOUNTAIN JOURNAL OF MATHEMATICS olume 25, Number 1, Winter 1995 EOLUTIONARY STABILITY FOR TWO-STAGE HAWK-DOE GAMES R. CRESSMAN ABSTRACT. Although two individuals in a biological species often interact

More information

Game Theory. Wolfgang Frimmel. Perfect Bayesian Equilibrium

Game Theory. Wolfgang Frimmel. Perfect Bayesian Equilibrium Game Theory Wolfgang Frimmel Perfect Bayesian Equilibrium / 22 Bayesian Nash equilibrium and dynamic games L M R 3 2 L R L R 2 2 L R L 2,, M,2, R,3,3 2 NE and 2 SPNE (only subgame!) 2 / 22 Non-credible

More information

arxiv: v2 [physics.soc-ph] 11 Feb 2009

arxiv: v2 [physics.soc-ph] 11 Feb 2009 arxiv:0811.0253v2 [physics.soc-ph] 11 Feb 2009 TI-games I: An Exploration of Type Indeterminacy in Strategic Decision-making Jerry Busemeyer, Ariane Lambert-Mogiliansky. February 11, 2009 Abstract The

More information

Learning Equilibrium as a Generalization of Learning to Optimize

Learning Equilibrium as a Generalization of Learning to Optimize Learning Equilibrium as a Generalization of Learning to Optimize Dov Monderer and Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000,

More information

Biology as Information Dynamics

Biology as Information Dynamics Biology as Information Dynamics John Baez Biological Complexity: Can It Be Quantified? Beyond Center February 2, 2017 IT S ALL RELATIVE EVEN INFORMATION! When you learn something, how much information

More information

arxiv: v1 [physics.soc-ph] 3 Nov 2008

arxiv: v1 [physics.soc-ph] 3 Nov 2008 arxiv:0811.0253v1 [physics.soc-ph] 3 Nov 2008 TI-games : An Exploration of Type Indeterminacy in Strategic Decision-making Jerry Busemeyer, Ariane Lambert-Mogiliansky. February 19, 2009 Abstract In this

More information

VII. Cooperation & Competition

VII. Cooperation & Competition VII. Cooperation & Competition A. The Iterated Prisoner s Dilemma Read Flake, ch. 17 4/23/18 1 The Prisoners Dilemma Devised by Melvin Dresher & Merrill Flood in 1950 at RAND Corporation Further developed

More information

TI-games I: An Exploration of Type Indeterminacy in Strategic Decision-making

TI-games I: An Exploration of Type Indeterminacy in Strategic Decision-making TI-games I: An Exploration of Type Indeterminacy in Strategic Decision-making J. Busemeyer (Indiana University) A. Lambert-Mogiliansky (PSE) CNAM February 9 2009 1 Introduction This paper belongs to a

More information

Common Knowledge of Rationality is Self-Contradictory. Herbert Gintis

Common Knowledge of Rationality is Self-Contradictory. Herbert Gintis Common Knowledge of Rationality is Self-Contradictory Herbert Gintis February 25, 2012 Abstract The conditions under which rational agents play a Nash equilibrium are extremely demanding and often implausible.

More information

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games 6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Asu Ozdaglar MIT March 2, 2010 1 Introduction Outline Review of Supermodular Games Reading: Fudenberg and Tirole, Section 12.3.

More information

Introduction to Game Theory

Introduction to Game Theory COMP323 Introduction to Computational Game Theory Introduction to Game Theory Paul G. Spirakis Department of Computer Science University of Liverpool Paul G. Spirakis (U. Liverpool) Introduction to Game

More information

Quantum Probability in Cognition. Ryan Weiss 11/28/2018

Quantum Probability in Cognition. Ryan Weiss 11/28/2018 Quantum Probability in Cognition Ryan Weiss 11/28/2018 Overview Introduction Classical vs Quantum Probability Brain Information Processing Decision Making Conclusion Introduction Quantum probability in

More information

Understanding and Solving Societal Problems with Modeling and Simulation

Understanding and Solving Societal Problems with Modeling and Simulation Understanding and Solving Societal Problems with Modeling and Simulation Lecture 8: The Breakdown of Cooperation ETH Zurich April 15, 2013 Dr. Thomas Chadefaux Why Cooperation is Hard The Tragedy of the

More information

(with thanks to Miguel Costa-Gomes, Nagore Iriberri, Colin Camerer, Teck-Hua Ho, and Juin-Kuan Chong)

(with thanks to Miguel Costa-Gomes, Nagore Iriberri, Colin Camerer, Teck-Hua Ho, and Juin-Kuan Chong) RES Easter School: Behavioural Economics Brasenose College Oxford, 22-25 March 2015 Strategic Thinking I: Theory and Evidence Vincent P. Crawford University of Oxford, All Souls College, and University

More information

Reputations. Larry Samuelson. Yale University. February 13, 2013

Reputations. Larry Samuelson. Yale University. February 13, 2013 Reputations Larry Samuelson Yale University February 13, 2013 I. Introduction I.1 An Example: The Chain Store Game Consider the chain-store game: Out In Acquiesce 5, 0 2, 2 F ight 5,0 1, 1 If played once,

More information

6.207/14.15: Networks Lecture 11: Introduction to Game Theory 3

6.207/14.15: Networks Lecture 11: Introduction to Game Theory 3 6.207/14.15: Networks Lecture 11: Introduction to Game Theory 3 Daron Acemoglu and Asu Ozdaglar MIT October 19, 2009 1 Introduction Outline Existence of Nash Equilibrium in Infinite Games Extensive Form

More information

1 Extensive Form Games

1 Extensive Form Games 1 Extensive Form Games De nition 1 A nite extensive form game is am object K = fn; (T ) ; P; A; H; u; g where: N = f0; 1; :::; ng is the set of agents (player 0 is nature ) (T ) is the game tree P is the

More information

Refinements - change set of equilibria to find "better" set of equilibria by eliminating some that are less plausible

Refinements - change set of equilibria to find better set of equilibria by eliminating some that are less plausible efinements efinements - change set of equilibria to find "better" set of equilibria by eliminating some that are less plausible Strategic Form Eliminate Weakly Dominated Strategies - Purpose - throwing

More information

Ambiguity and the Centipede Game

Ambiguity and the Centipede Game Ambiguity and the Centipede Game Jürgen Eichberger, Simon Grant and David Kelsey Heidelberg University, Australian National University, University of Exeter. University of Exeter. June 2018 David Kelsey

More information

Static (or Simultaneous- Move) Games of Complete Information

Static (or Simultaneous- Move) Games of Complete Information Static (or Simultaneous- Move) Games of Complete Information Introduction to Games Normal (or Strategic) Form Representation Teoria dos Jogos - Filomena Garcia 1 Outline of Static Games of Complete Information

More information

Bounded Rationality Lecture 2. Full (Substantive, Economic) Rationality

Bounded Rationality Lecture 2. Full (Substantive, Economic) Rationality Bounded Rationality Lecture 2 Full (Substantive, Economic) Rationality Mikhail Anufriev EDG, Faculty of Business, University of Technology Sydney (UTS) European University at St.Petersburg Faculty of Economics

More information

Recap Social Choice Fun Game Voting Paradoxes Properties. Social Choice. Lecture 11. Social Choice Lecture 11, Slide 1

Recap Social Choice Fun Game Voting Paradoxes Properties. Social Choice. Lecture 11. Social Choice Lecture 11, Slide 1 Social Choice Lecture 11 Social Choice Lecture 11, Slide 1 Lecture Overview 1 Recap 2 Social Choice 3 Fun Game 4 Voting Paradoxes 5 Properties Social Choice Lecture 11, Slide 2 Formal Definition Definition

More information

Evolution & Learning in Games

Evolution & Learning in Games 1 / 27 Evolution & Learning in Games Econ 243B Jean-Paul Carvalho Lecture 2. Foundations of Evolution & Learning in Games II 2 / 27 Outline In this lecture, we shall: Take a first look at local stability.

More information

Perfect Bayesian Equilibrium

Perfect Bayesian Equilibrium Perfect Bayesian Equilibrium For an important class of extensive games, a solution concept is available that is simpler than sequential equilibrium, but with similar properties. In a Bayesian extensive

More information

6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks

6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks 6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks Daron Acemoglu and Asu Ozdaglar MIT November 4, 2009 1 Introduction Outline The role of networks in cooperation A model of social norms

More information

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 Daron Acemoglu and Asu Ozdaglar MIT October 14, 2009 1 Introduction Outline Mixed Strategies Existence of Mixed Strategy Nash Equilibrium

More information

Ex Post Cheap Talk : Value of Information and Value of Signals

Ex Post Cheap Talk : Value of Information and Value of Signals Ex Post Cheap Talk : Value of Information and Value of Signals Liping Tang Carnegie Mellon University, Pittsburgh PA 15213, USA Abstract. Crawford and Sobel s Cheap Talk model [1] describes an information

More information

Learning by (limited) forward looking players

Learning by (limited) forward looking players Learning by (limited) forward looking players Friederike Mengel Maastricht University April 2009 Abstract We present a model of adaptive economic agents who are k periods forward looking. Agents in our

More information

A Folk Theorem For Stochastic Games With Finite Horizon

A Folk Theorem For Stochastic Games With Finite Horizon A Folk Theorem For Stochastic Games With Finite Horizon Chantal Marlats January 2010 Chantal Marlats () A Folk Theorem For Stochastic Games With Finite Horizon January 2010 1 / 14 Introduction: A story

More information

GAMES: MIXED STRATEGIES

GAMES: MIXED STRATEGIES Prerequisites Almost essential Game Theory: Strategy and Equilibrium GAMES: MIXED STRATEGIES MICROECONOMICS Principles and Analysis Frank Cowell April 2018 Frank Cowell: Mixed Strategy Games 1 Introduction

More information

Game Theory, Evolutionary Dynamics, and Multi-Agent Learning. Prof. Nicola Gatti

Game Theory, Evolutionary Dynamics, and Multi-Agent Learning. Prof. Nicola Gatti Game Theory, Evolutionary Dynamics, and Multi-Agent Learning Prof. Nicola Gatti (nicola.gatti@polimi.it) Game theory Game theory: basics Normal form Players Actions Outcomes Utilities Strategies Solutions

More information

Puri cation 1. Stephen Morris Princeton University. July Economics.

Puri cation 1. Stephen Morris Princeton University. July Economics. Puri cation 1 Stephen Morris Princeton University July 2006 1 This survey was prepared as an entry for the second edition of the New Palgrave Dictionary of Economics. In a mixed strategy equilibrium of

More information

1 Games in Normal Form (Strategic Form)

1 Games in Normal Form (Strategic Form) Games in Normal Form (Strategic Form) A Game in Normal (strategic) Form consists of three components. A set of players. For each player, a set of strategies (called actions in textbook). The interpretation

More information

Dynamic Games with Asymmetric Information: Common Information Based Perfect Bayesian Equilibria and Sequential Decomposition

Dynamic Games with Asymmetric Information: Common Information Based Perfect Bayesian Equilibria and Sequential Decomposition Dynamic Games with Asymmetric Information: Common Information Based Perfect Bayesian Equilibria and Sequential Decomposition 1 arxiv:1510.07001v1 [cs.gt] 23 Oct 2015 Yi Ouyang, Hamidreza Tavafoghi and

More information

Game Theory and Rationality

Game Theory and Rationality April 6, 2015 Notation for Strategic Form Games Definition A strategic form game (or normal form game) is defined by 1 The set of players i = {1,..., N} 2 The (usually finite) set of actions A i for each

More information

Periodic Strategies a New Solution Concept- Algorithm for non-trivial Strategic Form Games

Periodic Strategies a New Solution Concept- Algorithm for non-trivial Strategic Form Games See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268744437 Periodic Strategies a New Solution Concept- Algorithm for non-trivial Strategic Form

More information

Equivalences of Extensive Forms with Perfect Recall

Equivalences of Extensive Forms with Perfect Recall Equivalences of Extensive Forms with Perfect Recall Carlos Alós-Ferrer and Klaus Ritzberger University of Cologne and Royal Holloway, University of London, 1 and VGSF 1 as of Aug. 1, 2016 1 Introduction

More information

Level K Thinking. Mark Dean. Columbia University - Spring 2017

Level K Thinking. Mark Dean. Columbia University - Spring 2017 Level K Thinking Mark Dean Columbia University - Spring 2017 Introduction Game theory: The study of strategic decision making Your outcome depends on your own actions and the actions of others Standard

More information

The Local Best Response Criterion: An Epistemic Approach to Equilibrium Refinement. Herbert Gintis

The Local Best Response Criterion: An Epistemic Approach to Equilibrium Refinement. Herbert Gintis The Local est Response Criterion: An Epistemic Approach to Equilibrium Refinement Herbert Gintis February 6, 2009 Abstract The standard refinement criteria for extensive form games, including subgame perfect,

More information

Brown s Original Fictitious Play

Brown s Original Fictitious Play manuscript No. Brown s Original Fictitious Play Ulrich Berger Vienna University of Economics, Department VW5 Augasse 2-6, A-1090 Vienna, Austria e-mail: ulrich.berger@wu-wien.ac.at March 2005 Abstract

More information

Title: The Castle on the Hill. Author: David K. Levine. Department of Economics UCLA. Los Angeles, CA phone/fax

Title: The Castle on the Hill. Author: David K. Levine. Department of Economics UCLA. Los Angeles, CA phone/fax Title: The Castle on the Hill Author: David K. Levine Department of Economics UCLA Los Angeles, CA 90095 phone/fax 310-825-3810 email dlevine@ucla.edu Proposed Running Head: Castle on the Hill Forthcoming:

More information

Online Appendix for. Cooperation in the Finitely Repeated Prisoner s Dilemma

Online Appendix for. Cooperation in the Finitely Repeated Prisoner s Dilemma Online Appendix for Cooperation in the Finitely Repeated Prisoner s Dilemma Matthew Embrey Guillaume R. Fréchette Sevgi Yuksel U. of Sussex... NYU... UCSB Contents A.1 Literature Review 4 A.2 Further Analysis

More information

Bounded Rationality, Strategy Simplification, and Equilibrium

Bounded Rationality, Strategy Simplification, and Equilibrium Bounded Rationality, Strategy Simplification, and Equilibrium UPV/EHU & Ikerbasque Donostia, Spain BCAM Workshop on Interactions, September 2014 Bounded Rationality Frequently raised criticism of game

More information

The Cross Entropy Method for the N-Persons Iterated Prisoner s Dilemma

The Cross Entropy Method for the N-Persons Iterated Prisoner s Dilemma The Cross Entropy Method for the N-Persons Iterated Prisoner s Dilemma Tzai-Der Wang Artificial Intelligence Economic Research Centre, National Chengchi University, Taipei, Taiwan. email: dougwang@nccu.edu.tw

More information

Introduction to game theory LECTURE 1

Introduction to game theory LECTURE 1 Introduction to game theory LECTURE 1 Jörgen Weibull January 27, 2010 1 What is game theory? A mathematically formalized theory of strategic interaction between countries at war and peace, in federations

More information

arxiv: v1 [quant-ph] 30 Dec 2012

arxiv: v1 [quant-ph] 30 Dec 2012 Strategies in a Symmetric Quantum Kolkata Restaurant Problem Puya Sharif and Hoshang Heydari arxiv:1212.6727v1 [quant-ph] 0 Dec 2012 Physics Department, Stockholm University 10691 Stockholm, Sweden E-mail:ps@puyasharif.net

More information

Economics 3012 Strategic Behavior Andy McLennan October 20, 2006

Economics 3012 Strategic Behavior Andy McLennan October 20, 2006 Economics 301 Strategic Behavior Andy McLennan October 0, 006 Lecture 11 Topics Problem Set 9 Extensive Games of Imperfect Information An Example General Description Strategies and Nash Equilibrium Beliefs

More information

MS&E 246: Lecture 12 Static games of incomplete information. Ramesh Johari

MS&E 246: Lecture 12 Static games of incomplete information. Ramesh Johari MS&E 246: Lecture 12 Static games of incomplete information Ramesh Johari Incomplete information Complete information means the entire structure of the game is common knowledge Incomplete information means

More information

NOTE. A 2 2 Game without the Fictitious Play Property

NOTE. A 2 2 Game without the Fictitious Play Property GAMES AND ECONOMIC BEHAVIOR 14, 144 148 1996 ARTICLE NO. 0045 NOTE A Game without the Fictitious Play Property Dov Monderer and Aner Sela Faculty of Industrial Engineering and Management, The Technion,

More information

Asymmetric Social Norms

Asymmetric Social Norms Asymmetric Social Norms Gabriele Camera Chapman University University of Basel Alessandro Gioffré Goethe University December 8, 2016 Abstract Studies of cooperation in infinitely repeated matching games

More information

Conservative Belief and Rationality

Conservative Belief and Rationality Conservative Belief and Rationality Joseph Y. Halpern and Rafael Pass Department of Computer Science Cornell University Ithaca, NY, 14853, U.S.A. e-mail: halpern@cs.cornell.edu, rafael@cs.cornell.edu January

More information

Mathematical Games and Random Walks

Mathematical Games and Random Walks Mathematical Games and Random Walks Alexander Engau, Ph.D. Department of Mathematical and Statistical Sciences College of Liberal Arts and Sciences / Intl. College at Beijing University of Colorado Denver

More information

Consistent Beliefs in Extensive Form Games

Consistent Beliefs in Extensive Form Games Games 2010, 1, 415-421; doi:10.3390/g1040415 OPEN ACCESS games ISSN 2073-4336 www.mdpi.com/journal/games Article Consistent Beliefs in Extensive Form Games Paulo Barelli 1,2 1 Department of Economics,

More information

Open Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions

Open Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions Open Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions By Roger B. Myerson and Philip J. Reny Department of Economics University of Chicago Paper can be found at https://sites.google.com/site/philipjreny/home/research

More information

Cooperation Stimulation in Cooperative Communications: An Indirect Reciprocity Game

Cooperation Stimulation in Cooperative Communications: An Indirect Reciprocity Game IEEE ICC 202 - Wireless Networks Symposium Cooperation Stimulation in Cooperative Communications: An Indirect Reciprocity Game Yang Gao, Yan Chen and K. J. Ray Liu Department of Electrical and Computer

More information

Reputation and Conflict

Reputation and Conflict Reputation and Conflict Sandeep Baliga Northwestern University Tomas Sjöström Rutgers University July 2011 Abstract We study reputation in conflict games. The players can use their first round actions

More information

Appendix 3: Cognitive Hierarchy

Appendix 3: Cognitive Hierarchy 1 Appendix 3: Cognitive Hierarchy As a robustness check, we conduct our analysis with the cognitive hierarchy model of Camerer, Ho and Chong (2004). There, the distribution of types is Poisson distributed,

More information

An axiomatization of minimal curb sets. 1. Introduction. Mark Voorneveld,,1, Willemien Kets, and Henk Norde

An axiomatization of minimal curb sets. 1. Introduction. Mark Voorneveld,,1, Willemien Kets, and Henk Norde An axiomatization of minimal curb sets Mark Voorneveld,,1, Willemien Kets, and Henk Norde Department of Econometrics and Operations Research, Tilburg University, The Netherlands Department of Economics,

More information

Ergodicity and Non-Ergodicity in Economics

Ergodicity and Non-Ergodicity in Economics Abstract An stochastic system is called ergodic if it tends in probability to a limiting form that is independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence. We illustrate

More information

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das Online Learning 9.520 Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das About this class Goal To introduce the general setting of online learning. To describe an online version of the RLS algorithm

More information

Biology as Information Dynamics

Biology as Information Dynamics Biology as Information Dynamics John Baez Stanford Complexity Group April 20, 2017 What is life? Self-replicating information! Information about what? How to self-replicate! It is clear that biology has

More information

Microeconomics. 2. Game Theory

Microeconomics. 2. Game Theory Microeconomics 2. Game Theory Alex Gershkov http://www.econ2.uni-bonn.de/gershkov/gershkov.htm 18. November 2008 1 / 36 Dynamic games Time permitting we will cover 2.a Describing a game in extensive form

More information

Learning ε-pareto Efficient Solutions With Minimal Knowledge Requirements Using Satisficing

Learning ε-pareto Efficient Solutions With Minimal Knowledge Requirements Using Satisficing Learning ε-pareto Efficient Solutions With Minimal Knowledge Requirements Using Satisficing Jacob W. Crandall and Michael A. Goodrich Computer Science Department Brigham Young University Provo, UT 84602

More information

Phase transitions in social networks

Phase transitions in social networks Phase transitions in social networks Jahan Claes Abstract In both evolution and economics, populations sometimes cooperate in ways that do not benefit the individual, and sometimes fail to cooperate in

More information

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games A Polynomial-time Nash Equilibrium Algorithm for Repeated Games Michael L. Littman mlittman@cs.rutgers.edu Rutgers University Peter Stone pstone@cs.utexas.edu The University of Texas at Austin Main Result

More information