Geometry and axiomatic Method

Size: px
Start display at page:

Download "Geometry and axiomatic Method"

Transcription

1 Chapter 1 Geometry and axiomatic Method 1.1 Origin of Geometry The word geometry has its roots in the Greek word geometrein, which means earth measuring. Before the time of recorded history, geometry originated out of practical necessity; it was the science of measuring land. Many ancient civilizations (Babylonian, Hindu, Chinese, and Egyptian) possessed geometric informations. The first geometrical considerations had their origin in simple observations stemming from human ability to recognize physical form and to compare shapes and sizes. There were many circumstances in which primitive people were forced to take on geometric topics, although it may not have been recognized as such. For instance, man had to learn with situations involving distance, bounding their land, and constructing walls and homes. These types of situations were directly related to the geometric concepts of vertical, parallel, and perpendicular. The geometry of the ancient days was actually just a collection of rules concerning lengths, angles, areas, and volumes which were found through experimentation, observation of analogies, guessing, and sometimes even intuition to meet some practical need in surveying, construction, astronomy, and various crafts. The Babylonian from 2000 to 1600 B.C. were familiar with the general rules for computing the area of rectangle, the area of right isosceles triangles, and the volume of a rectangular parallelepiped. The circumference of a circle was taken as three times the diameter and the area as one twelfth the square of the circumference. Both formulas correct for π = 3. Also, the volume of a right circular cylinder was then obtained by finding the product of the base and the altitude. While the volume of a truncated square pyramid appears incorrectly as a product of the altitude and half the sum of the bases. They also knew that corresponding sides of two similar right triangles are proportional. Pythagorean 1

2 2 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD theorem was also known. The geometry in ancient Egypt (3000 B.C. 600 B.C.) was arising out of the need of survey land. Because of the Nile frequently flooded, washing away land, property had to be frequently surveyed for taxation. Egyptian surveyors were highly skilled in geometry. Also the precise construction of the pyramids indicate the use of geometry. The mathematics of Egyptian geometry is documented by examples of rules for determining areas and volumes of common plane and solid objects. They appear to be based on trial and error results and observations. Egyptian knew that the area of any triangle is 1 2 the product of the base times the height. The Egyptian had the correct formula for the volume of a square pyramid which is 1 3 ha2, where h is the height of the pyramid and a is the length of the side of its square base. Even more remarkably, they had the formula for the volume of a truncated square pyramid which is 1 3 h(a2 + ab + b 2 ), where h is the height and a, b are length of sides of the two square bases. There is no documentary evidence that ancient Egyptian were ware of Pythagorean theorem, early Egyptians surveyors realized that the triangle having sides of lengths 3, 4 and 5 units is right triangle. They had the incorrect formula for the area of a quadrilateral with successive sides of lengths a, b, c and d to be This formula is true for rectangles. (a + c)(b + d). 4 Very likely, mathematical achievements similar to those of ancient Babylonians and Egyptians also occurred in ancient India and China, but we know very little indeed with any degree of certainty about those achievements. The ancient Egyptians recorded their work on stones and papyrus, the latter fortunately resisting the ages, because of Egypt dry climate. And the Babylonian used everlasting baked clay tablets. In contrast to the use of these median, the early indians and chinese used very perishable writing materials like bark bast and bamboo. The Greeks (600 B.C. 400 A.D.) worked to transform geometry into something much different than the former geometry of their predecessors. The Greeks insisted that geometric facts must be established, not by empirical procedures, but by deductive reasoning, geometrical conclusions must be arrived at by logical demonstration rather than by trial and error experimentations. In short, Greeks transformed the empirical geometry into deductive or systematic geometry. Virtually there exist no first-hand sources of early Greek geometry. Hence,

3 1.1. ORIGIN OF GEOMETRY 3 the following is based on manuscripts written hundreds of years after the early Greek geometry had been developed. According to these manuscripts, Thales of Miletus was the one who began early Greek geometry in the sixth century B. C. He insisted that, geometric statements must be established by deductive reasoning rather than by trial and error. He was familiar with the computations recorded from Egyptian and Babylonian mathematics, and he developed his logical geometry by determining which results were correct. The next mentioned great Greek geometer is one who quite possibly studied under Thales of Miletus. This geometer is Pythagoras. He lived around B. C., he founded the Pythagorean school, which was committed to the study of philosophy, mathematics, and natural science. The systematization of geometry was further developed during this time. The members of this school developed the properties of parallel lines to prove that the sum of the angles of any triangle is equal to two right angles. They also worked with proportion to study similar figures. We all think of the Pythagorean Theorem when we think of Pythagoras, however it is important to note that this theorem was used (although it may not have been proved) before his time. Hippocrates of Chios was one of these students at the Pythagorean school. It is suggested that he was the first to attempt a logical presentation of geometry in the form of a single chain of propositions. He is credited to writing the first Elements. Although his book has been lost, it covered most of Books of Euclid s Element, which appeared about century later. Hippocrates was the first to show that the ratio of the areas of two circles equals the ratio of the squares of the radii of the circles. Although Plato around 427 to 327 B. C. did not make any major mathematical discoveries himself, he did emphasize the idea of proof. He insisted on accuracy, which helped pave the way for Euclid. Around 300 B. C. Euclid collected the theorems of Pythagoras, Hippocrates, and others into a work called The Elements. Euclid is the most widely read author in the history of mankind. The teaching of geometry has been dominated by Euclid s approach to the subject. In fact, Euclid s axiomatic method is the prototype for all pure mathematics. By pure, it is meant that all statements can be verified through reasoning of demonstrations, no physical experiments are necessary. The Elements was divided into thirteen books and contained 465 propositions from plane and solid geometry and from number theory. His genius was not so much in creating new mathematics but rather in the presentation of old mathematics in a clear, logical and organized manner. He provided us with an axiomatic development of the subject. The Elements begins with 23 definitions, 5 postulates and 5 common notions or general axioms. From these he proved his first proposition. All subsequent results were obtained from a blend of his definitions, postulates, axioms and previously proven propositions.

4 4 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD 1.2 Axiomatic Method Greeks devised the axiomatic method, and modern science still uses this method. The axiomatic method is based on a system of deductive reasoning. In a deductive system, statements used in an argument must be derived from some previous statement or statements. These previous statements must themselves be derived from even earlier statements. Clearly this cannot be continued indefinitely, nor should one resort to logical circularity by deriving statement A from statement B and statement B from statement A. The Greek found a way out of this difficulty, by assuming the truth of a collection of initial statements whose truth are acceptable without justification, and then proceeding, by purely deductive reasoning, to derive all the other statements of the discourse. Euclid called these prior statements postulates or axioms 1. The prior and the derived statements involve special terms. These terms need to be defined. Since these should be defined by means of other terms, one is faced with the problem of circularity. Thus, to avoid circularity of definition, where term y is defined by term x, and then term x is defined by means of term y, one is forced to set down at the very start a collection of basic terms whose intended meanings should be made clear to the reader. All subsequent terms must then be defined by means of terms already introduced. This method, created by Greek, is called axiomatic method. Starting from a base of undefined terms and agreed upon axioms, we can define other terms and use our axioms to argue the truth of other statements. These other statements are called the theorems of the system. Also, there must be agreement on how and when one statement follows logically from another, that means agreement on certain rules of reasoning. Thus deductive system or axiom system consists of the following components: 1. Undefined terms 2. Axioms (or postulates) 3. Defined terms 4. Theorems 5. Rules of logic. The axioms; which are statements to be accepted that are true without justification, they state the basic properties of undefined terms and should be simple in structure and few in number. 1 Early Greeks made a distinction between axioms and postulates. Evidence exists, that Euclid made a distinction that an axiom (common notion) is an assumption common to all sciences and that postulate is an assumption peculiar to the particular science being studied. In modern times no distinction is made between the two; an axiom or a postulate is an assumed statement.

5 1.2. AXIOMATIC METHOD 5 In an axiom system a proof of a specific statement is a sequence of statements, together with a justification for each statement, ending up with desired conclusion. In a given axiom system, the only statements we call theorems are those statements for which a proof has been given. By the way, all mathematical theorem are conditional statements. In some cases, a theorem may not be written in a conditional form, but it can be reformulated as a conditional statement. For example: It can be reformulated as: Base angles of an isosceles triangle are congruent. If a triangle has two congruent sides then the angles opposite to those sides are congruent. It is common in mathematics to reserve the word theorem for a result that has a special importance and significance in the subject and central in the development of the theory, while other statements of less impact are called propositions. Now, if a theorem is not really interesting (according to author) in itself, or is a result that is not related to the subject at hand, but is only stated because it makes the proof of some other theorem more interesting, then it is called lemma. Also, if a theorem follows almost immediately as a result of another theorem with very short proof, then it is called corollary. Now, I will remind you with some basic rules of reasoning, that you already know. 1. The following are types of justifications allowed for statements in a proof: (a) By hypothesis. (b) By axiom. (c) By a previously proven theorem. (d) By definition. (e) By a previous established step in the same proof. (f) By rule of logic. 2. Proof by Contradiction: To prove P Q, assume the negation of statement Q and deduce an absurd statement, using the hypothesis statement P if needed in the deduction. 3. Negation (a) ( P ) is equivalent to 2 P. (b) (P Q) is equivalent to P Q 2 Two statements are called equivalent if and only if they have the same truth values.

6 6 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD (c) (P Q) is equivalent to P Q (d) (P Q) is equivalent to P Q (e) ( x, P (x)) is equivalent to the statement x, P (x) (f) ( x, P (x)) is equivalent to the statement x, P (x) 4. If P Q and P are steps in a proof then Q is a justifiable step in the proof. 5. Contrapositive: Q P is equivalent to the statement P Q. 6. For every statements P, Q and R, the following statements are true: (a) ((P Q) (Q R)) (P R). (b) (P Q) P (c) (P Q) Q. 7. Law of excluded middle: For every statement P, P P is a valid step in a proof. 8. Proof by cases: If ((P 1 Q) (P 2 Q) (P n Q)) ((P 1 P 2 P n ) Q). That means, if P 1 P 2 P n is a valid step in a proof and Q is carried out from each statement P i. Then Q is a valid step in the proof. 1.3 Examples and Properties of Axiom System We will start with the following example: Example Consider the undefined terms; ant, path, and has. The following is the axiom set. Axiom 1. Every ant has at least two paths. Axiom 2. Every path has at least two ants. Axiom 3. There exists at least one ant. Note that has indicates the relationship between ant and path. We can prove two theorems from these axioms. Theorem 1. There exists at least one path. Proof: By Axiom 3, there exists an ant. Now since each ant must have at least two paths by Axiom 1, there exists at least one path. Theorem 2. The minimum number of paths is two. Proof: By Axiom 3, there exists an ant, call it A 1. Then by Axiom 1, A 1 must

7 1.3. EXAMPLES AND PROPERTIES OF AXIOM SYSTEM 7 have two paths call them P 1 and P 2. Hence, there are at least two paths. Example Undefined terms: point, line, has. The set of axioms are: Axiom 1. There exists exactly four lines Axiom 2. Any two distinct lines has exactly one point in common. Axiom 3. Each point is on exactly two lines. We can prove two theorems in this axiom system: Theorem 1. There is exactly 6 points. Proof. By axiom 1, there are four lines, say l,m, n, and t. By axiom 2, l and n has unique point in common, say B, l and t has unique point in common, say C, m and n has unique point in common, say D, m and t has unique point in common, say E, and n and t has unique point in common, say F. Thus, there is at least 6 points. Now, suppose that, G is another point in the system. Then by axiom 3, G is on exactly two lines, say l, and m. Then by axiom 2, G = A. Thus, there is exactly 6 points. Theorem 2. Each line has exactly 3 points on it. Proof. Exercise. Example A group G consists of a set of undefined objects called elements and a binary operation o that relates two elements to a third one. The axioms are Axiom 1. For all x, y G, x y G Axiom 2. For all x, y G, (x y) z = x (y z) Axiom 3. There is an element in G, say e, such that x e = e x = x, x G. Axiom 4. For every x G, there is an element y G such that x y = e = y x. Some theorems in this system are: Theorem 1. A group G has exactly one identity. Proof. Exercise. Theorem 2. If x, y, z in a group G and x z = y z then x = y. Proof. Exercise.

8 8 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD Example Given the undefined terms: student, class, and the relation belongs to. The set of axioms are: Axiom 1. There exists exactly three distinct students in this system. Axiom 2. Any two distinct students belong to exactly one class. Axiom 3. Not all students belong to the same class. Axiom 4. Any two distinct classes contain at least one student in common. Some theorems that could be proved from these axioms are: Theorem 1. Two distinct classes contain exactly one student. Proof: By Axiom 4, two distinct classes contain at least one student in common. If two distinct classes has two students in common, this contradicts Axiom 2. Thus two distinct classes contain exactly one student in common. Theorem 2. There are exactly three classes. Proof: By Axiom 1, there are exactly three distinct students, say, S 1, S 2, S 3. By Axiom 2, two distinct students belong to exactly one class. Thus S 1, S 2 belong to class, say, C 1, S 1, S 3 belong to class,say, C 2, S 2, S 3 belong to class, say, C 3. Now, C 1, C 2, and C 3 are distinct by Axiom 3. Theorem 3. Each class has exactly two students. Proof: Exercise. Now, We will look at the axiom system structure itself and its properties. It is important to point out that, in an axiom system, it does not matter what the terms represent. The only thing that matters is how the terms are related to each other. In the last example, we can re-label the two terms students and classes by Bllab and Blloob respectively. We could as well have used the following axiom set: Axiom 1. There are exactly three Bllabs. Axiom 2. Two distinct Bllabs belong to exactly one Blloob. Axiom 3. Not all of the Bllabs belong to the same Blloob. Axiom 4. Two different Blloobs have at least one Bllab in common. By changing the labels in the theorems of the example students and classes, we would get equivalent theorems about Bllabs and Blloobs. Thus we saw that, changing the particular meaning of the undefined terms in a system, have no

9 1.3. EXAMPLES AND PROPERTIES OF AXIOM SYSTEM 9 real change on the structure of the system. Giving the undefined terms a specific meaning is called an interpretation of the axiom system. Suppose in the example of students and classes, we replace students and classes by points and lines respectively. Then, our axioms would be as follows: Axiom 1. There are exactly three distinct points. Axiom 2. Two distinct points belong to one and only one line. Axiom 3. Not all of the points belong to the same line. Axiom 4. Two distinct lines have at least one point in common. The theorems above now say that there are exactly three lines, each pair of lines intersects in exactly one point, and each line has exactly two points. This axiom system is called three points geometry. Suppose that we interpret line to be one of the three segments shown in the following figure, and point to be one of the end points of the three segments, as shown bellow. Now, we can see that our axioms still make correct sense with this interpretation. This interpretation of our original axiom system is called a model of the system. Thus, a model of an axiom system is an interpretation of the undefined terms in the system such that all axioms in the system are true statements in this interpretation. Other model for three point geometry is given as follows: Points are the letters, A, B, C. Lines are{a, B }, {A, C}, {B, C} and the relation is belong to. Note that, axiom 1 is true in this model, axiom 2 is also true, axiom 3 is also true, and finally axiom 4 is true. A main property of any model of an axiom system, is that all theorems of the system are correct statements in the model. This is because

10 10 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD logical consequences of correct statements are themselves correct. Now, we are going to study three important properties of axiom system, which are consistency, independence, and completeness: I. Consistency: An Axiom system is called consistent if no contradiction can be concluded in the system; that means no two statements(two axioms, axiom and theorem, or two theorems) contradicts each other. Now, consider the following axiom system: Axiom 1. There are exactly three points. Axiom 2. There are at most two points. It is clear that Axiom 2 contradicts Axiom 1, it would be impossible to logically deduce theorem in this system as we start with a fundamental contradiction. This system is not consistent. It should be clear, that it is essential for an axiom system to be consistent, since a system in which both a statement and its negation can be proved, is worthless. This is a highly desirable property of any axiom system. We don t want to waste our time proving theorems from an axiom system, that one day may lead to contradiction. To determine whether an axiom system is consistent, we would have to examine every possible pair of axioms and/or theorems in the system, which is not possible in many cases. Instead, models are used for establishing consistency. If we can find a model for the given axiom system by using interpretations, that are objects and relations from the real world, we say, we have established absolute consistency. In this case, statements corresponding to contradictory theorems would lead to contradictory statements in the model, but contradiction in real world are supposedly impossible. For example, to show that the three points geometry is absolute consistent, we consider the concrete model given in the following figure: Where points are the dots in the figure and the segments are the lines. On the other hand, if the interpretations assigned are taken from

11 1.3. EXAMPLES AND PROPERTIES OF AXIOM SYSTEM 11 another axiom system, we have only tested consistency relative to the consistency of the second system, that is; the system we are testing is consistent only if the system within which the interpretation are assigned is consistent. In this case, we say we have established relative consistency of the first axiom system. Thus, we say that axiom system A is relative consistent, if we can find a model for system A, that is embedded in another system B, and if we know that system B is consistent, then system A must itself be consistent. For, if there are two statements in system A that were contradictory, then this would be a contradiction in system B. For example, if you believe in the consistency of the theory of real numbers, then you must accept the consistency of Hilbert s Axiom System, that is to be given in the next chapter. Because all axioms will hold in the Cartesian plane. Often, relative consistency is all we can hope for, as Goedel has shown that there is no internal proof of consistency for a system that involves infinite sets. II. Independence: A statement is called independent of a given axiom system, if it cannot be proved or disproved from the axioms in the system. Example Consider the following axiom system: Undefined terms: point, line and belong to. Axiom 1. There are exactly four lines. Axiom 2. Any two distinct lines has exactly one point in common. Axiom 3. Each point is on exactly two line. Axiom 4. There is exactly six points. In example 1.3.2, we have seen, that Axiom 4 could be proved from the first three axioms. Thus, Axiom 4 is not independent from the first three axioms. This axiom system is just as consistent as the one in the example, it is not as economical as it could be. A system with numerous axioms is difficult to remember and confusing to use as basis for proving theorems. So, it is always desirable, that each axiom in the axiom system is independent from the other axioms. To show that an axiom, say X, is independent from the other axioms in an axiom system, we have to construct two models: one for the system including axiom X, and another model for the system of the other axioms and the negation of statement X. If such models exist, then axiom X is independent from the other axioms.

12 12 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD An axiom system, in which each axiom is independent from the other axioms, is called independent axiom system. Thus the previous example is clearly not independent axiom system. While example is independent system. To show that the system in example is independent, first we show that axiom 1 is independent from the other axioms. Consider the following figures: We see that figure 1 is a model in which all the three axioms hold, figure 2 is a model for which (Axiom 1), Axiom 2, and Axiom 3 hold. Now, to show that Axiom 2 is independent from the others. Consider figure 3, which is a model, in which Axiom 1, (Axiom 2), and Axiom 3 hold. Thus, considering the model in figure 1 and the model in figure 3, we get the independence of Axiom 2. Third, we show that Axiom 3 is independent from the other axioms. Figure 4 is a model, in which Axiom 1, Axiom 2, and (Axiom 3) hold. Thus, considering the models in figure 1 and figure 4, we get the independence of Axiom 3. Example Incidence Axiom System: Undefined terms: point, line, and lie on. Axiom 1. Two distinct points lie on one and only one line. Axiom 2. For every line, there is at least two points lie on it. Axiom 3. There exists three distinct points with the property that no line contains all three of them. To show that Axiom 1 is independent from the other axioms, we first construct a model, in which all axioms are true, name it Model 1:

13 1.3. EXAMPLES AND PROPERTIES OF AXIOM SYSTEM 13 Model 1: Points are the letters A, B, C. Lines are the sets {A, B}, {A, C }, {B, C}. Relation is belong to. It is easily seen, that Axiom 1, Axiom 2, and Axiom 3 all are true statements in model 1. Now, we consider a model, call it model 2, in which Axiom 2, and Axiom 3 are true, but (Axiom 1) is true. Model 2: Points are A, B, C, D. Lines are {A, B}, {A, C, D} and {B, C, D}. It is easily seen, that Axiom 1 is false, Axiom 2 and Axiom 3 are true statements in Model 2. Exercise 1. Prove that axiom 2 is independent from Axiom 1 and Axiom Prove that Axiom 3 is independent from Axiom 1 and Axiom 2. Thus, we conclude that, this system is independent. II. Completeness A consistent system is called complete if every statement involving undefined and defined terms in the system can either be proved or disproved from the axioms. That is, it is not possible to add a new independent statement to the system. As an example consider the following system for points, and lines: Axiom 1. Two distinct points belong to one and only one line. Axiom 2. For every line, there exists at least two points on it. Now, consider the following statement There is at least three points, such that no line pass through all of them. In example we have seen, that this statement is independent from axiom 1 and axiom 2. That means, it cannot be proved or disproved in this given axiom system. Hence, this system is not complete. Two models of an axiom system are called isomorphic provided that, there exists one to one correspondence between the interpretation of each set of undefined terms, such that any relationship between the objects corresponding to undefined terms in one model, are preserved under correspondence by the second model. If every two models of an axiom system are isomorphic, then the system is called categorical axiom system. The axiom system of three points geometry is categorical. For if we label

14 14 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD the three points A, B, and C, then we know from the two theorems in the system, that there must be exactly three lines and each line has exactly two points. The three lines can be symbolized by pairs of points: (A,B), (A,C), (B,C). Suppose we have another model of three points; L, M, N. Then we could construct one to one correspondence between these points and the points A, B, C, so that the lines in the two models could be put into one to one correspondence. Example The incidence axiom system is not categorical. For: We construct two models for the system, that are not isomorphic. First Model Points: the letters A, B, C, D. Lines: The sets: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}. Incidence: Belong to. Second Model Points: the letters L, M, N. Lines: The sets: {L, M}, {L, N}, {M, N}. Incidence: Belong to. It is clear that, the two models are not isomorphic, since no correspondence between the set of points in the two models. Theorem Every categorical system is complete. Proof. We will use contradiction. Let A be a categorical axiom system, which is not complete. Then there is a statement, say S, which cannot be proved or disproved in the system, that is S is independent from the system A. Hence, we can find two models for the axiom system A; the first in which the statement S is true, and the other in which statement S is false. Clearly, the two models are not isomorphic. This contradicts the assumption that our system is categorical. 1.4 Euclid s Axiom System Euclid s monumental achievement in the Elements was to single out a few simple axioms, and then deduce from them 465 propositions, many are complicated and not at all intuitively obvious. The first volume of the Elements begins with a list of 23 definitions, followed by Euclid s axiom set. Euclid mistakenly defined all of the terms that are used. For example he defined a point as that which has no

15 1.4. EUCLID S AXIOM SYSTEM 15 part. And a line as breadthless length. These definitions are not very informative, so it is better, to consider them as undefined term. Similarly, Euclid defined straight line to be that which lies evenly with points on itself. This definition is not very useful, to understand it, you must already have the image of the line. So it is better to consider it as undefined term. There is also other flaws in the axiom set given by Euclid, which will be mentioned in the next chapter. Euclid divided his axioms into two categories: I. Common Notions He listed basic assumptions that they are not geometric in nature and applied to all of mathematics, they are: 1. Things that are equal to the same thing are also equal to one another. 2. If equals be added to equals, the wholes are equal. 3. If equals be subtracted from equals, the remainders are equal. 4. Things that coincide with one another are equal to one another. 5. The whole is greater than the part. II. Postulates We keep Euclid s terminology and refer to the five axioms, that specifically deal with the geometric basis of his exposition as postulates. Euclid s Postulate I. To draw a straight line from any point to any point. That means, two points determine a unique line. Euclid s Postulate II. To produce a finite straight line continuously in a straight line. That means, any line segment may be extended to a line segment that contains it. Euclid s Postulate III. To describe a circle with any centre and radius. That means, given a specified point that will serve as a center and a specified distance to serve as radius, a unique circle can be drawn. Euclid s Postulate IV. All right angles are equal 3 to each other. That means, all right angles are congruent. Euclid s Postulate V. If a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles. 3 In set theory, two sets A and B are said to be equal if every member of A is a member of B, and vice versa. Thus, equal means identical. Euclid used the word equal in a different sense, he meant by two equal segments, that the two segments have the same length. And he meant by two equal angles, that the two angles have the same number of degrees. So to avoid confusion, it is better to use the word congruent instead of the word equal in these two cases.

16 16 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD The final postulate seems very different from the first four. Euclid himself waited until Proposition 29 of Book I of his Elements before using the fifth postulate as a justification step in the proof of a theorem. From the time of Euclid, the fifth postulate axiomatic status has been questioned. An axiom should be a statement so obvious that it can be accepted without proof. The first four of Euclid s postulates are simple statements about the construction of figures, statements that resonate with our practical experience. We can draw circles, lines, and can measure angles. However, we cannot follow a line indefinitely to see if it intersects another line. Many mathematicians tried to find simpler postulate, one that is more intuitively believable, to replace Euclid s fifth postulate, and then prove the postulate as a theorem. One of the attempts to find a simpler postulate for Euclid s fifth was that of John Playfair( ): Playfair s Postulate: Given a line and a point not on the line, it is possible to construct one and only one line through the given point parallel to the line. This statement is certainly easier to read and understand when compared with Euclid s fifth postulate. In chapter 3, we will show that, this statement is logically equivalent to Euclid s fifth postulate. Thus, it does not simplify Euclid s system at all. Other mathematicians tried to prove that Euclid s fifth postulate was actually a theorem that could be derived from the first four postulates. All attempts to derive it from the first four turned out to be unsuccessful because the so called proofs always entailed a hidden assumption that was unjustifiable. 1.5 Euclidean Constructions Euclid s first three postulates state that lines and circles can be drawn, and line segments extended. His first proposition states: Given any segment, there is an equilateral triangle having the given segment as one of its sides. Euclid proved this result using a geometric construction; he considered two circles centred at the endpoints of the segment and having this segment as their radii. The third vertex of the triangle is one of the points determined by the intersection of these two circles. See the following figure.

17 1.5. EUCLIDEAN CONSTRUCTIONS 17 This proof is an example that the concept of construction was part of Euclid s axiom system and was used as a method of proving propositions. The Euclid s first four postulates do not imply that the two circles intersect each other, therefore there is a gap in his proof. In geometry, diagrams and figures are very helpful for understanding proofs, and illustrating theorem. But there is a danger that a diagram may suggest a fallacious argument. A diagram may be slightly inaccurate or it may represent only a special case. However, every conclusion must be theoretically justified by the axioms or by the results that they imply. Now, we turn to the actual construction of geometric figures with only a straightedge and compass. A straightedge is a ruler without marks, and it is used for the constructions specified in the first and the second postulate of Euclid. a compass is used to draw circles. These constructions fascinated mathematicians from ancient Greece until the nineteenth century, when all classical geometric constructions were finally solved. In Euclids time he and others were able to do many constructions including: constructing an equilateral triangle, a perpendicular line to a given line, and a midpoint of a line segment. Throughout history, mathematicians were able to construct almost all geometric figures following the postulates laid down by Euclid. The three problems, which were most well known for not being able to be solved, were: [I] Trisecting an angle: Given an angle, construct an angle whose measure is one third of the original angle. [II] Doubling a cube: Given the length of the side of a cube, construct a cube whose area is double the area of the original cube. [III] Squaring a circle: Given a circle, construct a square that has exactly the same area as the circle. This problem were unsolvable for over two thousand years with the use of a compass and a straight edge alone. In 1882, Lindeman proved that this is an impossible constructions. And Wantzel proved in 1837, that doubling a cube

18 18 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD and trisecting an angle cannot be constructed by only straight edge and a compass. In the following we will give some examples of euclidean constructions: [1] Copy a line segment: Given a line segment AB, and a ray CD, we want to find a point E CD such that AB = CE. First, Place the ends of the compass at the points A and B to determine the length of AB. Second, with the compass fixed, place one end at the point C and draw a circular arc intersecting CD of radius AB. Third, define the name of intersection point in the previous step as E. Hence, we get the desired segment CE. [2] Copy an angle: Given an angle BAC and a ray DE, construct an angle EDF that is congruent to BAC. First, construct a circle γ with centre A and radius AB with a compass. This circle intersects BC, at a point, say P. Second, with the compass fixed draw a circle δ with centre D and radius AB. This circle intersects DE, say at a point Q. Third, fix the compass with the length BP, then construct a circle with radius P B and centre Q. This circle intersects the circle δ at a point, say F. Then BAC = EDF. [3] Angle Bisection: Given an angle BAC, we construct a ray AD such that BAD = CAD. First, construct a circle with centre A and any radius. This circle intersects the sides of the angle BAC, at two points, say P and Q. Second, place the ends of a compass at the points P and Q. Construct a circle δ with centre P and radius P Q, and another circle γ with centre Q

19 1.5. EUCLIDEAN CONSTRUCTIONS 19 and radius P Q. Third, the two circles γ and δ intersect at two points, take one of them, name it D. We obtain that CAD = BAD. [4] Perpendicular Line: Given any line l, and any point P on l, we construct a line through P and perpendicular to l. First, construct a circle with centre A and any radius. The circle intersects l in two points, say A and B. Second, construct a circle γ with centre A and radius AB. Third, construct another circle δ with centre B and radius the same as the one in the second step. The circles γ and δ intersect at two points, take one of them, call it Q. And then the line P Q is perpendicular to the line l. [5] Drop a Perpendicular to a Line: Given any line l and any point A not on l, we construct a perpendicular to l through the point A. First, let B be any point on l. Construct a circle with centre A and radius

20 20 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD BA. This circle intersects line l at another point, say C. Second, use construction of bisector of an angle to draw the bisector AD of the angle BAC. Then, the line AD is the perpendicular to l through the point A. [6] Parallel to a Line: Given any line l and any point P not on l, we construct a line through P and parallel to l. First, let A be any point on the line l, construct the line P A with a straight edge. Second, construct a circle γ with centre A and radius r > AP. This circle intersects l at a point say B, and intersects the line P A at a point, say Q. Third, construct an angle congruent to the angle P AB. Consider the ray P Q and the side of the line P Q. We construct a ray P R, such that QP R = P AB. Then the line P R is the parallel to l through P.

21 1.6. EXERCISES 21 [7] Square Root: Given a segment OI of unit length, and a segment AB of any length a. Then we construct a segment of length a. First, copy the segment OI on the line AB, such that OI = BC, where C is on the opposite ray of BA. Second, Find the midpoint of the segment AC, call it M. Third, construct a circle γ with centre M and radius AM. This circle pass through C. Fourth, construct a line l through B, that is perpendicular to the line AC. This line intersects γ at two points, consider one of them, and call it D. Let c be the length of the segment BD. Fifth, the triangles ABD and DBC are similar. Hence c 1 = a c. Thus a = c 2. See the following figure. 1.6 EXERCISES [1] Show that the following system is not complete. Axiom 1 There exists five points. Axiom 2 Each line is a subset of those five points. Axiom 3 There exists exactly two lines. Axiom 4 Each line contains at least two points. [2] Consider a set of undefined elements to be S, and the undefined relation R on the elements of S which satisfies the following axioms:

22 22 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD Axiom 1 If a S then ara. Axiom 2 If a, b S and arb then bra. Axiom 3 If a, b, c S, arb, and brc then arc. i. Construct a model of the system. ii. Is the axiom system independent? Explain. [3] Consider the following axiom system: Axiom 1 There exists five points. Axiom 2 Each two distinct points have exactly one line on both of them. Axiom 3 Each line contains exactly two points. i. Construct a model of the system. ii. Show that there exists exactly 10 lines. iii. Show that each point has exactly 4 lines through it. [4] Volume II of Euclid s Element is concerned with geometric algebra; algebra based on geometric figures. For example, the distributive law of algebra a(b + c) = ab + ac can be interpreted as the area of rectangle with sides a and b + c is equal to the sum of areas of the rectangle with sides a and b and the rectangle with sides a and c. See the figure: Show that the algebraic identity (a+b) 2 = a 2 +2ab+b 2 can be established geometrically. [5] Consider the following axiom system: undefined terms are point, line and incident with. The axioms are: Axiom 1. There exists at least one line. Axiom 2. Every line has exactly three points on it. Axiom 3. Not all points are on the same line. Axiom 4. For any two distinct points, there exists exactly one line on both of them.

23 1.6. EXERCISES 23 Axiom 5. Each two lines have at least one point on both of them. i. Construct a model of this axiom system. ii. Determine whether axiom 5 is independent of the other axiom or not. Explain. iii. Is this axiom system complete? Explain. iv. Is it categorical? Explain. [6] Construct a model for the following axiom system. Undefined terms are point, line, and lie on. And the axioms are: Axiom 1. If a, b are two distinct points, there exists at least one line containing both of them. Axiom 2. If a, b are distinct points, then there exists at most one line containing both of them. Axiom 3. If l, m are any two distinct lines, then there exists at least one point which lies on both l and m. Axiom 4. Every line contains at least 3 distinct points. Axiom 5. Not all points lie on the same line. Axiom 6. No line contains more than 3 distinct points. Axiom 7. There is at least one line. [7] Construct an axiom system that is not categorical. [8] Consider the incidence axiom system. Determine which of the following interpretations of the undefined terms is a model of the system: i. Points are dots on a sheet of paper, lines are circles drawn on the sheet of paper, incidence means that the dot lie on the circle. ii. Points are lines in the Euclidean 3-space, lines are planes in the space, incidence is the usual relation of a line lying on a plane. iii. Same as in ii., but the lines and the planes all pass through the origin. iv. Consider a given circle γ in the Euclidean plane. Interpret points as all points inside γ, and lines as all open chords of γ, and incidence as lie on. [9] Let us add to the incidence axiom system the following axioms: Axiom 4: The Euclidean parallel postulate. Axiom 5: The existence of only a finite number of points. Axiom 5: There exists two lines l and m such that the number of points lying on m is different from the number of points lying on l. Show that this system is not consistent.

24 24 CHAPTER 1. GEOMETRY AND AXIOMATIC METHOD [10] With a straight edge and a compass, construct a tangent of a circle at a point on P on the circle. [11] With a straight edge and a compass, construct a square with a given side a segment AB. [12] With a straight edge and a compass, construct a hexagon. [13] With a straight edge and a compass, construct a midpoint of a segment. [14] The number (1 + 5) was called by Greeks the Golden Ratio, and a 2 rectangle whose sides are in this ratio is called a golden rectangle. With a straight edge and a compass, construct a golden rectangle.

25 Chapter 2 Hilbert s Axiom System In the late of 19th century and in the 20th century, mathematicians, who work with the field foundations of mathematics, realized that Euclid s system is not complete and pointed out flaws again and again in Euclid s assumptions. Euclid assumed assumptions, that had not been stated. For example, he neglected to state his assumptions, that points and lines do exist, that not all points are collinear, and that every line has at least two points lying on it. Some of Euclid s proof are based on reasoning from diagrams. To make these proofs rigorous, a much larger system of explicit axioms is needed. For example, the need for a statement about concept of betweenness, just because diagram shows a bisector of an angle intersecting the opposite side in a triangle between two endpoints, is it true that there is a point between the two endpoints? There is a need to state that if a straight line enters a triangle at a vertex, then it must intersect the opposite side. That means, a line divide the plane into two half disjoint planes. Also, there is a need for a statement about infinite length of a line, does a line stops at endpoints? Hence, many mathematicians undertook the quest for a more rigorous and complete foundation for Euclidean geometry. One of the earliest and most notable attempts are from the German mathematician David Hilbert ( ). His system of Euclidean geometry built on the work of Pasch, who published the first rigorous treatise on geometry in Hilbert s presentation of Euclidean geometry in 1899 satisfactorily addresses most of the problems found in the Elements of Euclid, the axioms are stated in away that resembles Euclid s axiom set, making them quite intuitive. Other treatments of Euclidean geometry were done by mathematicians like Veblen (1904), Huntington (1913), Forder (1927), and Birkhoff (1932). Birkhoff published an Euclidean axiom set with different flavour than those of Hilbert s and Euclid s. 25

26 26 CHAPTER 2. HILBERT S AXIOM SYSTEM Birkhoff remarkably concise axiom set contains only four statements and features measurements as unifying concept. The powerful first axiom puts the points of any line in Euclidean geometry in one-to-one correspondence with the real numbers. In this way, all properties of real numbers are associated with the points of any line. Also Birkhoff axioms are designed so that the Euclidean parallel axiom can be proved as a theorem. In this chapter, we will present the Hilbert s Axiom system for plane Euclidean geometry, which is presented in 1899 in his book Foundations of Geometry. Hilbert s axioms are perhaps the more intuitive and are certainly the closest in spirit to Euclid s. Hilbert clarified Euclid s definitions and filled in the gaps in some Euclid s proofs. We begin by the undefined terms that are basis for defining all other terms in plane Euclidean geometry. They are: point line incidence with (lie on or pass through) between congruent. Hilbert s axioms are divided into five groups: incidence axioms, betweenness axioms, congruence axioms, continuity axioms, and parallelism axiom. 2.1 Incidence Axioms We said that, Euclid neglected to state his assumptions that points and lines exist, that not all points are collinear, and that every line has at least two points lying on it. Hilbert made these assumptions explicitly by adding two more axioms of incidence to Euclid s first postulate. Undefined terms: Points, lines, and incident with. The axioms of incidence are: I.1 Given two distinct points P and Q there is a unique line incident with P and Q. This line will be denoted by P Q. I.2 For every line l there exist at least two distinct points incident with l. I.3 There exist three distinct points with the property that no line is incident with all three of them. Definition Three points or more are called collinear if there exists a line which is incident with all of them. Two lines l and m are called parallel if they do not have a point in common. Two or more distinct lines with a common point are called concurrent. In order to make some statements easier to write, if a point P is incident to a line l, we will write P l. Here are some results that can be proved from the axioms above.

27 2.1. INCIDENCE AXIOMS 27 Proposition The incidence axioms imply: i. If l and m are two distinct lines that are not parallel, then they have a unique point in common. ii. There exists three distinct lines that are not concurrent. iii. For every line there is at least one point not incident with it. iv. For every point there is at least one line not incident with it. v. For every point P there exist at least two lines through P. Proof. i. Assume that l and m are two distinct lines that are not parallel. Hence, l and m have at least one point in common. To prove that only a unique common point exist, we use contradiction; that is, we assume that the points P and Q belong to both l and m and P Q. Axiom I.1 implies that l = m, and this contradicts the assumption that l m. ii. It follows from axiom I.3 that there are three points P, Q, and R that are not collinear. Using axiom I.1, P and Q determine a unique line, say l, P and R determine a unique line, say m, and Q and R determine a unique line say n. The three lines are distinct, otherwise P, Q, and R are collinear. Now, suppose that the three lines are concurrent, that is, they have a point in common, say A. Then A l m. Thus, by part i A = P. Also, A m n and part i implies that A = R. Then, P = R. This is clearly a contradiction, since we have assumed that P R. iii. Given any line l. By axiom I.3 there are 3 distinct non-collinear points, say P, Q, and R. If all the three points belong to l, we get a contradiction to the assumption, that they are non-collinear. Thus, not all of them belongs to line l, that is, at least one of them does not belong to l iv. Given any point P. By part ii there are three distinct non-concurrent lines, say l, m and n. Either P (l m n) or P / (l m n). If P (l m n). Then l, m, and n are concurrent, thus we get a contradiction. Hence, at least one of these lines is not incident with P. v. Given a point P. By part iv there is a line, say l, that is not incident with P. By part iii there is a point, say A, that is not incident with line l. Now, by axiom I.1 points P and A determine a unique line, say m. Then l m, otherwise P l, which is a contradiction. Thus the line l and m are incident with P. We will call this axiom system incidence geometry. Now, we describe some models for incidence geometry:

28 28 CHAPTER 2. HILBERT S AXIOM SYSTEM Model 1: points are the nodes in the following figure, lines are the line segments, and incident with is being endpoint of the line segment. Model 2: See the following figure: Model 3: The cartesian plane is a traditional model for incidence geometry. Where the points defined to be the ordered pairs of real numbers, and lines to be the collection of all points ax + by + c = 0 for some choice of real numbers a, b, c. Note that: These three models for incidence geometry are not isomorphic, and hence the incidence geometry is not categorical. The surface of any sphere, where points are defined to be the set of all points on the sphere, and the lines to be all great circles 1 on the sphere. This is not a model for incidence geometry, because any two antipodal points 1 A great circle of sphere is a circle on the surface of the the sphere, obtained by the intersection of a plane through the center of the sphere and the surface of the sphere

29 2.2. BETWEENNESS AXIOMS 29 on the sphere are on an infinite number of great circles. Explain, why? This violates axiom I.1. Consider the following parallelism properties: Euclidean Parallel Axiom: For every line l and for every point P / l there is exactly one line through P and parallel to l. Hyperbolic Parallel Axiom: For every line l and every point P / l there are at least two lines through P and parallel to l. Elliptic Parallel Axiom: No parallel lines exist. Exercise: Show that each one of the previous three statements is independent from the incidence geometry. Thus, incidence geometry is not complete. In example in chapter 1, we show that this axiom system is independent. 2.2 Betweenness Axioms Euclid never mentioned the notion betweenness. But tacitly assumed certain facts about it that are obvious in diagrams. In fact, quite few of Euclid s proof are based on reasoning from diagrams. To make these proofs rigorous, a much larger system of explicit axioms is needed. Hilbert suggested the following axioms on betweenness: B.1 If A B C then A, B, and C are three distinct points all lying on the same line, and C B A. Note that (C B A) means that, B between A and C, is the same as B between C and A. B.2 Given any two distinct points B and D, there exists points A, C and E lying on BD such that A B D, B C D and B D E. This axiom ensures that there are points between B and D and that the line BD does not end at either B or D. B.3 If A, B, and C are three distinct points lying on he same line, then one and only one of the points is between the other two. This axiom ensures that a line is not circular; if the points where on a circle, we would then have to say that each is between the other two. Definition We define a segment AB as the set of all points between A and B, together with the points A and B which are called the endpoints of segment AB.

30 30 CHAPTER 2. HILBERT S AXIOM SYSTEM We define the ray AB as the set of all points on the segment AB together with all points C such that A B C. The point A is called the vertex of the ray AB and we say that ray AB emanates from A. It follows from axiom B.2 that given any two points A, B on a line l there exists infinitely many points of l between A and B. Axiom B.2 also implies that there are infinitely many points lying on AB that are not on the segment AB. Definition If A B C, then we say that BC is opposite ray to BA. That is two rays are opposite rays if and only if they are distinct, part of the same line, and emanating from the same point. Note that axiom B.2 guarantees that every ray has opposite ray. The next result is consequence of the three axioms of betweenness. Proposition For any two points A and B we have: i. AB BA = AB. ii. AB BA = AB Proof. i. First, we have to show that, AB BA AB. Since AB AB and BA AB we have that AB BA AB. Second, let P be a point lying on AB. If P = A or P = B, then P AB, and hence, P AB BA. If P A, and P B, then from B.3 we get that one and only one of the following cases: Case 1: A P B and hence P AB, then P AB and P BA. Case 2: P A B and hence P BA. Case 3: A B P and hence P AB. In each case P belongs to either AB, or BA. Hence, P BA AB. ii. Exercise. Definition Let l be a line and A and B be two distinct points not on l. We say that A and B on the same side of l if the segment AB does not intersect the line l. But if segment AB intersects the line l then we say that points A and B are on opposite sides of l. B.4 Given any line l and three distinct points A, B, and C not lying on l, we have: i. If A and B are on the same side of l and B and C are on the same side of l, then A and C are on the same side of l. ii. If A, and B are on opposite sides of l and B and C are on opposite sides of l, then A and C are on the same side of line l.

31 2.2. BETWEENNESS AXIOMS 31 Corollary If A and B are on opposite sides of l and B and C are on the same side of l, then A and C are on opposite sides of l. Definition Let l be a line and A a point not lying on l. The set of all points that are on the same side of l as A is called the half-plane bounded by l containing A. We denote it by H l,a. Note that B.4 implies that if A and B are on the same side of l then H l,a = H l,b. Theorem (Plane separation property) Every line bounds exactly two half-planes and these half-planes are disjoint. Proof: Given any line l. Axiom I.2 implies that there is a point O on l. And proposition implies that there is a point A not on l. From B.2 there is a point B such that A O B. Therefore A and B are on opposite sides of l. Thus l has at least two half-planes H l,a and H l,b. First, we have to prove that, H l,a H l,b = Φ If C H l,a H l,b, then C is on same side of l as A, and C is on same side of l as B. Then by B.4, A and B are on the same side of l, contradicting that A and B are on opposite side of l. Thus the two half-planes are disjoint. Second, we have to prove that, if P is any point not lying on l then either P H l,a or P H l,b. Let P / l and P / H l,a, then P and A are on opposite sides of l. Since A and B are on opposite sides of l then by B.4, B and P are on same side of l. That means P H l,b. We next apply the plane separation property to study betweenness among four points. Proposition Given A B C and A C D. Then i. B C D. ii. A B D. Proof: i. We prove that B C D. Given A B C and A C D. By B.1, A, B, and C are distinct and collinear, say lie on the line l, also A, C, and D are distinct and collinear, say lie on the line n. By I.1, since A and C lie on both l and n, then l = n. Hence, A, B, C, and D all lie on l. Now, we need to show that, B D. If not, that is, B = D, then from the hypothesis, we have both A B C and A C B, which contradicts B.3. Thus, A, B, C, and D are distinct and collinear, all lie on l. Now, by proposition 2.1.1, there exist a point E not on l. Consider the line EC, AD meets this line in C, hence A, and D are in opposite sides of EC. We claim that, A and B are in opposite sides of EC, then AB meets EC at a point M between A and B. By proposition 2.1.1, l and EC meets in a unique point, which is C. Thus C = M. Then, we have, A B C and A C B, which contradicts B.3. Hence A and B are on the same sides of EC. Since A and B are on the same sides of EC, and A and D are on opposite sides of EC, then

32 32 CHAPTER 2. HILBERT S AXIOM SYSTEM by corollary 1, B and D are on opposite sides of EC. Thus BD intersects EC at a point between B and D, and this point must be C. ii. Now, we will prove A B D. Given A B C and A C D, then from the first part, A, B, C and D are four distinct collinear points let l be the line containing them. By proposition there is a point F / l. From I.1, the points B and F determine a unique line, say m. The segment AC meet m at B and by assumption A B C then A and C are in opposite sides of m. We will use contradiction to prove that C and D are in same side of m. Thus, assume that C and D are in opposite side of m, then CD intersects m at some point G between C and D. But l and m are distinct and can have only a unique point in common, thus G = B. Hence C B D, contradicting that B C D in the first part. And so C and D are on same side of m. From corollary 1 and that A and C are on opposite side and C and D are in on same side of m, then A and D are in opposite side of m. Thus AD intersects line m at a point between A and D, this point must be B by proposition hence A B D. Corollary Given A B C and B C D. Then A B D and A C D. Theorem (Line separation property) If C A B and l is the line through them. Then for every point P A lying on l, then either P AB, or P AC. Proof. Given C A B and l the line through them. Let P l and P A, then either P AB or P / AB. If P AB, then we are done. If not, then P A B. If P = C then P AC. If P C, then by B.3 either P B C or B P C or B C P. If B P C then combining this with P A B and proposition we have A P C then P AC. If B C P then combining this with C A B, we get A C P, and hence P AC. If P B C then combining this with C A B, we get P B A a contradiction. Therefore, either A C P or A P C, which means that P AC. The next theorem state a visually obvious property that Pasch discovered Euclid to be using without proof. Theorem (Pasch s Theorem) If A, B, and C are distinct non-collinear points and l is any line intersecting AB at a point between A and B, then l also intersects either AC or BC. If C does not lie on l, then l does not intersects both AC and BC.

33 2.2. BETWEENNESS AXIOMS 33 Proof. Let A, B, and C are distinct non-collinear points and l is any line intersecting AB at a point between A and B. Then A and B are in opposite sides of l. If C l then l intersects both AC and BC. If C / l we obtain from plane separation property that C H l,a or C H l,b and not in both of them. If C H l,a then AC intersects l. And if C H l,b then BC intersects l. Intuitively, this theorem says that, if a line intersects a triangle in one side, then it must intersect another side. Proposition Given A B C. Then i. AC = AB BC and B is the only point common to segments AB and BC. ii. AB = AC iii. B is the only common point to rays BA and BC. Proof. i. First, we show that AC AB BC. Let P AC. Then either P AB or P / AB. If P AB, then since AB AB BC, P AB BC. If P / AB then P A B or A B P. Now, since P AC then by definition of segments either P = C or A P C. If P = C then P BC AB BC. If A P C, then from P / AB, either A B P or B A P. Thus, if A B P, combine it with A P C we get by proposition 2.2.2, B P C, that is P BC AB BC. If B A P, then combine it with A P C, by proposition 2.2.2, we get that B P C, then P BC AB BC. Second, we show that AB BC AC. Let P AB BC, then either P AB or P BC. If P AB, then either P = A or P = B or A P B. If P = A then P AC. If P = B and since A B C then P AC. If A P B with A B C we get A P C then P AC. Now, if P BC, then either P = B or P = C or B P C. If P = C then P AC. If P = B with A B C then P AC. Finally, if B P C, then with A B C we get A P C and hence P AC. Thus AB BC AC. To show that only B is the common to AB and BC, use contradiction. Let E B and E AB BC. Then clearly E A and E C, so A E B and B E C. Consider A E B with A B C then from proposition 2.2.2, we have E B C contradicting that B E C. ii. First, we will show that, AB AC. We use contradiction, let P AB and P / AC. Then P / AC implies that P A C. Combine A B C with P A C by proposition 2.2.2, we get P A B which contradicts that P AB. Thus, AB AC. Similarly we show that, AC AB. iii. Now, we show that BA BC = B. Use contradiction, assume that P B and P BA BC. Then clearly P A and P C. Now, P BA implies

34 34 CHAPTER 2. HILBERT S AXIOM SYSTEM that, B P A or B A P. If B P A, with A B C we get P B C, then P / BC, hence we get a contradiction. If B A P with A B C we get also P B C, which leads to that P / BC, and hence we get a contradiction. Definition An angle with vertex A is a point A together with two nonopposite rays AB and AC emanating from A. The two rays are called sides of the angle. Such an angle will be denoted by BAC or CAB. If no confusion occur, we will denote it by A. Definition Given an angle BAC, define a point D to be an interior point of BAC if D is on the same side of AC as B and D is also on same side of AB as C. That is D is in the intersection of two half planes. Proposition Given an angle CAB and a point D lying on line BC. Then D is in the interior of CAB if and only if B D C. Proof. Given that D BC (= ). Let D be in the interior of BAC. Since D BC, then from B.3, either B D C or D B C or B C D. If D B C, then D and C are in opposite sides of any line intersecting line DC at B. In particular, D and C are in opposite sides of line AB contradicting that D is an interior point. If B C D, then D and B are in opposite side of any line intersecting line BD at C. In particular, D and B are in opposite sides of the line AC contradicting that D is an interior point. Thus, B D C hold. ( =) Conversely, assume B D C, if D is not in the interior of the angle BAC. Then either D and B are not on same sides of AC or D and C are not on same sides of AB. If D and B are in opposite sides of AC then DB intersect AC at a point say F such that D F B. Then DB = DC. Thus the two lines AC and DB have two points in common F and C. First, the two lines DB and AC are clearly distinct lines, otherwise A, B and C be would be collinear, and hence AB and AC are opposite rays, contradicting that the two rays are sides of an angle and hence non-opposite. Then by proposition C = F, but this also contradicts the assumption that B D C. The case that D and C are in opposite sides of line AC leads to similar contradiction. Then we conclude that D is an interior point of BAC.. Proposition Let D be interior point of the angle CAB. Then i. Every point E A and on AD is an interior point of BAC. ii. No point on the opposite ray to AD is in the interior of CAB.

35 2.2. BETWEENNESS AXIOMS 35 iii. If C A E then B is in the interior of DAE. Proof. Given an angle CAB and point D in the interior of CAB. i. Let E A and E AD. If E = D, then by assumption, E is interior point of CAB. If E D, we use contradiction. Assume that E is not interior point of CAB. Then either E and B are in opposite sides of AC or E and C are in opposite sides of line AB. If E and B are in opposite sides of line AC, since B and D are on same side of line AC then by corollary to B.4 the points E and D are in opposite sides of line AC. Then ED intersects AC at a point say F such that E F D. But DE AD. Then AC and AD have two points in common, A and F, from proposition i. and that the two lines are distinct we get a contradiction unless F = A. But then E A D which contradicts that E AD. ii. Let G be any point on the opposite ray of AD. Then G A D and G and D are in opposite sides of AC since GD intersects AC at A. Now, D is interior of CAB then B and D are on same side of AC. Then by corollary to B.4 we have G and B are in opposite sides of AC. Hence, G is not interior to CAB. iii. Assume that C A E. To show that B interior point of DAE. First, D and B are on same side of AC = EA since D interior of CAB. Second, we need to show that: E and B are on same side of AD. If not, then EB intersects line AD at a point, say F, and then F is an interior point of BAE by proposition Now, we claim that D AF. Since F is on same side of AE as B and B is on same side of AE as D, then by B.4 F and D are on same side of AE. Hence, D AF. Then D is also an interior point of BAE. Then D and E are on same side of AB. And from that D is interior to CAB, we have D and C are on same side of AB. Thus by B.4 we get that E and C are on same side of AB. This is a contradiction since C A E and CE intersects AB at A. Definition Ray AD is between rays AC and AB if AB and AC are not opposite rays and D is interior to BAC. Note that by previous proposition this definition does not depend on the choice of point D. Theorem Crossbar Theorem If AD is between AC and AB then AD intersect segment BC. Proof. Given that AD is between AC and AB. Use contradiction, assume that AD does not intersect BC. By B.2, there exists a point F AD such that F A D, and AD AF = {A}. By proposition 2.2.4, every point on BC except B and C is interior point of CAB. And by proposition 2.2.5, no point on AF is interior to CAB. Thus BC does not intersect AF. And by assumption,

36 36 CHAPTER 2. HILBERT S AXIOM SYSTEM BC does not intersect AD. Then BC does not intersect the line AD. Hence, B and C are in the same side of AD. Let E be such that C A E, Since by last proposition B is interior point of DAE. Then B and E are in the same side of AD. Since B and C are on same side of AD, then by the B.4, C and E are in the same side of AD, which is a contradiction. 2.3 Congruence Axioms The last of our undefined terms is congruent. It will refer to either a relation between segments or a relation between angles. Also, we use congruence to refer to a relation between triangles, we will define it as follows: Definition A triangle ABC consists of three non-collinear points A, B and C and the line segments AB, AC, and BC. Where A, B and C are called the vertices of the triangle and AB, BC, and AC are called the sides of the triangle. Two triangles are said to be congruent if there is a one to one correspondence between their vertices so that the corresponding sides are congruent and corresponding angles are congruent. Now we state the axioms of congruence: C.1 If A and B are two distinct points and if C is any point, then for each given ray r emanating from C there is a unique point D on r such AB = CD. Intuitively, this axioms says that, one can move the segment AB so that it lies on the ray r with A superimposed on C, and B superimposed on D. C.2 If AB = CD and AB = EF then CD = EF. Moreover, every segment is congruent to itself. This axiom replaces the Euclid s first and fourth common notions, since it says that segments congruent to the same segment are congruent, and segments that coincide are congruent. We conclude from this axiom that: If AB = CD then CD = AB. C.3 (Segment Addition)If A B C, E F G, AB = EF, and BC = F G, then AC = EG. This axiom replaces the third common notion of Euclid, since it says that, if congruent segments are added to congruent segments, then the sums are congruent. Here adding means juxtaposing segments a long the same line. Using C.1 and C.2, we can lay off a copy of a given segment AB on the ray r, n times, to get a new segment n.ab.

37 2.3. CONGRUENCE AXIOMS 37 C.4 Given BAC and any ray EF, then on a given side of the line EF there is a unique ray EG such that BAC = F EG. This axiom say that, angle can be laid off on a given side of a given ray in a unique way. C.5 If A = B and A = C, then B = C. Moreover, every angle is congruent to itself. We conclude from this axiom that: If A = B then B = A. C.6 (SAS) If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent. Corollary Given ABC and segment DE = AB, there is a unique point F on a given side of line DE such that ABC = DEF. Proof. Given any ABC and segment DE = AB. Then by C.4 there is a unique ray DF on a given side of the line DE such that BAC = F DE. Then by C.1 on the ray DF choose F the unique point such that AC = DF. Hence by SAS, ABC = DEF. Proposition (ASA) Given ABC and DEF with AB = DE, CAB = F DE, and CBA = F ED, then ABC = DEF. Proof. Given ABC and DEF with AB = DE, CAB = F DE, and CBA = F ED. By C.1 there is a unique point G on ray AC, such that AG = DF. Then by SAS, ABG = DEF, and hence ABG = DEF. But by assumption, DEF = ABC. Then by uniqueness of C.4, we have BG = BC. We claim that G = C. If not, that is G C then G AC BC, then by proposition i, AC = BC. But this contradicts that A, B, and C are non-collinear. Definition A triangle is called isosceles if two of its sides are congruent. Proposition Given ABC, then: i. If ABC is an isosceles triangle then B = C. ii. If B = C then the triangle is isosceles. Proof. i. Given a triangle ABC in which AB = AC. Consider the triangles ABC and ACB. Then by C.4, A = A, by hypothesis AB = AC, and by C.2, we have AC = AB, then by SAS, ABC = ACB. Hence, B = C.

38 38 CHAPTER 2. HILBERT S AXIOM SYSTEM ii. Given a triangle ABC in which B = C. Consider the triangles ABC and ACB. Since B = C, then by C.4, C = B. And BC = BC by C.2, then by ASA, ABC = ACB and hence AB = AC by definition of congruent triangles. Proposition (Segment Subtraction) If A B C and D E F, AB = DE, and AC = DF then BC = EF. Proof. Given A B C and D E F, AB = DE, and AC = DF. Apply C.1 to BC and ray EF. Then there is unique point G EF such that BC = EG. Then by C.3 AC = DG. But AC = DF. This contradicts C.1 unless G = F. Thus BC = EF. Proposition Given AC = DF, then for any point B between A and C, there is a unique point E between D and F such that AB = DE. Proof. Given AC = DF and given B such that A B C. Then by C.1, there is a unique point E on the ray DF such that AB = DE. Then either E = F or D E F or D F E. If E = F, then B and C are two distinct points on AC such that AC = DF = AB contradicting the uniqueness of C.1. If D F E, then by C.1, there is a point G on the opposite ray to ray CA such that EF = CG. Then AG = DE by C.3. Thus there are two distinct points B and G on AC such that AG = DE = AB contradicting the uniqueness in C.1. Thus, D E F and AB = DE. Definition By AB < CD or CD > AB we mean that there exists a point E between C and D such that AB = CE. Proposition (Segment Ordering)

39 2.3. CONGRUENCE AXIOMS 39 i. (Trichotomy) For any two segments AB and CD, exactly one of the followings hold: AB < CD, AB > CD, or AB = CD. ii. If AB < CD and CD = EF, then AB < EF. iii. If AB > CD and CD = EF, then AB > EF. iv.(transitivity) If AB < CD and CD < EF, then AB < EF. Proof.i. Given any two segments AB and CD. By C.1, considering AB and the ray CD there exists unique point on CD, say G, such that AB = CG. Then by definition of the ray, either D = G, C D G,or C G D. If D = G then AB = CD. If C G D, then AB < CD. If C D G, then by proposition and since AB = CG, there exists unique point I, A I B such that AI = CD, and hence AB > CD. ii. Given AB < CD and CD = EF, then there exists G between C and D such that AB = CG. Then by proposition with CD = EF, there is unique point J, between E and F such that CG = EJ. By C.2, AB = EJ. Then EF > AB. iii. Exercise. iv. Given AB < CD and CD < EF. Then by definition of greater segment, there exists I such that C I D and AB = CI, also there is a point G such that E G F and CD = EG. Consider CD, the point I and EG, by proposition there exists a point, say H such E H G and EH = CI. By C.2, AB = EH. From E G F and E H G we get E H F. From E H F and AB = EH, we get that AB < EF. Definition Two angles are called supplementary angles, if they have the same vertex, have a common side, and the other sides are opposite rays. An angle is called right angle, if it is congruent to its supplementary angle. Two angles are called vertical angles if they have the same vertex and the sides are opposite rays. Two lines meet at a point, say P are called perpendicular, if the angles consists of P and one side is a ray in the first line emanating from P, and the other side is a ray in the second line emanating from P, are right angles. Proposition i. Supplements of congruent angles are congruent. ii.vertical angles are congruent to each other. iii An angle congruent to a right angle is right.

40 40 CHAPTER 2. HILBERT S AXIOM SYSTEM Proof. i. Given CAD = GF H. We show that, their supplementary angles are congruent, that is, BAD = EF H. See the figure. By C.1, choose G such that F G = AC, E such that EF = AB, and H such that F H = AD. By SAS, DAC = HF G. By segment addition BC = EG. Then, since DCA = HGF and DC = HG, so by SAS, DBC = HEG. By congruence of triangles, HE = DB and DBC = HEG. Then by SAS, DBA = HEF. Finally, by congruence of triangles DAB = HF E. ii. Consider the following figure. 1 is supplementary to 2 and also supplementary to 4. By C.5 1 = 1, then by part i 2 = 4. iii. Let 1 be a right angle and 2 is any angle congruent to 1. See the figure. Since 1 is right angle, then it is congruent to its supplementary angle 3.

41 2.3. CONGRUENCE AXIOMS 41 Then by i, the supplementary angle of 2, which is 4, is congruent to angle 3. That is, 4 = 3 = 1 = 2. By C.5, 4 = 2. Hence, 2 is right. Proposition For every line l and every point P, there exists a line through P that is perpendicular to l. Proof. Given any line l, and P any point. Then, either P l or P / l. Case 1: let P / l. By I.2, there are two points, say A and B on l. By C.4, on the opposite side of l from P, there exists a ray AG such that GAB = P AB. By C.1, there is a point P on AG such that AP = AP. Now P P intersects l at a point Q. Either Q = A or Q A. If Q = A, since P QB = P QB and they are supplementary angles, then they are right angles. Hence, P P is perpendicular to l. If Q A, then by SAS, P QA = P QA. Hence, P QA = P QA. Thus P P is perpendicular to l. Case 2: Let P l. By proposition there is a point not on l, say H. by case 1, we can drop a perpendicular from H to l, call it m. Let l and m intersects at a point G. Then either P = G or P G. If P = G, then we are done. If P G. See the figure.

42 42 CHAPTER 2. HILBERT S AXIOM SYSTEM By C.4, consider angle HGP and any ray part of l emanating from P and a given side of l, there is a unique ray emanating from P, which produce an angle congruent to the right angle HGP. Proposition (Angle Addition) Given AD lies between AB and AC and ray EG lies between EF and EH, CAD = GEH, and DAB = GEF. Then CAB = F EH. Proof. Given AD lies between AB and AC and ray EG lies between EF and EH, CAD = GEH, and DAB = GEF. See the figure Then by Crossbar theorem, AD intersects BC at a point, say M, such that B M C. By C.1, choose F, G and H, such that AB = EF, AC = EH, and AM = EG. Then, by SAS, MAC = GEH, and BAM = F EG. Then HGE = CMA and F GE = BMA. But CMA and BMA are supplementary angles. By proposition i, BM A is congruent to the supplementary angle

43 2.3. CONGRUENCE AXIOMS 43 of HGE, and since F GE = BMA. Thus by uniqueness of C.4, the supplementary angle of HGE is F GE. Hence H G F. Since EHF = ACB, then by SAS, ABC = EHF. And by definition of congruent triangles, BAC = F EH. Proposition (Angle Subtraction) Given AD lies between AB and AC and ray EG lies between EF and EH, CAB = F EH, and DAB = GEF. Then CAD = HEG. Proof. Consider the following figure, in which CAB = HEF and BAD = F EG. Now, considering the angle CAD, the ray EG, and the same side of EG as H. By C.4, there is a ray EK, such that CAD = GEK. Thus by hypothesis and angle addition, KEF = CAB. By assumption, we have F EH = CAB. Thus by uniqueness in C.4, EK = EF. Hence, CAD = HEG. Definition By BAC < DEF, we mean that, there is a ray EG between EF and ED such that BAC = GEF. Proposition (Ordering of Angles) i.(trichotomy) Given any two angles A and B. Then only one of the following is true: A < B, A > B, or A = B. ii. If A < B and B = C, then A < C. iii. If A > B and B = C, then A > C. iv. If A < B and B < C then A < C.

44 44 CHAPTER 2. HILBERT S AXIOM SYSTEM Proof. i. Given any two angle DAC and angle GBE. Consider DAC and ray BE, by C.4 on the same side of line BE as point G, there is a unique ray, say BH, such that CAD = HBE. Then either H BG or H is on the same side of line BG as point E or in the opposite side. Case 1. If H BG. Since H is on the same side of BE as point G, then H does not belong to the opposite ray of BG, that is H BG, then BH = BG. Thus CAD = GBE. Case 2. If H is on the same side of line BG as point E, and from that H is on the same side of line BE as G. Then H is interior point of the angle GBE. Hence BH lies between rays BE and BG. Thus, EBG > DAC. Case 3. If H is on the opposite side of line BG as point E, then EH intersects line BG at a point, say K and H K E. Then either K belong to the ray BG or it belongs to the opposite ray of BG. Claim: K belongs to the ray of BG. If not, that is K belongs to the opposite ray of BG. Then G and K are in opposite sides of line BE, but G and H are on same side of line BE, then by B.4, H and K are in opposite sides of line BE. Which contradicts that K is interior point of the angle HBE, since H K E. Thus K belongs to the ray of BG. Choose D and C, such that AD = BH and AC = BE. Since CAD = HBE, then by SAS ADC = BHE. See the figure Then, by definition of congruent triangles CD = HE. So, by proposition 2.3.4, there is a unique point, say Y, D Y C, such that CY = EK. By SAS, AY C = BKE. Then Y AC = GBE, and since Y interior to DAC by proposition Then DAC > GBE.

45 2.3. CONGRUENCE AXIOMS 45 ii. Assume that EAD < GBF and GBF = HCI. See the figure. Then there is a ray, say BK between BG and BF such that KBF = EAD. Also, BK intersects GF at a point, say J such that G J F. Now, Choose I, H such that BG = CH and BF = CI. Then by SAS, GBF = HCI. Then GF B = HIC. Then, apply proposition on HI and G J F, we get that there is a unique point L on HI, such that F J = LI. Then by SAS, we get that JBF = LCI. Hence, JBF = LCI. By C.2, EAD = LCI. That is, EAD < HCI. iii. Exercise. iv. Assume that EAD < GBF and GBF < HCI. Then there is a ray, say BK between BG and BF such that KBF = EAD. Also, BK intersects GF at a point, say J such that G J F. Since GBF < HCI, then there is a ray, say CL between CH and CI such that GBF = LCI Now, Choose I, L such that BG = CL and BF = CI. Then by SAS, GBF = LCI. Then GF B = LIC. Then, apply proposition on LI and G J F, there is a unique point M on LI, such that F J = MI. Then by SAS, we get that JBF = MCI. Hence, MCI = JBF and JBF = EAD. Then by C.4, EAD = MCI. Claim: M is interior to HCI. Then we conclude that EAD < HCI. To prove the claim, first, since M interior to LCI, M and L are on the same side of CI, but also, L and H are on same side of CI, then by B.4, M and H are on same side of the line CI. Second, to show that M and I are on same side of the line CH. Use contradiction, let M and I be on opposite sides of the line CH. Since L is interior to HCI then L and I are on the same side of the line CH. Then by corollary of B.4, L and M are in opposite sides of the line CH. Then ML intersects the line CH at a point, say P, such that M P L. From proposition and that L M I, we obtain L P I. Thus LI intersects the line CH at P, which

46 46 CHAPTER 2. HILBERT S AXIOM SYSTEM contradicts that, L is interior to the angle HCI. Proposition (SSS) Given ABC and DEF. If AB = DE, BC = EF, and AC = DF, then ABC = DEF. Proof. Given ABC and DEF, AB = DE, BC = EF, and AC = DF. By corollary of SAS, on the opposite side of DE as F, there is a unique point, say M such that ABC and DEM are congruent. Then BC = EM and CA = DM, by C.2 EF = EM and F D = DM. Since F and M are in opposite sides of DE, F M intersects the line DE at a point say P. Then either P = D, P = E, P D E, D E P, or D P E. Case 1: If P = D, see the following figure. Then by proposition EF M = EMF. That is DF E = DME. But DME = ACB. Then by C.4, we get ACB = DF E. Hence, by SAS ABC = DEF. Case 2: If P = E, the proof is similar to case 1. Case 3. If P D E, see the following figure.

47 2.3. CONGRUENCE AXIOMS 47 Then by proposition 2.3.2, P F E = P ME, and P F D = P MD. Thus by angle subtraction DF E = DME. But DME = ACB. Then by C.5, we get ACB = DF E. By SAS, ABC = DEF. Case 4: If D E P, the proof is similar to case 3. Case 5: If D P E then F is in the interior of DME, and M in the interior of DF E.

48 48 CHAPTER 2. HILBERT S AXIOM SYSTEM By proposition 2.3.2, in the triangle F EM, we get EF M = EMF, and in the triangle F DM, we get DF M = DMF. Then by angle addition, we get that DF E = DME. But DME = ACB. The by C.4, we get ACB = DF E. Hence, by SAS, ABC = DEF. Proposition (Euclid s Fourth Postulate) All right angles are congruent to each other. Proof. Given the following two pairs of right angles, BAD = CAD and F EH = GEH. We will use contradiction. Assume that BAD is not congruent to F EH. Then by trichotomy either F EH < BAD or F EH > BAD. It is enough to consider the case F EH < BAD. Then there is a ray AJ between AB and AD such that BAJ = F EH. By proposition 2.3.6, CAJ = GEH. Then by C.5 and that GEH = F EH, we get CAJ = BAJ. Since BAJ < BAD = CAD then by ordering of angles BAJ < CAD.

49 2.4. AXIOMS OF CONTINUITY 49 We show D is an interior point to CAJ. First, D, J are on same side of the line AB = AC, since J is interior to BAD. Second, C, B are on opposite side of AJ, since C A B, and D, B are in opposite sides of AJ. Then C and D are on the same side of AB, since D is interior point of CAJ. Then CAD < CAJ, and CAJ = BAG < CAD, which is a contradiction. 2.4 Axioms of continuity The axioms of continuity are the axioms which give us our correspondence between the real line and an Euclidean line. These are necessary to guarantee that our geometry Euclidean Plane Geometry is complete. Dedekind Axiom: Suppose that the set of all points on a line l is the disjoint union 1 2 of two non-empty subsets, such that no points of 1 is between two points of 2 and vice versa. Then there is a unique point O lying on l such that P 1 O P 2 if and only if P 1 1 and P 2 2. That is one of the subsets is equal to a ray of l with vertex O and the other subset is equal to the complement. A pair of subsets 1 and 2 with the properties of Dedekind s axiom is called a Dedekind cut of the line. Dedekind s axiom is a sort of converse to the line separation property, which says that any point O on l separates all points on l into those to the left of O, and those to the right of O. In particular, the set of all points on l is the union of the two rays of l emanating from O. Dedekind s axiom says that, conversely any separation of points on l into left and right is produced by a unique point O. Corollary We can define a Dedekind cut on a ray r the same way a Dedekind cut is defined for a line. Then the conclusion of Dedekind s axiom hold for the ray r. Proof. Let r be any ray. Suppose that the set of all points on the ray r is the disjoint union 1 2 of two non-empty subsets, such that no points of 1 is between two points of 2 and vice versa. One of the subsets contains the vertex A of r, say, 1. Then enlarge this set so as to include the ray opposite to r. Call this set 1 Let l be the line containing ray r. Thus, 1 and 2 form a Dedekind cut of l, since no point in the opposite ray of r lies between two points of 2, which is subset of the ray r, and vice versa. Then by Dedekind s axiom, there is a unique point O on l such that one of the subsets is equal to the ray of l with vertex O and the other subset is equal to the complement. The point O belongs to ray r. Otherwise, 1 2 would be non-empty.. Corollary We can define a Dedekind cut on a segment AB the same way a Dedekind cut is defined for a line. Then the conclusion of Dedekind s axiom

50 50 CHAPTER 2. HILBERT S AXIOM SYSTEM hold for the segment AB. Proof. Let AB be any segment. Suppose that the set of all points on the segment AB is the disjoint union 1 2 of two non-empty subsets, such that no points of 1 is between two points of 2 and vice versa. One of the subsets contains the point A, say, 1. The point B must be in the other subset, 2. For if both A and B are in 1. Then 2 would be empty, contradicting the assumption. Then enlarge the subset 1 so as to include the ray opposite to AB. And enlarge the subset 2 so as to include the ray opposite to BA. Let l be the line containing the segment AB. Thus, 1 and 2 form a Dedekind cut of l. Then by Dedekind s axiom, there is a unique point O on l such that one of the subsets is equal to the ray of l with vertex O and the other subset is equal to the complement. Since A 1 and B 2. Then A O B.. Dedekinds axiom ensure that a line has no holes in it, in the sense that for any point O on a line l and any positive real number x there exists unique points P x and P x on l such that P x O P x and the segments P x O and OP x both have the length x. Without Dedekind s axiom there is no guarantee that there is a segment of length π or of length e or of certain other non-constructible lengths as 2. It is Dedekind s axiom that allows us to make correspondence of the line in our geometry and the real line. It is with Dedekind s axiom that we are able to introduce the coordinate system and do geometry analytically, as Descartes and Fermat discovered in the seventeenth century. This coordinate system enables us to prove that our axioms for Euclidean geometry are categorical. That is this system has a unique model up to isomorphism, namely, the usual Cartesian coordinate plane of all ordered pairs of real numbers. To see why we need Dedekind s axiom, consider the manner in which Euclid construct a perpendicular to a given line at a given point only with a straight edge and compass: Given any line l, and any point O on l. First, using the point O as a center, draw a circle of positive radius. The circle intersects the line l in two points, say A and B. At each of these points, we then construct a circle of larger radius and these two circles intersect in two points, say P and Q. Drawing the line between the two points of intersections gives a line perpendicular to the given line l at the given point O. See the figure There are two gaps in this proof:

51 2.4. AXIOMS OF CONTINUITY Why does a line intersects the circle with center O at all? 2. Why do the two circles then intersect? The first of these gaps can be filled by assuming the Elementary Continuity Principle, and the second gap can be filled by assuming the Circular Continuity Principle. Both principles are consequences of Dedekind s axiom. Definition i. Given any two distinct points R and O, then a circle with center O and radius OR is defined to be the set of all points P such that OP = OR. ii. We define a point X to be inside the circle with center O and radius OR if OX < OR. A point Y is outside the circle if OY > OR. Proposition (Elementary Continuity Principle) Let γ be a circle with center O and radius OR. If A is a point inside γ, and B is a point outside γ. Then the segment AB intersects the circle γ. Proof. We will prove it later. Proposition (Circular Continuity Principle) If a circle γ has one point inside and one point outside another circle γ, then the two circles intersect in two points. Proof. We will prove it later. The next statement is not about continuity but rather about measurements. Archimedes recognized that a new axiom was needed. It is listed here because it is a consequence of Dedekind s axiom. It is needed so that we can assign a positive real number as a length of an arbitrary segment, as we will see in chapter 3. Proposition (Archimedes Axiom) If CD is any segment, A any point, and r any ray with vertex A. Then for every point B A on r there is an integer n such that when CD is laid off n times on r starting at A, a point E is reached such that n.cd = AE and either B = E or A B E. Here we use C.1 to begin laying off CD on r starting from A, obtaining a point A 1 on r such that AA 1 = CD. We define 1.CD to be AA1. Let r 1 be the ray emanating from A 1 and contained in r. By C.1, we obtain a unique point A 2 on

52 52 CHAPTER 2. HILBERT S AXIOM SYSTEM r 1 such that A 1 A 2 = CD. And we define 2.CD to be AA2. Proceeding in the same manner, we can define by induction on n, the segment n.cd to be AA n. For example, if AB were π units long and CD of one unit length, then we would have to lay off CD at least four times to get to a point E, such that A B E. The intuitive content of Archimedes Axiom is that if we arbitrarily choose one segment CD as a unit of length, then every other segment has finite length with respect to this unit. In terms of the axiom, the length of AB with respect to CD as unit is at most n units. Another way to look at it to choose AB as unit length. Then the axiom says that, no other segment can be infinitesimally small with respect to this unit. That is, the length of CD with respect to AB as unit is at least 1 n units. Proof of Archimedes Axiom. Given a segment CD and a point A on line l, with a ray r of l emanating from A. Let 1 consists of A and all points B on r reached by laying off copies of segment CD on r starting from A. Let 2 be the complement of 1 in r. First, we have to show that 2 is empty. We use contradiction. If 2. Then, let us show that, we have a Dedekind cut on r. Let P and Q be in 2 such that A P Q. We must show that P Q 2. Let B be a point such that P B Q. Suppose that B could be reached, that is there is n and a point E such that n.cd = AE, and A B E. Then apply proposition on A P Q and P B Q, we get A P B. Then apply the proposition on A P B and A B E, we get A P E. Thus P is also reached by the same n and the same E, contradicting to that P 2. Thus P Q 2. So we have a Dedekind cut on the ray r. Let O be the unique point on r such that P 1 O P 2 if and only if P 1 1 and P 2 2. Either O 1 or O 2. If O 1. Then there is n such that O can be reached by laying off n copies of segment CD on r starting from A. By laying off one more copy of CD, we can reach a point in 2, which is impossible. If O 2. Lay off a copy of CD on the ray opposite to 2 starting at O, obtaining a point P. Then P must lie on r. For, if not, AO < CD, then there is a point M, such that C M D, and AO = CM. By applying C.1 on the opposite ray to OA, there is a point G such that OG = MD, then A O G and AG = 1.CD. Then O can be reached from A, contradiction to that O 2. Since P r, then P 1. Then for some integer n, P can be reached by laying off n copies of segment CD on r starting from A. By laying off one more copy of CD, we reach O. That contradicts that O 2. Thus, in either cases, we obtain a contradiction. Hence our assumption that is non-empty is false. 2

53 2.5. AXIOM OF PARALLELISM Axiom of Parallelism If we were to stop with the axioms we now have, we could do a bit of geometry, but we still could not do all of Euclidean geometry. We would have the so called Neutral geometry, it is called so, because in doing this geometry we remain neutral about the parallel axiom. Hilbert s Parallel Axiom: For every line l and every point P not on l, there is at most one line m through P such that m is parallel to l and m pass through P. Note that this axiom is weaker than the Euclidean parallel axiom. This axiom asserts only that at most one line through P is parallel to l, whereas the Euclidean parallel axiom asserts in addition that at least one line through P and parallel to l. This is omitted from Hilbert s parallel axiom, since it can be proved from the other axioms. It is therefore unnecessary to assume this as part of an axiom. The axiom of parallelism completes our list of 16 axioms for Euclidean geometry. The Euclidean plane is a model of these axioms. 2.6 Exercises [1] Given A B C and A C D. Then i. Show that A, B, C, and D are distinct points. ii. Show that A, B, C, and D are collinear. [2] Given A B C. i. If P is a fourth point collinear with A, B, and C. Then show that: A B P implies that A C P. ii. Show that BA CA. [3] Given a line l, a point P on l, and Q not on l. Then show thatevery point of the ray P Q except P is on the same side of l as Q. [4] In the following figure CB = BD = DA = AC. Prove that CAD = CBD.

54 54 CHAPTER 2. HILBERT S AXIOM SYSTEM [5] In the following figure, AB = AC, and AD = AE. Show that BE = DC. [6] In the following figure AB = AC, A B = A C. Prove that AA B = AA C.

55 2.6. EXERCISES 55 [7] Prove that a line cannot be contained in the interior of a triangle. The interior of a triangle is defined to be the intersection of the interiors of all angles of the triangle. [8] Given a triangle ABC. i. If ray r emanating from an exterior point of ABC intersects AB in a point between A and B, then r also intersects AC or BC. A point is called an exterior of a triangle if and only if it is not in the interior of the triangle, and not on the sides of the triangle. ii. If a ray r emanates from an interior point of ABC, then it intersects one of the sides of the triangle, and if it does not pass through a vertex, it intersects only one side. [9] Prove that an equiangular 2 triangle is equilateral. [10] Given two triangles ADC and A D C. And given A B C and A B C. If AB = A B, BC = B C, AD = A D, and BD = B D, then show that CD = C D. [11] Given ABC = DEF and BG between BA and BC. Prove that there is a unique ray EH between ED and EF such that ABG = DEH. [12] If AB < CD then show that 2 AB < 2 CD. 2 Equiangular triangle is a triangle, in which all angles congruent to one another

56 56 CHAPTER 2. HILBERT S AXIOM SYSTEM

57 Chapter 3 Neutral Geometry A geometry satisfying Hilbert s axioms of incidence, betweenness, congruences, and continuity, in which we neither affirm or deny Hilbert s parallel axiom, is called a neutral geometry. The purpose of studying neutral geometry is to clarify the role of the parallel postulate by seeing which theorems in the geometry do not depend on it. That is, which theorems follow from the other axioms alone without ever using the parallel postulate in proofs. Note that all propositions, theorems and corollaries, that we proved in the previous chapter hold in neutral geometry. 3.1 Alternate Interior angle Theorem and Exterior Angle Theorem Definition A line t is called a transversal to two lines l and m, if t intersects l at point A, and t intersects m at point B and A B. Let t be a transversal to lines l and m, with t intersects l at A and m at B. Choose points C and D on l such that C A D, and choose points E and F on m such that E B F, and D, F are on the same side of the line t. Then the following angles are called interior angles: CAB, DAB, EBA, and F BA. The two pairs ( CAB, F BA) and ( EBA, DAB) are called pairs of alternate interior angles. See the following figure: 57

58 58 CHAPTER 3. NEUTRAL GEOMETRY Theorem (Alternate Interior Angle Theorem) If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel. Proof. Given t to be a transversal to lines l and m, with t intersects l at A and m at B. Choose points C and D on l such that C A D, and choose points E and F on m such that E B F, and D, F are on the same side of t. Let CAB = F BA. We show that l is parallel to m. We use contradiction, assume that l and m meet at point P. Say P is on the same side of t as D. By C.1, choose C such that AC = BP. Then by SAS, P BA = CAB. Thus, DAB = ABC. Since EBA is supplement of F BA then by proposition 2.3.6, DAB = ABE. By C.5, EBA = CBA. Then C lies on m. Then l and m have two points in common C and P, which contradicts proposition Corollary i. Two lines perpendicular to the same lines are parallel. ii. For any line l and any point P not on l, there is a unique perpendicular from P to l. Proof. i. Let n and m be two distinct lines that are perpendicular to a line l. Then the alternate interior angles are right angles, and hence congruent by proposition Then by alternate interior angle theorem n m. ii. Exercise. Corollary If l is any line and P any point not on l, then there is at least one line through P and parallel to l. Proof. Given any line l and any point P not on l. By previous corollary ii, there is a unique line, say m through P and perpendicular to l. Now apply

59 3.1. ALTERNATE INTERIOR ANGLE THEOREM AND EXTERIOR ANGLE THEOREM59 proposition on P and the line m, then there is a line, say n, through P and perpendicular to m. Thus, both l and n are perpendicular to m, then by previous corollary, l n. Note that, Hilbert s parallel axiom and this corollary imply the Euclidean parallel axiom. Definition An angle supplementary to an angle of a triangle is called exterior angle of the triangle. The two angles of a triangle that are not adjacent 1 to an exterior angle of a triangle are called remote interior angles. Theorem (Exterior Angle Theorem) An exterior angle of a triangle is greater than either remote interior angles. Proof. Given any triangle ABC. Let D be a point such that B C D. First, we show that ACD > BAC. If not, then by trichotomy on angles, either ACD = BAC or ACD < BAC. Case 1: If ACD = BAC. Then AC is a trasversal of the two lines CD and BA with a pair of congruent alternate interior angles. Hence, by alternate interior angle theorem, the line CD and BA are parallel, which contradicts that the two lines meet at B. Case 2: If ACD < BAC. Then there is a ray, say AF between AB and AC such F AC = ACD. By Crossbar theorem, AF intersects BC at point, say M between B and C. 1 two angles are called adjacent if they have a common vertex and a common side.

60 60 CHAPTER 3. NEUTRAL GEOMETRY Then AC is a trasversal of the two lines CD and AF with a pair of congruent alternate interior angles. Hence, by alternate interior angle theorem, the line CD and AF are parallel, which contradicts that the two lines meet at M. Second, we show that ACD > ABC. If not, then by trichotomy on angles, either ACD = ABC or ACD < ABC. Case 1: If ACD = ABC. Then their supplementary angles; 1 and 2, are congeruent by proposition See the figure Then BD is a transversal of the two lines AC and AB with a pair of congruent alternate interior angles; 1 and 2. Hence, by alternate interior angle theorem, the lines CA and BA are parallel, which contradicts that the two lines meet at A. Case 2: Exercise.

61 3.1. ALTERNATE INTERIOR ANGLE THEOREM AND EXTERIOR ANGLE THEOREM61 Proposition (SAA) Given two triangles ABC and DEF with AC = DF, ABC = DEF, and ACB = DF E. Then ABC = DEF. Proof. Given two triangles ABC and DEF with AC = DF, ABC = DEF, and ACB = DF E. Then by trichotomy on segments, either BC = EF, BC > EF, or BC < EF. If BC = EF, then by ASA, ABC = DEF. If BC > EF, then there is a point, say M such that B M C such that CM = EF. Then DEF = AMC. then AMC = DEF. Thus by C.5, AMC = ABC, which contradicts Exterior angle theorem. If BC < EF is an exercise. Proposition (SSA,the angle is right) Given two triangles ABC, and DEF, such that, B and E are right, DE = AB, and AC = DF. Then ABC = DEF. Proof. Given two right triangles ABC and DEF with B and E are right, DE = AB, and AC = DF. By C.1, on the opposite ray of BC, there is a unique point G such that EF = BG. Then by SAS, DEF = ABG. See the figure In the isosceles triangle AGC, the angles of the base are congruent; AGC = ACG. Then by SAA, AGB = ACB. Thus, ACB = DF E. Definition A midpoint of a segment AB is a point M such that A M B and AM = MB. Proposition Every segment has a unique midpoint. Proof. Existence: Given any segment AB. By proposition 2.1.1, let C be any point not on AB. Then by C.4, on the opposite side of AB from C, there is a unique ray BX such that BAC = ABX. By C.1, there is a unique point D on BX with AC = BD. Now, since D and C are in opposite sides of line AB, then CD intersects the line AB at a point say, M. We show that A M B. Since M AB, then either M = A, M = B, M A B, A M B, or A B M.

62 62 CHAPTER 3. NEUTRAL GEOMETRY If M = A, see the figure. Then considering ABD and the exterior angle BAC. Then this angle is greater that the remote interior angle, this is a contradiction to that CAB = ABD. If M = B, is an exercise. See the figure If M A B, then CMB is an exterior angle to the triangle MBD. Thus by exterior angle theorem CMB > MBD, and CAB is exterior to CMA, then CAB > CMB. But CAB = MBD. Then by ordering of angles CMB < MBD. Thus, we get a contradiction. See the following figure.

63 3.1. ALTERNATE INTERIOR ANGLE THEOREM AND EXTERIOR ANGLE THEOREM63. If A B M is an exercise. Use the following figure.

64 64 CHAPTER 3. NEUTRAL GEOMETRY Thus, A M B. See the figure. The vertical angles CMA = BMD. Then AM = MB. Then by AAS MCA = MDB. Uniqueness: Suppose there are two midpoints say M and E. Then A M B and A E B. Then apply B.2 on M, E, and B, either E M B, M E B, or M B E. If M B E, with A E B, we get by proposition 2.2.2, A B M contradiction to that A M B. If E M B, then BM < EB = AE. From E M B and A E B, by proposition we get A E M, then AE < AM = BM, thus AE < BM, this is a contradiction. If M E B, then AE = EB < MB = AM. From M E B and A M B, we get A M E. Hence AM < AE. Thus we get a contradiction. Definition i. A bisector of an angle ABC is a ray BD lies between rays BA and BC such that ABD = DBC. ii. A bisector of a segment AB is a line that pass through the midpoint of AB and perpendicular to AB. Proposition i. Every angle has a unique bisector. ii. Every segment has a unique bisector. Proof. i. Given any angle ABC. Choose A and C such that BC = AB. See figure.

65 3.1. ALTERNATE INTERIOR ANGLE THEOREM AND EXTERIOR ANGLE THEOREM65 Let M be the midpoint of AC. Then by proposition BAC = BCA and hence by SAS ABM = CBM. Then ABM = MBC. Thus BM is the bisector of the given angle. ii. It follows from proposition and proposition Proposition In any triangle the greater angle lies opposite the greater side, and the greater side lies opposite the greater angle. Proof. Given any triangle ABC. We show that AB > BC if and only if C > A. (= ) Assume that AB > BC. Then there is a unique point D between A and B such that BC = BD. Then by proposition BCD = BDC. By exterior angle theorem BDC > CAB. Since A D B then D interior point of the angle BCA. Thus, BCA > BCD = BDC > CAB. Hence by C.5, BCA > CAB. (= ) Assume that C > A. We will show that AB > BC. Use contradiction, assume that AB is not greater that BC. Then either AB = BC or

66 66 CHAPTER 3. NEUTRAL GEOMETRY AB < BC. If AB = BC. Then by proposition A = C. Thus we get a contradiction. If AB < BC. Then there is a unique point D between C and B such that BA = BD. Then by proposition BAD = BDA. By exterior angle theorem BDA > ACB. Since C D B then D interior point of the angle BAC. Thus BAC > BAD = BDA > ACB. Hence by C.5, BAC > ACB. Thus we get a contradiction. Proposition Given any two triangles ABC and EF G, with AB = EF and BC = F G. Then B < F if and only if AC < EG. Proof.(= ) Assume that B < F. Then there is a ray F X between F G and F E such that XF E = CBA. By Crossbar theorem, the ray F X intersects EG at a point, say H. By C.1, there is a unique point D on the ray F X such that F D = BC. Then either H = D, F D H, or F H D. If H = D, see the figure Then by SAS, ABC = EF D. EG > AC. Then DE = AC and E D G, thus If F D H, Then by SAS, ABC = EF D. See the following figure.

67 3.2. MEASURE OF SEGMENTS AND ANGLES 67 Since DF G is an isosceles triangle, then F GD = F DG. Applying exterior angle theorem, we get HDG > F GD = F DG, we get also, F DG > DGH. Since H is interior to the angle GDE. Then GDE > HDG. Thus by C.5 and ordering of angles, EDG > EGD. Then by previous proposition, EG > ED = AC. Then EG > AC. If F H D, see the following figure. Then F GD = F DG. Since H is interior to the angle DGF. Then, DGF > DGH. Since H is interior to the angle EDG. Then GDE > GDH. Then by angle ordering, GDE > DGH. Then by previous proposition, EG > DE = AC. Then, EG > AC. ( =) Assume that EG > AC. Use contradiction. Assume that F is not greater than B. Then by trichotomy, either F = B or F < B. If F = B. Then by SAS, ABC = EF G. Then AC = EG, we get a contradiction. If F < B, then by the first direction EG < AC, which is a contradiction Measure of Segments and Angles Up to this point we have not really needed the real numbers R. We have only used R for models of geometry, but not in the theoretic development of geometry

68 68 CHAPTER 3. NEUTRAL GEOMETRY itself. This is in the spirit of Euclid who did not assume the existence of such a system of numbers. However, to do geometry in a modern way, real numbers are useful. For example, they measure segments and angles. They can also be used to measure areas and volumes, but this is beyond the scope of this course. The following theorem is a theorem of neutral geometry since its proof requires the Archimedean principle. Theorem (Segment measure) Let OI be a fixed segment (unit segment). There is a unique way to assign to each segment AB a positive real number, denoted by AB R, called the length of the segment AB, in such away that: i. OI = 1. ii. AB = BC if and only if AB = BC. iii. A B C if and only if AC = AB + BC. iv. AB < CD if and only if AB < CD. v. x R +, there is a segment AB such that AB = x. Proof. Let I 1 be the midpoint of OI, I 2 be the midpoint of OI 1. In general, let I k+1 be the midpoint of the segment OI k. Intuitively, OI k should be 1 2 k. Given any segment AB. For each integer i 0 let n i be the maximum natural number such that n i.oi i is not greater than AB. The Archimedean principle guarantees that such n i exists. Define the i-th approximation to the length of AB as follows: m i := n i 2 i One can show that n i+1 = 2n i or n i+1 = 2n i + 1. In particular, m i m i+1 m i i+1. One can also show that m i is bounded below by m 0 and bounded above by m One can also show that, by Archimedean principle, that n i > 0 for sufficiently large i. This means that the sequence m i is monotonic and bounded. There is a property of the real numbers R that guarantees that the limit exists. Define the length as AB := lim n m i. In the special case that AB = OI we see that n i = 2 i, and so m i = 1 for all i. This means that the length, that is the limit is 1. For now, we skip the proof of the other parts. Corollary (Triangle Inequality) Given any triangle ABC, then AC < AB + BC.

69 3.2. MEASURE OF SEGMENTS AND ANGLES 69 Proof. By B.2 and C.1 let D be the point such that A B D and BD = BC. Then CBD is an isosceles triangle, thus DCB = BDC. Since A B D, then B is interior point of ACD, thus ACD > BCD = BDC. Hence, apply proposition on the triangle CAD, AC < AD. Now, by the previous theorem, AD = AB + BD. Then AD = AB + BC. Theorem (Angle Measure) There is a unique way to assign to each angle A a positive real number x R ( called the degree measure of angle A), in such a way that the followings hold: i. ( A) is a real number such that 0 < ( A) ) < 180. ii. ( A) = 90 if and only if A is a right angle. iii. ( A) = ( B) if and only if A = B. iv. If D is an interior point to ABC, then ( ABC) = ( ABD) + ( CBD). v. For every real number x between 0 and 180, there exists an angle A such that ( A) = x. vi. If B is supplementary angle to A, then ( A) + ( B) = 180. vii. ( A) < ( B) if and only if A < B. Definition An angle A is called an acute if ( A) < 90. An angle A is called obtuse if ( A) > 90. Corollary In any triangle, the sum of degree measures of any two angles of the triangle is less than 180. Proof. Consider any triangle ABC. We show that ( A) + ( B) < 180. By B.2, let D be the point such that A B D. Then by Exterior angle theorem

70 70 CHAPTER 3. NEUTRAL GEOMETRY CAB < CBD. Since CBD and CBA are supplementary angles then by previous theorem then DBC) + ( CBA) = = DBC) + ( CBA) > ( CAB) + ( CBA). Theorem (Sacchari-Legendre Theorem) The sum of degree measures of the three angles of any triangle is less than or equal to 180. Proof. We will use contradiction. Assume that, there is a triangle ABC with angle sum ρ. Where ρ is a positive real number. Let D be the midpoint of BC. By C.1, take E on AD so that A D E and AD = DE. Then by SAS, BDA = CDE. See the following figure. Then, the two triangles AEC and ABC have the same angle sum. Since angle sum of AEC = ( DAC) + ( BCA) + ( DCE) + ( AEC) = ( DAC) + ( BCA) + ( ABC) + ( BAD) = angle sum of ABC At least one of the angles CAE or BAE has at most half the number of degrees of BAC, since ( BAE) + ( DAC) = ( BAC), and if the angles BAE = DAC, then each is equal to 1 2 ( BAC). If they are unequal, then one of them with degree less than 1 2 ( BAC). Since CEA = BAD, then either ( CAE) 1 2 ( BAC) or ( CEA) 1 2 ( BAC). If ( CAE) 1 2 ( BAC), then apply the same process to AEC, by taking the midpoint of EC, name it G. Let F be the unique point on the opposite ray of GA such that F G = AG. Thus, we obtain a triangle AF C with same angle sum 180 +ρ, and in which at least one of the angles CAF, CF A with degree measure does not exceed

71 3.2. MEASURE OF SEGMENTS AND ANGLES ( CAE). If that one is CAF then ( CAF ) 1 2 ( CAE) Hence, ( CAF ) ( BAC). If this process is applied n times, we obtain a triangle, say P QR with angle sum ρ and containing an angle, say R such that ( R) 1 2 n ( BAC) Thus, right hand side of the inequality can be made arbitrary small by taking n sufficiently large. In particular, it can be made less that ρ. Thus, if this is done then ρ = ( P ) + ( Q) + ( R) < ( P ) + ( Q) + ρ Hence, 180 < ( P ) + ( Q). This contradicts that the sum of any two angles of any triangle must be less than 180. Corollary The sum of degree measures of two remote interior angles in a triangle is less than or equal to degree measure of their exterior angle. Proof. Given any triangle ABC, by B.2, let D be a point such that A C D. Then ( ABC) + ( BCA) + ( CAB) 180, and hence, ( ABC) + ( BAC) 180 ( BCA) = ( BCD). Definition A quadrilateral ABCD consists of four points, say A, B, C and D, no three of which are collinear, and four segments AB, BC, CD, and DA, such that the segments have either no point in common, or only have an endpoint in common. Then the points A, B, C and D are called vertices of the quadrilateral, and the segments are called the sides of the quadrilateral. A diagonal of the quadrilateral is the segment connecting non-consecutive vertices. Thus, the quadrilateral ABCD has two diagonals, AC and BD. A quadrilateral ABCD is called convex if it has a pair of opposite sides, say DC and AB such that D, C lie in the same side of the line AB, and A, B lie in the same side of the line CD. Lemma If ABCD is a convex quadrilateral, where A, B lie on the same side of CD, and C, D lie on the same side of AB. Then also i. B, C lie on same side of AD. ii. A, D lie on same side of BC.

72 72 CHAPTER 3. NEUTRAL GEOMETRY iii. B is interior to the angle CDA, D is interior to the angle CBA, A is interior to the angle BCD, and C is interior to the angle DAB Proof. Let ABCD is a convex quadrilateral, where A, B are on the same side of CD, and C, D are on the same side of AB. i. Use contradiction, assume that, B, C are in opposite sides of AD, then BC intersects AD at a point, say E, then either E = A, E = D, E A D, A D E, or A E D. If E = A, then B, C, and A are collinear, this contradicts that no three of the vertices are collinear. If E = D, we get also a contradiction as in the previous case. If A E D, then we get a contradiction to that the sides intersects only at endpoints. If E D A, then consider the triangle ABE. Then the line CD intersects BE or AB. If CD intersects BE, we get three collinear vertices of the quadrilateral, which is a contradiction. If CD intersects AB, this contradicts the fact that A, B lie on same side of CD. If E A D, we get also a contradiction as in the previous case. ii. Exercise. iii. By hypothesis, AB is on the same side of the line DC, and from i. BC is on same side of DA. Then B is interior to the angle CDA. Now, we will prove the following consequence of Sacchari-Legendre Theorem. Theorem The sum of degree measures of a convex quadrilateral is less than or equal to 360. Proof. Consider the convex quadrilateral ABCD. See the figure. Now, the diagonal AC divides the quadrilateral into two triangles; ABC and ADC.

73 3.2. MEASURE OF SEGMENTS AND ANGLES 73 By Sacchari-Legendre theorem, each one of the triangles with angle sum less than or equal to 180. That is ( ABC) + ( BAC) + ( ACB) 180 ( ADC) + ( DAC) + ( ACD) 180 By previous proposition, A is interior point of DCB, and C is interior point of DAB, then by angle addition we get: Hence, we get the conclusion. ( DAC) + ( BAC) = ( BAD) ( ACB) + ( ACD) = ( BCD) Definition A quadrilateral ABCD is called Sacchari-Quadrilateral if ABC and BAD are right angles, and AD = BC. The side AB is called the base. And the side DC is called summit. The angles A and B are called base angles. The angles C and D are called summit angles. Proposition The diagonals of Sacchari quadrilateral are congruent. Proof. Given a Sacchari quadrilateral ABCD, with A and B are right angles, and BC = AD. The two triangles CBA and DAB are congruent by SAS. Hence the diagonals AC and DB are congruent.. Proposition The summit angles of a Sacchari quadrilateral are congruent. Proof. Given a Sacchari quadrilateral ABCD, with A and B are right angles, and BC = AD. Consider the two triangles DCB and CDA, they are congruent by previous proposition and SSS. Definition We define the defect of a triangle ABC, to be 180 [( A) + ( B) + ( C) ]. It will be denoted by δ( ABC). Theorem Let ABC be any triangle and D any point between A and B. Then δ( ABC) = δ( ADC) + δ( DBC). Proof. Let ABC be any triangle and D any point between A and B. Since CD lies between CA and CB. Then by previous theorem, ( ACD) + ( DCB) = ( ACB). Since CDA and CDB are supplementary angles, then ( ADC) + ( CDB) = 180.

74 74 CHAPTER 3. NEUTRAL GEOMETRY Then δ( ADC) + δ( DBC) = 180 [( ACD) + ( CAD) + ( ADC) ] [( CDB) + ( DCB) + ( CBD) ] = 360 [( CAD) + ( DBC) + [( ACD) + ( DCB) ] + [( CDB) + ( CDA) ]] = 360 ( CAD) + ( DBC) + ( ACB) = 180 δ( ABC). Corollary Let ABC be any triangle and D any point between A and B. Then angle sum of ABC is 180 if and only if the angle sums of both ACD and DCB is 180. Proof. Exercise. 3.3 Equivalence of Hilbert s Parallel Axiom First, we will prove the equivalence of Euclid s fifth postulate and Hilbert s parallel axiom. Note that, we are not proving either or both of the axiom, we are only proving that we can prove one if we first assume the other. Theorem Euclid s fifth postulate is equivalent to Hilbert s parallel axiom. Proof. (= ) First, we assume that Euclid s fifth postulate. Let l be any line and P be any point not on l. By proposition 2.3.7, let t be the perpendicular from P to l, which intersects l at point Q, and m be the perpendicular through P to t. Then by theorem 3.1.1, m l. Let n be another line through P. We have to show that n must intersect l. Since n m, n and t form an acute angle. Let θ denote such an angle. Then we have two lines l and n cut by the transversal t, and the the sum of two angles on one side of t is θ + 90 < 180. Euclid s fifth postulate implies that n meets l, and therefore n is not parallel to l. ( =) Let us assume Hilbert s parallel axiom. Let l and m denote a pair of lines cut by a transversal t, where A is the common point of t and l, and point B is the common point of m and t. By B.2, let C and D on l such that C A D, and E and F on m such that E B F, and C, E are on same side of t. The assumption of Euclid s fifth postulate is that ( ABE) + ( CAB) < 180 We have ( CAB) + ( DAB) = 180, then ( ABE) < 180 ( CAB) ( ABE) < 180 ( CAB) = ( DAB)

75 3.3. EQUIVALENCE OF HILBERT S PARALLEL AXIOM 75 Then by C.4, there is a unique ray AG between AD and AB, such that BAG = EBA. Then by alternate angle theorem AG m. Since l AG, Hilbert s parallel axiom implies that m intersects l. To finish the proof, we must show that m intersects l on the same side of t as C. If not, that is they meet at the point, say H, on the opposite side of t from C. Then EBA is an exterior angle of the triangle AHB. Thus by exterior angle theorem, EAB > DAB, which is a contradiction. Proposition Hilbert s parallel axiom is equivalent to that, if a line intersects one of two parallel lines, then it also intersects the other. Proof. (= ) Assume Hilbert s parallel axiom. Let m, n be two parallel lines, and the line l intersects m at a point say, P. Use contradiction, assume l does not intersects n. Then l n. Hence m and n are two lines through P that are both parallel to l. This contradicts Hilbert s parallel axiom. ( =) Let l be any line and P be any point not on l. By proposition 2.3.7, let t be the perpendicular from P to l, and m be the perpendicular through P to t. Then by theorem 3.1.1, m l. Let n be another line through P. Since n intersects m, and l m, then by assumption, n must intersects l. Proposition Hilbert s parallel axiom is equivalent to the converse of alternate interior angle theorem. Proof. (= ) Assume Hilbert s parallel axiom. Given two parallel lines m and l, and t be a transversal to l and m, meets l at P, and meets m at Q. By B.2, let A and B be on m such that A Q B. Let C on l on the same side of t as A. We want to show that, BQP = CP Q. If not, without loss of generality, let BQP > CP Q. Then there is a unique ray QX between QB and QP such that, XQP = QP C. Then by alternate interior angle theorem, QX is another line parallel to l, which contradicts Hilbert s parallel axiom. ( =) Assume converse of alternate interior angle theorem. Let l be any line and P be any point not on l. By proposition 2.3.7, let t be the perpendicular from P to l and meets l at Q. Let m be the perpendicular through P to t. Then by theorem 3.1.1, m l. We use contradiction, let n be another line through P that is parallel to l. Let A on n and B on l such that A, B are on the opposite sides of t. Then our assumption implies that BQP = AP Q and hence AP Q is a right angle. Therefore line n is perpendicular to t, implying that m = n, by the uniqueness of the perpendicular to t through P. Proposition Hilbert s parallel axiom is equivalent to that, if t is a transversal to l and m, l m, and t is perpendicular to l, then t is perpendicular to m. Proof. ( =) Assume that the second statement is true. Let l be any line and P be any point not on l. By proposition 2.3.7, let t be the perpendicular from P to l, and m be the perpendicular through P to t. Then by theorem 3.1.1, m l. We will use contradiction, let n be another line through P that is parallel

76 76 CHAPTER 3. NEUTRAL GEOMETRY to l. Apply our assumption on n l and t l. Then t n. By uniqueness of the perpendicular, we have m = n. (= ) Assume Hilbert s parallel axiom. Let t is a transversal to l and m, l m, and t is perpendicular to l. By previous proposition converse of alternate interior angle theorem is true. Since m l then the alternate interior angle formed by l and m cut by the transversal t are congruent. Therefore, t m. Proposition Hilbert s parallel axiom is equivalent to that, if k l, m k and n l then either m = n or m n. Proof. (= ) Assume Hilbert s parallel axiom. Let k l, m k and n l. Since m intersects k, then by proposition m must intersects l. By previous proposition m l. Thus both m and n are perpendicular to l. Then either m = n or m n. If m = n. Then we are done. If m n. Then either m n or not parallel. If n and m are not parallel, then they have a common point, say P. This is a contradiction to the uniqueness of perpendicular form a point P to the line l. Thus, if m n, then m n. ( =) Assume the second statement. Let l be any line and P be any point not on l. By proposition 2.3.7, let t be the perpendicular from P to l, and m be the perpendicular through P to t. Then by theorem 3.1.1, m l. We will use contradiction, let n be another line through P that is parallel to l. Let k be the perpendicular through P to n. Then by our assumption either k = t or k t. Since P is a common point to k and t. Then k = t, Since t m and t = k n, by uniqueness of perpendicular n = m. Definition A quadrilateral whose four angles are right is called a rectangle. Theorem If a triangle with angle sum 180 exists, then every triangle has angle sum 180. The proof of this theorem will be given in 5 steps: i. If a triangle exists whose angle sum is 180, then there is a right triangle with angle sum 180. ii. From a right triangle with angle sum 180, we can construct a rectangle. iii. If a rectangle exists, then we can construct an arbitrarily large rectangle. iv. If we have arbitrary large rectangle, then every right triangle has an angle sum equal to 180.

77 3.3. EQUIVALENCE OF HILBERT S PARALLEL AXIOM 77 v. If every right triangle has angle sum 180, then every triangle has angle sum 180. Proof. i. Given a triangle ABC with angle sum 180. First, we construct a right triangle with angle sum 180. If ABC is right, then we are done. If not, Then at least two angles of this triangle are acute, since the angle sum of two angles in a triangle must be less than 180, assume A and B are acute. By proposition 2.3.7, drop a perpendicular from C to the line l := AB, which intersects l at D. Then either D A B, A B D, or A D B. If D A B, then by exterior angle theorem, CAB is exterior to the triangle DCA, and hence CAB > CDA, which is a contradiction, since CAB is acute. If A B D, we get also a contradiction. It is an exercise. If A D B, then both ACD and DCB are right angles. By previous corollary both have angle sum 180. Thus, we get a right triangle with angle sum 180.

78 78 CHAPTER 3. NEUTRAL GEOMETRY ii. From a right triangle with angle sum 180, we construct a rectangle. Let CDB be a right triangle at D and with angle sum 180. See the following figure. By C.4, there is a unique ray CX on the opposite side of BC from the point D, such that DBC = XCB. By C.1, there is a unique point E on CX such that CE = DB. Then by SAS, CDB = BEC. Hence, CEB is right. Also, since ( DBC) +( BCD) = 90 by the hypothesis that the triangle has angle sum 180. We obtain by substitution and ( ECB) + ( BCD) = 90 and ( DBC) + ( EBC) = 90. Claim, B is an interior point of ECD. By alternate interior angle theorem, DB CE. Then D and B are on the same side of CE, also C and E are on the same side of the line DB. Similarly, we can show that C is an interior point of EBD. Then by the theorem on measure of angles, we conclude that ( ECD) = 90 = ( EBD). Thus, DBEC is a rectangle. iii. Given one rectangle, we want to construct arbitrarily large rectangle. Given a rectangle BCDE. Construct a rectangle ACGH such that AC > BC and GC > DC. This can be done using Archimedes axiom. We simply lay off enough copies of the rectangle to get the desired result. iv. Given arbitrary large rectangle, then all right triangles have defect zero. To prove this. From previous step, we have arbitrary large rectangle, then any right triangles can embedded in that rectangle. Given any right triangle RQS, which is right at angle Q, then it can be embedded in the rectangle ACGH,

79 3.3. EQUIVALENCE OF HILBERT S PARALLEL AXIOM 79 see the following figure. Since AC > QS, there is a point P, A P C, such that QS = P C. Also, there is a point I with C I G such that CI = RQ. Then by SAS, QSR = CP I. Since ACGH is a rectangle, then the right triangle AGC has defect zero. Since A P C, then the triangle GP C has also defect zero. And C I G, then the triangle P CI has defect zero. The last triangle is congruent to QSR, then it has defect zero, that is its angle sum is 180. At this point, we have proved that: If a triangle with defect zero exists, then every right triangle has defect zero. v. We prove now that, if all right triangles have defect zero, then every triangle with defect zero. Given any triangle KLM. If KLM is right, then we are done. If not, Then at least two angles in this triangle are acute, since the angle sum of two angles in a triangle must be less than 180, assume K and L are acute. By proposition 2.3.7, drop a perpendicular from M to the line l := KL, which intersects l at N. Then either N K L, K L N, or K N L. If N K L, then by exterior angle theorem, MKL is exterior to the triangle NMK, and hence MKL > MNK, which is a contradiction, since MKL is acute. If K L N, we get also a contradiction. It is an exercise. If K N L, then both KMN and NML are right angles. By assumption both have angle sum 180. Then by previous corollary, KLM have angle sum 180

80 80 CHAPTER 3. NEUTRAL GEOMETRY The contrapositive of the previous theorem, will give us the following corollary. Corollary If there is a triangle with positive defect, then all triangles have positive defect. Theorem Hilbert s parallel axiom is equivalent to that the angle sum of every triangle is 180. Proof. (= ) Assume that Hilbert s parallel axiom hold. Given any triangle ABC. Let AD be the unique ray such that DAC = ACB, by C.4. Then by the alternate angle theorem, the line AD is parallel to the line BC. By B.2, let G be a point on AD such that G A D. By measure of angle theorem, ( GAB) + ( BAC) + ( CAD) = 180. By the converse of alternate angle theorem, GAB = ABC. Hence, ( ABC) + ( BAC) + ( ACB) = 180. ( =) Assume that the angle sum of every triangle is 180. Given any line l and point P not on l. By proposition 2.3.7, let t be the perpendicular from P to l, and meets l at point Q. Let m be the perpendicular through P to t. Then by theorem 3.1.1, m l. We will use contradiction, let n be another line through P. Then a ray of n lies between P Q and a ray of m emanating from P, say P A. Let Y be a point on that ray of n. See the figure.

81 3.4. EXERCISES: 81 Drop a perpendicular from Y to on m at point, say X. Drop a perpendicular from Y on t at a point, say S. Since SY is parallel to m, then S, Y, and Q are on the same side of m. The quadrilateral SY XP has three right angles. Since every triangle has angle sum 180, then each of the two triangles P XY and P Y S has angle sum 180. Then the quadrilateral SY XP has angle sum 360. Hence, the angle XY S is also right angle. Thus, SY XP is a rectangle. Then P S = XY, see by exercise 1. By C.1 and exercise 12, Y can be chosen such that XY > P Q. Since P Q < XY = P S, then P Q S. Then Y and S are on the same side of l. Otherwise, if Y and S are on opposite side of l, then Y S intersects l at some point, this contradicts the fact that SY is parallel to l, since P SY and Q both are right and hence congruent, then use alternate interior angle theorem. Since P and S are in opposite sides of l, then P and Y are in opposite sides of l. Thus, P Y intersects l, and hence n intersects l. 3.4 Exercises: [1] A quadrilateral ABCD is called parallelogram if AB CD and BC AD. i. Show that every parallelogram is convex. ii. In Euclidean geometry: a. Show that the opposite sides of the parallelogram are congruent. b. Find a condition on a parallelogram that ensures the congruence of its diagonals. c. Show that the diagonals bisect each other. [2] A rhombus is a parallelogram with all sides are congruent. Show that, the diagonals of a rhombus are perpendicular. [3] In a Sacchari quadrilateral. i. Show that the segment joining the midpoints of the base and summit is perpendicular to the base and the summit. ii. Show that Sacchari quadrilateral is a parallelogram. iii. Show that Sacchari quadrilateral is convex. iv. Show that the summit angles of a Sacchari quadrilateral are either right or acute. [4] In Euclidean geometry, prove that, if two triangles are similar then their corresponding sides are proportional.

82 82 CHAPTER 3. NEUTRAL GEOMETRY [5] Let γ be a circle with centre O, and let A, and B be two points on the circle γ. The segment AB is called a chord of γ. i. Let M be the midpoint of AB, and O M. Show that OM is perpendicular to AB. ii. Show that, the perpendicular bisector of any chord CD of γ pass through the centre of γ. [6] In Euclidean Geometry: i. Prove that an angle inscribed a semicircle is a right angle. ii. Let γ be a circle with radius r and centre O. Then a line t is tangent to γ at the point P if and if OP t at P. iii. If AB is a chord of a circle γ, and C is the intersection of the tangent lines to γ at A and B. Then prove that ABC is an isosceles triangle. iv. Given a circle γ and a point P outside γ, then show that there is two tangent lines to γ through P. [7] Given A B C and DC AC. Show that AD > BD > CD. [8] In Euclidean geometry: Show that the bisectors of the angles of any triangle all meet at a single point. [9] In Euclidean geometry: Show that, any three distinct non-collinear points determine a unique circle. [10] In Euclidean geometry, prove that the shortest segment from a point P to a line l is perpendicular from P to l. [11] If l m and A and B lie on opposite side of m from l. Show that, A and B lie on the same side of m. [12] Prove that: Given any segment AB and any side of a cute angle, then there is a point Y on the given side of the angle such that if X is the foot of the perpendicular from Y to the other side of the angle, then XY > AB. This statement is known as Aristotele s axiom.

83 Chapter 4 Hyperbolic Geometry Hyperbolic geometry is often called Bolyai-Lobachevskiian geometry after two of its discoverers Janos Bolyai and Nikolai Ivanovich Lobachevskii. Bolyai first announced his discoveries in a 26 page appendix to a book by his father, the Tentamen, in Another of the great mathematicians who seems to have preceded Bolyai in his work is Karl Friedreich Gauss. He seems to have done some work in the area dating from 1792, but never published it. The first to publish a complete account of non-euclidean geometry was Lobachevskii in It was first published in Russian and was not widely read. In 1840 he published a treatise in German. Hyperbolic geometry is, by definition, the geometry obtained by, assuming the axioms of neutral geometry and the negation of Hilbert s parallel axiom. The consistency of hyperbolic geometry was demonstrated by Beltrami, Klein, and Poincare in the late 1800 s and early 1900 s. They created models of hyperbolic geometry inside Euclidean geometry, with strange definitions of points, lines, circles, and angles. in each of their models, they showed that Euclid s first four postulates were true and that the hyperbolic postulate was true as well. Since each model was created within Euclidean geometry, if hyperbolic geometry had an internal contradictory statement, then that statement, when translated into its Euclidean environment, would be an internal contradiction in Euclidean geometry. Thus, if one believed that Euclidean geometry was consistent, then hyperbolic geometry was equally as consistent. 4.1 Hyperbolic Axiom and some basic Consequences In neutral geometry we have that for every line l and every point P not lying on l, there exists at least one line through P that is parallel to l. Thus, in Hyperbolic geometry, we assume the axioms of neutral geometry, and the nega- 83

84 84 CHAPTER 4. HYPERBOLIC GEOMETRY tion of the Euclidean Parallel axiom, which will be called Hyperbolic Parallel Axiom. Hyperbolic parallel axiom: There is a line l and a point P not on l such that at least two distinct lines parallel to l pass through P. The following proposition is the first important consequence of hyperbolic axiom. Proposition In hyperbolic geometry, rectangles do not exists. Proof. Use contradiction. Assume that there exists a rectangle. Then by the proof of theorem 3.3.2, every triangle has angle sum 180. Then by theorem 3.3.3, Hilbert s parallel axiom hold, which is a contradiction. Theorem (Universal Hyperbolic Theorem) In hyperbolic geometry, for every line l and every point P not on l, there exists at least two distinct lines through P and parallel to l. Proof. Given any line l and any point P not on l. By proposition 2.3.7, let t be the perpendicular from P to l at the point Q, and m be the perpendicular through P to t. Then by alternate interior angle theorem, m l. See the figure. Let R be another point on l, by I.2. Let n be the perpendicular to l at R. Let

85 4.1. HYPERBOLIC AXIOM AND SOME BASIC CONSEQUENCES 85 S denote the foot of the perpendicular dropped from P to n at S. Then by alternate interior angle theorem, P S l. We claim that m P S. If not, S m. Then P SRQ is a rectangle, which contradicts that no rectangles exists in hyperbolic geometry. Corollary In hyperbolic geometry, for every line l and every point P not on l, there exist infinitely many lines through P and parallel to l. Proof. Note that the proof of the last theorem implies that to each R l, R Q, there corresponds a line through P that is parallel to l. Also, note that different points on l give rise to different parallel lines. Theorem In hyperbolic geometry, all triangles have angle sum less that 180, that is, all triangles have a positive defect. Proof. Use theorem and proposition As a consequence, we have: Corollary In hyperbolic geometry, all convex quadrilaterals have angle sum less than 360. Proof. Exercise. Definition Two triangles are called similar if there is a one-to-one correspondence between vertices such that the corresponding angles are congruent. Theorem (AAA) In hyperbolic geometry, if two triangles are similar, then they are congruent. Proof. Given any two similar triangles ABC and DEF. If two corresponding sides are congruent then by ASA, the two triangles are congruent. If no corresponding sides are congruent. Then consider the triples, (AB, BC, AC) and (DE, EF, DE). One of the triples must contain at least two segments that are larger than the two corresponding sides of the other triple. Say, AB > DE, and AC > DF. Then there exists I with A I B such that AI = DE, and there is a point J with A J C such that AJ = DF. Then by SAS, AIJ = DEF. Hence corresponding angles are congruent; AIJ = DEF, and AJI = DF E. By the hypothesis that ABC is similar to DEF, we have AIJ = ABC, and AJI = ACB. This implies that, BC IJ by alternate interior angle theorem and that vertical angles are congruent. See the figure.

86 86 CHAPTER 4. HYPERBOLIC GEOMETRY Thus the quadrilateral IJCB is convex. Also, ( B) + ( BIJ) = 180 = ( C) + ( CJI). Then it follows, that IJCB has angle sum 360. This contradicts the previous corollary. Note that, in hyperbolic geometry it is impossible to magnify or shrink a triangle without distortion. In hyperbolic geometry a segment can be determined with the aid of an angle. For example, an angle in an equilateral triangle determines the length of the side uniquely. 4.2 Perpendicular Lines in Hyperbolic Geometry Definition i. If l is any line and P / l, drop a perpendicular from P to l with foot P, then the distance from P to l, denoted by d(p, l) is defined to be the length of the segment P P. That is d(p, l) := P P. By theorem on measure of segments, 0 < P P, and hence d(p, l) > 0 If P l, then d(p, l) := 0 ii. Given any two lines l and m, and let P and Q lie on l. We say that P and Q are equidistant from m, if d(p, m) = d(q, m), that is, if the perpendiculars from P to m at the point P, and from Q to m at Q, such that P P = QQ. In Euclidean geometry, if two lines l and m are parallel, then all points on l are equidistant from m. In other words, parallel lines are a fixed distance apart.

87 4.2. PERPENDICULAR LINES IN HYPERBOLIC GEOMETRY 87 In hyperbolic geometry, if l and m are any two lines, then there are at most two points on l that are equidistant from m. Theorem In hyperbolic geometry, given any two parallel lines l and m, then any set of points on l equidistant from m has at most two points on it. Proof. Given any two parallel lines l and m, we will use contradiction. Assume that there are three points P, Q and R on l that are equidistant from m. Drop perpendiculars from P, Q, and R to m with P, Q, and R be the feet of perpendiculars dropped from P, Q, and R to m respectively. See the figure. Then the quadrilaterals P Q QP, Q R RQ, and P R RP are Sacchari quadrilaterals (the base angles are right angles and the sides are congruent. Thus P P Q = Q QP, Q QR = R RQ, P P Q = R RP. By C.5, it follows that the supplementary angles Q QP and Q QR are congruent, hence, they are right angles. Therefore, these Sacchari quadrilateral are rectangles. But rectangles do not exist in hyperbolic geometry. Thus P, Q, and R cannot be equidistant. The theorem states that at most two points at a time on l can be equidistant from m. It allows the possibility that there are pairs of points (P, Q), (R, S), (T, U),... on l such that each pair is equidistant from m. However, the last theorem allows another possibility, that there is no pair of points on l equidistant from m. Lemma In neutral geometry. i. The segment joining the midpoints of the base and the summit of a Sacchari quadrilateral is perpendicular to both the base and the summit. ii. The segment joining the midpoints of the base and the summit of a Sacchari quadrilateral is shorter than or equal the sides of the Sacchari quadrilateral.

88 88 CHAPTER 4. HYPERBOLIC GEOMETRY Proof. Consider the Sacchari quadrilateral ABCD. See the following figure. Where the base right angles at the point A and B and DA = BC. We have shown before that, D = C. Let M be the midpoint of the base, and M be the midpoint of the summit. i. We want to show that MM perpendicular to both the summit and the base. First, by SAS the triangle DAM = CBM, and then by SSS, AM M = BM M. Then the supplementary angles AM M and BM M are congruent, and hence right. Now, since AMM = BMM, and CMB = DMA, then by angle addition, M MD = M MC, and since they are supplementary angles, then they are right. ii. To show that MM < DA or MM = DA, use contradiction. Assume that MM > DA, then there is a point G such that M G = DA. The angle DGM is exterior to the triangle DMG, and hence is obtuse. But DGM A is Sacchari quadrilateral, thus GDA is also obtuse. Then the angle sum of the quadrilateral is greater than 360, which is a contradiction. Theorem In hyperbolic geometry, if l and m are parallel lines, for which there exists a pair of points P and Q on l equidistant from m. Then: i. l and m have a common perpendicular. ii. This common perpendicular is unique. iii. The common perpendicular segment is the shortest segment between l and m. Proof. Given any two parallel lines l and m. Assume that the points P and Q on l that are equidistant from m. Drop perpendiculars from P and Q to

89 4.3. CLASSIFICATION OF PARALLEL LINES 89 m with P and Q be the feet of perpendiculars dropped from P and Q to m respectively. Then P P = QQ. i. Let M and M be the midpoints of l and m respectively. Then by the lemma MM is the common perpendicular. Then MM L L is a rect- ii. Let LL be another common perpendicular. angle, thus we get a contradiction. iii. Let K be any point on l distinct from M, and S be any point on m. We show that KS > MM. Drop a perpendicular from K to m, say at the point K. Then either K S or K = S. If K = S, then by previous lemma KS < MM. If K S, then KK < KS by proposition By previous lemma, KK > MM. Then KS < KK < MM. Theorem In hyperbolic geometry, if l and m have a common perpendicular MM, where M is on line l, and M on the line m. Then: i. l and m are parallel. ii. If P and Q are any two points on l such that M is the midpoint of the segment P Q, then P and Q are equidistant from the line m. Proof. Exercise. 4.3 Classification of Parallel Lines In this section we will see that, in hyperbolic geometry, there are two types of parallel lines to any given line l, some parallel lines to l have a common perpendicular with l, and some that have no such common perpendicular. Theorem In hyperbolic geometry, given any line l, and any point P / l, let Q be the foot of perpendicular dropped from P to l. Then there are two unique non-opposite rays P R and P L on opposite sides of the line P Q such that: i. The rays P L and P R do not intersects l. ii. A ray P X intersects the line l if and only if P X is between and P L and P R. iii. QP R = QP L. iv. ( QP R) < 90. Proof. Given any line l, and any point P / l, let Q be the foot of perpendicular dropped from P to l. Let m be the perpendicular at P on P Q. First, we prove the existence of the ray P L. Let S be a point on line m to the

90 90 CHAPTER 4. HYPERBOLIC GEOMETRY left of P. Consider the line SQ. See the figure Let 1 := {T SQ; P T intersects l} { all points on the opposite ray of QS}. Let 2 be the complement of 1. Then S 2 and Q 1, thus the subsets of SQ are non-empty, and their union is all points on SQ. Now, we show that no point in 1 lies between two points in 2 and vice versa. Let T 1. Then P T intersects l at a point say H. Then any point J on T Q also lies in 1. Since T J Q, then P J lies between P H and P Q, and hence by Crossbar theorem, P J intersects HQ, and hence intersects l. Thus, 1 and 2 form a Dedekind cut. By Dedekind s axiom, there is a unique point, say L, on SQ such that for P 1 and P 2 on SQ, P 1 L P 2 if and only if P 1 1 and P 2 2. By definition of 1 and 2, rays below P L all meet l, and rays above P L do not meet l. i. Now, we prove that the ray P L does not intersects l. If not, that is if P L intersects l at a point, say U. Let V be a point such that Q U V. Then U and V are on the same side of SQ and the points P and U are in opposite sides of SQ. Thus P and V are in opposite sides of SQ. Thus P V intersects SQ in a point Y. We have Y L Q, then Y 2, thus we get a contradiction. In a similar way we obtain the ray P R. ii. Thus, a ray P X intersects the line l if and only if P X is between and P L and P R.

91 4.3. CLASSIFICATION OF PARALLEL LINES 91 iii. Now, we prove that QP R = QP L. If not, then the two angles are not congruent, say, QP R > QP L. See the following figure. Then, there is a ray P N between P R and P Q such that NP Q = LP Q. Then P N intersects l at a point, say M. Choose F on P L such that P F = P M. Then by SAS, P QF = P QM. Then, P QF is right, which is a contradiction to the uniqueness of C.4, unless F lies on the line l, which is also a contradiction, since P L does not intersect l by i. iv. Choose I on P L and choose K on P R, such that P K = P I, the triangle P IK is an isosceles triangle, thus P IK = P KI. See the following figure.

92 92 CHAPTER 4. HYPERBOLIC GEOMETRY In hyperbolic geometry, the angle sum of this triangle is less than 180. Let Then Hence ( LP Q) < 90. α := ( P IK) = ( P KI) β := ( IP Q) = ( KP Q) 180 > 2α + 2β 90 > α + β > β Notice that, the previous theorem is proved in neutral geometry, except of the last part, that ( QP R) < 90, we used the assumption that the geometry is hyperbolic. The ray P R is called right limiting parallel ray, and P L is called left limiting parallel ray. From the definition of the left and right limiting parallel rays, the lines P L and P R are parallel to l. For if opposite ray of P L intersects l say at J, then P QJ has angle sum greater that 180, since the angle JP Q is obtuse because it is supplementary to acute angle LP Q. And the angle JP Q is right. Then, the angle sum of the triangle P QJ is greater than 180, which is a contradiction. In similar way, we show that, the opposite ray of P R does not intersect l. Hence the lines P L and P R are parallel to l. In Euclidean geometry, there is a unique line through P and parallel to l, thus m = P R = P L. Hence, the angles QP L and QP R are right angles. Now, the angles QP R, QP L are called the angles of parallelism of l at P. The following proposition shows that congruent segments have congruent angle of parallelism. Which satisfies that, the degree measure of the angles of parallelism QP R, QP L will be denoted by Π(P Q). A natural unit segment OI in hyperbolic geometry is any segment OI such that Π(OI) = 45. Proposition Let l and l be two distinct lines, P / l and P / l. Let Q l and Q l be such that P Q l, P Q l. If P Q = P Q then the angle of parallelism of l at P is congruent to the angle of parallelism of l at P. Proof. Let l and l be two distinct lines, P / l and P / l. Let Q l and Q be such that P Q l, P Q l. Let P L be the limiting parallel ray of l at P, and P L be the limiting parallel ray of l at P. See the figures.

93 4.3. CLASSIFICATION OF PARALLEL LINES 93 By C.4 and the theorem on measure of angles, for every real number x [0, 180], there is a ray P X on one side of P Q such that x = ( XP Q). Define the set S := {x [0, 180]; P X intersects l}. Also, there is a ray P X on one side of P Q such that x = ( X P Q ). Define the set S := {x [0, 180]; P X intersects l }. If x S, let Y denote the point on l where P Y intersects l, and QP Y = x. Consider the point Y on l such that QY = Q Y. Then by SAS, P QY = P Q Y. Then, ( Y P Q ) = x, which implies that x S. That is S S. Similarly, we can show that S S. Thus S = S. And hence they have the same least upper bound, which is the measure of the angle of parallelism. Proposition Let P Y be a limiting parallel ray to a line l at the point P. If P A Y, then AY is a limiting parallel ray to l at the point A. Proof. Let P Y be a limiting parallel ray to a line l at the point P. Assume that P A Y. See the following figure. Let A and P be the feet of perpendiculars from A and P to l respectively. It is enough to show that, if AD lies between the rays AY and AA, then AD intersects l.

94 94 CHAPTER 4. HYPERBOLIC GEOMETRY If AD lies between the rays AY and AA, then D is interior point to the angle A AY, since also A and P are on same side of P Y, then D is an interior point to the angle P P Y. Thus, P D lies between the rays P Y and P P. Since P Y is a limiting parallel ray to the line l at the point P, then P D intersects l. Let H be the point of intersection. Since A is exterior to the triangle HP P and the ray AD intersects the side P H of the triangle HP P, and then it must intersects P H or P P. For all Q AD such that A D Q, Q is interior to the angle Y AA, then Q and Y are in opposite sides of AA. But P and Y are in opposite sides of AA. Since P P AA, then all points of P P are in opposite sides of AA from the point Q. Then AD does not intersect P P. Thus, AD must intersect the side P H. Therefore, AD intersects l. The following proposition shows that the line that contains a limiting parallel ray to a line l asymptotically approaches l in the direction that contains the limiting parallel ray and diverges from l in the other direction. Proposition Let P L be a limiting parallel ray to a line l through a point P and let Q be the foot of the perpendicular on l. i. If A P L and A the foot of the perpendicular from A to l, then AA < P Q. ii. If B in the opposite ray of P L and B the foot of the perpendicular from B to l, then BB > P Q. Proof. Let P L be a limiting parallel ray to a line l through a point P and let Q be the foot of the perpendicular on l. i. Let A P L, A P, and A the foot of the perpendicular from A to l. See the following figure. Let Y be a point such that P A Y. Then by previous proposition,

95 4.3. CLASSIFICATION OF PARALLEL LINES 95 AY is a limiting parallel ray to l at the point A. Then the angle of parallelism A AY is acute. Thus, A AP is obtuse. Then QP A < A AP. To show that AA < P Q, use contradiction, that is either AA = P Q or AA > P Q. If AA = P Q, then since AP QA is Sacchari quadrilateral and hence QP A = P AA. This is a contradiction, since QP A is an angle of parallelism and hence, it is acute, and the angle P AA is supplementary of an angle of parallelism and hence must be obtuse. If AA > P Q, then there is a unique point B such that A B A with BA = P Q. Then, AP Q > BP Q, and the exterior angle A BP > A AP. Then AP Q > A AP which is a contradiction. ii. If B is in the opposite ray of P L and B the foot of the perpendicular from B to l. See the figure. Use contradiction, that is either BB = P Q or BB < P Q. If BB = P Q, then QP B = B BP, which is a contradiction, since the first must be obtuse and the second must be acute. If BB < P Q is an exercise. Lemma If a line m contains a limiting parallel to a line l, then l also contains a limiting parallel ray to m. Proof. Let m be a line that contains a limiting parallel ray to a line l. Let P be a point on m, drop a perpendicular from P to l, with foot Q. Drop a perpendicular from Q to m at the point T. Assume that m contains the limiting parallel ray P S. Then either T P S, or T belongs to the opposite ray. If T belongs to the opposite ray, since measure of angle of parallelism SP Q is acute angle, then ( T P Q) > 90. See the following figure.

96 96 CHAPTER 4. HYPERBOLIC GEOMETRY Then P T Q has angle sum greater than 180. Which is a contradiction. Thus, T P S. Now, let R l be on the same side of P Q as T. See the following figure. Claim: QR is a limiting parallel ray to m. To prove the claim, it is enough to show that any ray, say QW, that is between QT and QR, intersects m. Drop a perpendicular from P to the line QW with foot A. Then A QW, otherwise P QA has angle sum greater than 180. In the triangle P QA, the side opposite to the angle A is greater than the side opposite to the angle Q. That is, P Q > P A. Then there exists a unique point, say B, such that P B Q such that P B = P A. And let t be the line through B that is perpendicular to P Q. Consider the ray P D on the same side of P Q as A, such that BP D = AP T. Since

97 4.3. CLASSIFICATION OF PARALLEL LINES 97 BP D < BP T, we conclude that P D intersects l at a point, say C. Then either P D intersects t or does not intersect t. If P D does not intersect t, then all points of P D lie on the same side of t as P. Since t l, then all points of l are on the same side of t as Q. But, Q and P are in opposite sides of t, and since C and P both belong to P D, then C, P are on same side of t, then C and Q are in opposite sides of t, which is a contradiction. Then P D intersects t at a point, say E. Now, let F P T be such that P F = P E. Since P E > BP and P B = P T, then P F > P T, and hence, P T F. Now, by SAS P BE = P AF. Then P AF = P BE. Then P AF is a right angle, that is AW = AF. Then QW intersects m at F. Lemma Let l and m be two distinct lines that both contains a limiting parallel ray to another line n and both converges to n in the same direction, then l contains a limiting parallel ray to m in the same direction. Proof. Let l and m be two distinct lines that both contains a limiting parallel ray to another line n and both converges to n in the same direction. Case 1: Assume that l and m are in opposite sides of n. Let P be a point on m. Drop a perpendicular from P to l with foot Q on l. Then n intersects P Q at a point, say U. See the following figure. We show that l m, if not, let A be the point of intersection. Consider the triangle P QA, then by Pasch s theorem n must intersects either QA, or P A

98 98 CHAPTER 4. HYPERBOLIC GEOMETRY which is a contradiction. Thus l m. Let R be on m on the side of P Q as the limiting parallel ray on m to n. Consider P T that is between P R and P Q. Enough to show that P T intersects l. 1 is obtuse since its supplementary angle 2 is acute. Drop a perpendicular from P to n, say at G.If G is on the same side of P Q as R, then 1 must be acute, which is a contradiction. Then G is in opposite side of P Q from R. The ray P T intersects n at a point say X. Let Y be such that P X Y, and V such that U X V. Since XV is a limiting parallel ray to l, then XY intersects l, then P T intersects l. Case 2: Assume that l and m are on the same side of n. Without loss of generality assume that l and n are in opposite sides of m. Let D be a point on l. Let t be the limiting parallel line through D to the line m in the same direction of parallelism. See the following figure. Now, both t and n are limiting parallel lines to m and in opposite sides of m. Then by case 1, t and n are limiting parallel lines. By assumption l is limiting parallel ray to n, hence at D, n has two parallel rays t and l, which is a contradiction unless t = l. Thus, t = l, since given one direction of parallelism, there is only one line through D that contains a limiting parallel ray to n. In the next theorem, we show that, if a line m that is parallel to l and does not contain a limiting parallel ray to l, then m and l have a common perpendicu-

99 4.3. CLASSIFICATION OF PARALLEL LINES 99 lar. Note that in this case, m diverges from l from both sides to the common perpendicular. Theorem Let the line m be parallel to l. Then m does not contain a limiting parallel ray to l in either direction, if and only if m and l have a common perpendicular. Proof. Let the line m be parallel to l. (= ) Let m does not contain a limiting parallel ray to l in either direction. We need to find two points on l that are equidistant from m. If we get such points, then the common perpendicular is the perpendicular bisector of the segment with these points as endpoints. Given any two points on l, say A and B. Let A and B be the feet of the perpendiculars from A and B respectively to the line m. If AA = BB, then we are done. If not, then we may assume that AA > BB, since one must be greater than the other. Then there is a point E with A E A such that A E = BB. See the following figure. Then there is a unique ray EF on the same side of AA as B, such that F EA = B BG, where G, with A B G. Claim: AG EF Φ. If this claim is true, then AG and EF intersects at a point, say H. Let K be the unique point on BG such that EH = BK. Drop perpendiculars HH and KK to the line m. Then by SAS, EHA = BKB. Then EA H = BB K, and KB H = HA B by angle subtraction. By AAS, KB K = HA H. Thus, HH = KK. Hence, the points H and K are two points on l that are equidistant from m. Therefore, if M is the midpoint of HK and M is the midpoint of H K, then MM is the desired common perpendicular.

100 100 CHAPTER 4. HYPERBOLIC GEOMETRY Now, we prove the claim that AG EF Φ : Let A W be the limiting parallel ray to EF, A N be the limiting parallel ray to AG, and B P be the limiting parallel ray to BG. Let L be a point on m, such that A B L. Since m does not contain a limiting parallel ray to l, then B L B P, and A L A N. Since EA = BB, A W be the limiting parallel ray to EF, and B P be the limiting parallel ray to BG then W A E = P B B. Then by angle subtraction, W A L = P B L. Hence by alternate interior angle theorem and that vertical angle are congruent, B P is parallel to A W. And A N be the limiting parallel ray to AG implies that A N be the limiting parallel ray to BG. And since BG be the limiting parallel ray to B P. Then, by Lemma1 B P be the limiting parallel ray to A N. The last statement implies that W A L > NA L since also, A W B P. Then A N lies between A W and A L, and W A L = P B L. Then NA L < P B L. Then A W lies between A A and A N. Now, since A N be the limiting parallel ray to AG, then A W intersects AG at a point, say J. Now, J and A are on the same side of EF, since J A W, which is a limiting parallel ray to EF. Then J and A are in opposite side of EF. Thus, AJ intersects EF at a point, say H. But H EF since H lies on the same side of AA as J does. So we conclude our claim that, EF and AG meet at the point H. ( =) We use contradiction, we assume that l contains a limiting parallel ray to m, and we show that no common perpendicular exists. Let P l such that P Y is a limiting parallel ray to m. Let M l such that P M Y and MM is a common perpendicular to l and m. Where M the foot of perpendicular from P to m. Let P and Y be the feet of perpendiculars from P and Y to m respectively. Now, MY is a limiting parallel ray to m at the point M. Then by proposition 4.3.2, MM > Y Y. Which contradicts, that the common perpendicular is shorter than any other segment between two parallel lines.. Corollary Let m be a line that is parallel to a line l. Then m contains a limiting parallel ray to l in either direction, if and only if m and l have no common perpendicular. Proof. This corollary is the contrapositive of the previous theorem.. Here is a summary of the main ideas in this section: Given a point P not on a line l, there exists exactly two limiting parallel rays to l through P, one in each direction. There are infinitely many lines through P that do not enter the

101 4.4. POINCARE DISK MODEL 101 region between the limiting parallel rays and l. Each such line is divergently parallel to l and admits a unique common perpendicular with l. Only one of these lines with common perpendicular will go through P, but for all the rest the common perpendicular will pass through other points. 4.4 Poincare Disk Model There are three traditional models for hyperbolic geometry. They are known as the Klein model, the Poincare Disk model, and the Poincare Half-Plane model. We will discuss only the Poincare Disk model. There are isomorphisms between these models, it is just that some properties are easier to see in one model than the other. The Poincare models tend to give us the opportunity to do computations more easily than the Klein model though the Klein model is somewhat easier to describe. In order to give a model for hyperbolic geometry, we need to decide on a set of points, then determine what lines are and how to measure distance and angles. For Poincare Disk Model we take the set of all points that lie inside the unit circle, name it γ. Note that points on the circle itself are not in the hyperbolic plane. However they do play an important part in determining our model. Euclidean points on the circle itself are called ideal points, or points at infinity. The five undefined terms are interpreted as follows: Points in the hyperbolic plane are interpreted to be the set of all interior points of γ. Definition Two circles in Euclidean geometry are called orthogonal to one another, if at the points of intersection their radii are perpendicular. Lines in the hyperbolic plane are of two types: 1. The open diameters, that is diameters without endpoints. 2. The open arcs, that are portions inside γ of circles orthogonal to γ. These lines are called Poincare lines. Lies on is interpreted as in Euclidean sense. Betweenness: On an open diameter, betweenness is interpreted as in Euclidean sense. On Poincare line: A B C if and only if OB, lies between OA and OC in Euclidean sense. See the following figure.

102 102 CHAPTER 4. HYPERBOLIC GEOMETRY The congruence of segments in the Poincare model is complicated. If we used the Euclidean length of segments, then all lines in the Poincare model would be of finite length which contradicts B.2, that guarantees that lines are infinite. So we have to define the distance in Poincare model. But first, we have to show that, any two distinct points in the Poincare model determine a unique line. That is, I1 is true statement in this model. Proposition Let A and B be any two points inside γ, where γ is a unit circle with centre O, then there is a unique line through A and B in the model. Proof. First, if A, B and the centre O are collinear in the Euclidean sense, then there is a line AB in the Euclidean sense. Thus we get an open diameter, which is a portion of the line AB, that contains A and B. Second, if A, B and O are not collinear in the Euclidean sense. We want to construct a circle δ that contains A and B and is orthogonal to γ. Consider the ray OA. Let m be the perpendicular to the line OA at A. Then m intersects γ in two points, say P and R. Let t be the line through P that is tangent to γ. Then P O t. In the triangle P AO, A is right then the other two angles are acute. That is P OA is acute. Since we are in Euclidean geometry, and angle sum of the alternate interior angles P OA and P is less than 180, then by Euclid s fifth postulate, t and OA intersects at a point, say A. A is usually called the pole of A. See the figure.

103 4.4. POINCARE DISK MODEL 103 Since P AO is similar to the triangle A P O, then That is OA OP = OP OA. (OA )(OA) = OP 2 = 1. The points A, B and A determine a unique circle, called δ. This circle is orthogonal to γ. To show this, first, we need to find the centre of δ, called Q. Let G be the intersection of δ with m. Since A AG is right then, A G is a diameter in δ. Thus, the midpoint of A G is the centre Q of δ Now, we have to show that, the radii of γ and δ are perpendicular. Let l and n be the tangents from the point O to the circle δ at the points, say I and J. We claim that I and J lie on γ. Since OJQ and OIQ are right angles, then by SSA, the triangles OIQ and OJQ are congruent. Then, JQO = IQO. Since IQJ is an isosceles triangle, then QIJ = QJI. Then the angle bisector QO is perpendicular to the base IJ at the point, say K. Then, O is the pole of K, where K is considered as a point inside δ. Then OQ OK = 1. Now, OIQ is similar to OKI. Then OI OK = OQ OI.

104 104 CHAPTER 4. HYPERBOLIC GEOMETRY Thus, OI 2 = OQ OK = 1. Then, OI = 1. Hence, I lies on γ. Since the tangent and the radius are perpendicular, then the tangent l is perpendicular to IQ the radius of δ. From this proposition, we conclude that incidence axiom 1 is true in this model. Also, incidence axiom 2 and 3 are trivially true in this model, which is embedded in Euclidean plane. Note that the boundary of Poincare model should not be reachable, so we need to define distance such that the distance goes to infinity as we approach the boundary of Poicare disk. Definition Let A and B be any two points in the Poincare disk, and let P and Q be the endpoints of the line containing A and B. Then the Poincare distance d P (A, B) between A and B is defined by ( ) d P (A, B) := AP ln BQ. AQ BP where Q A B P, and AP, BP, AQ, and BQ are the Euclidean length. We then define congruence of segments in Poincare model by AB = CD d P (A, B) = d P (C, D). Now, suppose we fix a point A on the Poincare line l from P to Q on γ, and let B the point on l, that moves continuously from A to P, where Q A B P,

105 4.4. POINCARE DISK MODEL 105 as in the following figure Then AP BQ AP will increase continuously from 1 to, since is constant, AQ BP AQ BP approaches zero, and BQ approaches P Q. Hence, d P (A, B) will increase from 0 to continuously. If we fix B and let A moves continuously from P to Q, we get the same result. It follows immediately that for any Poincare ray CD, there is a unique point E on CD such that d P (C, E) = d P (A, B). This verifies C1. Note that, this length does not depend on the order in which we write A and B. That is d P (A, B) = d P (B, A). We will prove this in the next proposition part i. With this interpretation of congruent of segments, axiom C2 is immediately verified. Next we verify C3. This will follows from the additivity of of the Poincare length, which is proved in the next proposition part iv. Proposition The Poincare distance satisfies the defining properties of distance function. That is: i d P (A, B) = d P (B, A) ii d P (A, B) 0 iii d P (A, A) = 0 iv If A B C on a Poincare line with endpoints P and Q, then d P (A, B) + d P (B, C) = d P (A, C). Proof.

106 106 CHAPTER 4. HYPERBOLIC GEOMETRY [i] We will use the following property of logarithmic function: ln 1 = ln x x Let A and B be any two points in the Poincare disk, and let P and Q be the endpoints of the line containing A and B. ( ) d P (A, B) = AP ln BQ AQ BP ( ) = BP ln AQ BQ AP = d P (B, A). [ii] d P (A, B) 0, since for any real number x, (ln x) 0. ( ) [iii] d P (A, A) := AP ln AQ. AQ AP Thus, d P (A, A) = ln1 = 0. [iv] Let A B C be on a Poincare line with endpoints P and Q, and Q A B See the figure. Since AP > BP and BQ > AQ, then AP AQ BQ BP > 1. Similarly, BP > CP and CQ > BQ, then BP CP CQ BQ > 1.

107 4.4. POINCARE DISK MODEL 107 Then, ( ) ( ) d P (A, B) + d P (B, C) = AP ln BQ + BP AQ BP ln CQ BQ CP ( ) ( ) AP BQ BP CQ = ln + ln AQ BP BQ CP (( ) ( )) AP BQ BP CQ = ln AQ BP BQ CP = d P (A, C). Congruence of angles in Poincare model: If the two sides of the angle are arts of open diameter, and the vertex is the centre of γ. Then the angle is measured as in euclidean sense. See the following figure. If one side is an open diameter and the other side is a part of Poincae line, then the angle is considered to be the angle in Euclidean sense between the open diameter and the tangent of the Poincare line at the vertex of the angle. See the following figure.

108 108 CHAPTER 4. HYPERBOLIC GEOMETRY If the two sides of the angle are parts of two Poincare lines, then the angle is the angle in Euclidean sense between the tangents of the Poincare lines. See the following figure. Now, axiom C5 is trivially verified. To verify axiom C4 (laying off a congruent copy of a given angle, say H at some ray with initial point A). We consider the following cases:

109 4.4. POINCARE DISK MODEL 109 If A is the centre O of γ, the angle is formed by diameters and the laying off is accomplished in the Euclidean way. If A is not the centre of γ and pass through the line l, which is either an open diameter or a tangent to some Poincare line that pass through A. If l is an open diameter. Then we have to find a unique circle through A that is orthogonal to γ and tangent to a given Euclidean line l that passes through A, such that the two lines l and k determine the angle measure of H. Let δ be a circle through A. Now, δ meets γ orthogonally if and only if δ passes through the pole A of A with respect to γ. The centre C of δ must lie on the perpendicular bisector of chord AA at M, call this bisector m. If k is the tangent to δ at A, then C must also lie on the perpendicular n to k at A. So δ must be the circle whose centre is the intersection C of m and n and whose radius is CA. See the following figure. If A is not the centre of γ and pass through the line l, which is a tangent to some Poincare line that pass through A. Then we have to find a unique circle through A that is orthogonal to γ and tangent to a given Euclidean

110 110 CHAPTER 4. HYPERBOLIC GEOMETRY line k that passes through A, such that the two lines l and k determine the angle measure of H. Let δ be a circle through A. Then δ meets γ orthogonally if and only if δ passes through the pole A of A with respect to γ. The centre C of δ must lie on the perpendicular bisector of chord AA at M, call this bisector m. If k is the tangent to δ at A, then C must also lie on the perpendicular n to k at A. So δ must be the circle whose centre is the intersection C of m and n and whose radius is CA. See the following figure. To show that C6(SAS) is true in this model, we should study the inversion of circles. So, we leave it without justification. Betweeness axioms are all trivially true in this model as it is embedded in Euclidean plane. Having interpreted all the undefined terms of hyperbolic geometry in the Poincare model, we get interpretations of all the defined terms. For example, two Poincare lines are parallel if and only if they have no point in common. The limiting parallel rays in the Poincare model are illustrated in the following figures:

111 4.4. POINCARE DISK MODEL 111 In the above figure, we have chosen l to be an open diameter, with endpoints P and Q, and A any point inside γ not on l. Then the limiting parallel rays through A and parallel to l are the rays emanating from A and are arcs of circles orthogonal to γ through P and Q. The above figure illustrates two parallel Poincare lines with a common perpendicular. The figure shows that how the line m diverges from l on either side of the common perpendicular AB. Lemma Let A be a point inside γ, and d := d P (O, A). Then OA = ed 1 e d + 1

112 112 CHAPTER 4. HYPERBOLIC GEOMETRY Proof. Let P and Q be the end of the diameter containing A such that Q A O P. Then ( ) ( ) d = d P (A, O) := AP ln OQ = AP OP AQ ln. AQ Then Thus, e d 1 = OA ( e d + 1 ) e d = AP AQ = 1 + AO 1 AO e d 1 = 2OA 1 OA e d = 1 OA. Theorem (Boylai Lobachevsky Formula) The angle of parallelism θ(d) := (AB) in the Poincare Disk model of Hyperbolic geometry satisfies ( ) θ(d) tan = e d 2 where d := d P (A, B) Proof. Since θ(d) depends only on the distance we are free to choose any line and any point. Let l be a diameter and let A be a point inside γ on a diameter perpendicular to l. Let d := d P (A, O). We will find θ(d). The limiting parallel ray through A to l will be an arc of the circle, say δ, that is tangent to l at C on the circle γ. See the following figure.

113 4.5. EXERCISES 113 The tangents to δ at A and C meet at a point R on l such that O R C, see the figure. Then ACR is an isosceles triangle. Hence ACR = CAR. Let β := ( CAR). Then ( CRA) = π 2β Thus, ( ARO) = 2β. Hence θ(d) = π 2β. Then 2 π tan( θ(d) tan( 2 ) = tan(π 4 β) = 4 ) tanβ 1 + tan( π 1 tanβ = )tanβ 1 + tanβ 4 By previous lemma, ed 1 e d + 1 = OA = tan β. Then Exercises ( ) θ(d) 1 ed 1 tan = e d ed 1 e d + 1 = e d. [1.] In hyperbolic geometry: Prove that the summit is always greater than the base in a Sacchari quadrilateral. [2.] In hyperbolic geometry: Prove that two Sacchari quadrilaterals with congruent bases and congruent summit angles must be congruent quadrilaterals. [3.] In hyperbolic geometry: Given two lines l and m with a common perpendicular MM. If A and B are two points on l such that A M B, where M is not the midpoint of the segment AB. Then show that A and B are not equidistant from m. [4.] In hyperbolic geometry: Given two lines l and m with a common perpendicular MM. If A and B are two points on l such that M A B. Then prove that d(a, m) < d(b, m). [5.] In Euclidean geometry, all triangle have the same defect which is zero. In hyperbolic geometry, show that not all triangles have the same defect. [6.] In neutral geometry, we have proved the alternate interior angle theorem. In hyperbolic geometry, the alternate interior angle theorem can be strengthened, so that the two lines are parallel and have a common perpendicular. [7.] Given any triangle ABC. Let I, J, and K be the midpoints of BC, AC, and AB respectively. Drop perpendiculars from A, B, and C to the line IJ at the points D, E, and F respectively.

114 114 CHAPTER 4. HYPERBOLIC GEOMETRY i. Show that AD = CF = BE. That is, the quadrilateral EDAB is a Sacchari quadrilateral. It is called the Sacchari quadrilateral associated to the triangle ABC. ii. Show that the perpendicular to the line AB at K is also perpendicular to the line IJ. iii. Show that IJ = 1 2 ED. iv. In hyperbolic geometry, show that IJ < 1 2 AB. v. In hyperbolic geometry, show that AB > ED. vi. Show that δ( ABC) = δ( EDAB). vii. Suppose that the triangle ABC has right angle at C. In hyperbolic geometry, show that Pythagorean theorem does not hold. [8.] Let ABC be any triangle, and L, M, and N be the midpoints of BC, AB, and AC respectively. In hyperbolic geometry: Prove that AM N is not similar to ABC.

115 Chapter 5 Axiom System of Euclidean 3-space and Spherical Geometry Spherical geometry can be said to be the first non-euclidean geometry. For at least 2000 years humans have known that the Earth is almost a sphere and that the shortest distance between two points on the Earth is along a great circle; which is the intersection of the sphere with a plane through the centre of the sphere. In the first section, we shall introduce the Hilbert s axiom system of 3-dimensional Euclidean space. In the second section we shall see the spherical geometry as the geometry of the sphere in the 3-dimensional Euclidean space. In the third section, we shall introduce an axiom system for spherical geometry, that is in the spirit of Hilbert s axiom system of Euclidean geometry, which is done by Borsuk. 5.1 Hilbert s Axiom System of 3-dimensional Euclidean Space We begin by the undefined terms that are basis for defining all other terms in 3-space Euclidean geometry. They are: point line plane incidence with (lie on or pass through) between congruent. Hilbert s axioms are divided into five groups: incidence axioms, betweenness axioms, congruence axioms, continuity axioms, and parallelism axiom. 115

116 116CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Note that, all planes will be assumed to be Euclidean planes, that is all axioms of Eucildean plane geometry in chapter 2 and consequently all its theorems in chapter 2 and chapter 3 hold for every plane. The axioms of incidence are: I.1 Given two distinct points P and Q there is a unique line incident with P and Q. This line will be denoted by P Q. I.2 For every line l there exist at least two distinct points incident with l. I.3 There exist three distinct points with the property that no line is incident with all three of them. I.4 Given three distinct points, that are not collinear, there is a unique plane incident with them. I.5 Given any plane Γ, then there exists at least one point in Γ. I.6 If two distinct points of a line l are in one plane Γ, then all points of the line l are in Γ. I.7 There exists 4 distinct points with the property that no plane contains all of them. Definition Two planes are called parallel if they have no point in common. I.8 the intersection of two not parallel planes contains at least two distinct points. Definition A line l is said to be parallel to a plane if they do not have any common point. A set of points are called coplanar if there exists a plane that contains all of them. Two lines are called coplanar if there exits a plane that contains both of them. Two not coplanar lines are called skew-lines Proposition Let l be a line and Γ be a plane. following holds: Then only one of the i. l is parallel to Γ. ii. l intersects Γ in exactly one point. iii. l lies in Γ. Proposition Let Γ 1 and Γ 2 be two planes. Then only one of the following hold: i. Γ 1 and Γ 2 are parallel.

117 5.1. HILBERT S AXIOM SYSTEM OF 3-DIMENSIONAL EUCLIDEAN SPACE117 ii. The intersection of Γ 1 and Γ 2 is a line. iii. Γ 1 = Γ 2. Note that two skew-lines do not have a common point. Therefore, two distinct lines in space are said to be parallel if they are coplanar and have no point in common. Proposition i. If two distinct lines have a common point, then there exists only one plane containing them. ii. If l and m are two distinct lines in space, then only one of the following occurs: 1. l and m are skew-lines. 2. l and m are concurrent. 3. l and m are parallel. The axioms also imply the following statements. Proposition i. if A and B are two distinct points, then there exists at least two distinct planes containing them. ii. For every line there exists at least two distinct planes containing it. iii. There exists at leas three distinct planes that do not have a common line. iv. There exists two lines with the property that no plane contains both of them. v. For every line there exists at least one plane not containing it. vi. For every plane there exists at least one line not contained in it. Axioms on Betweenness: B.1 If A B C then A, B, and C are three distinct points all lying on the same line, and C B A. B.2 Given any two distinct points B and D, there exists points A, C and E lying on BD such that A B D, B C D and B D E. B.3 If A, B, and C are three distinct points lying on he same line, then one and only one of the points is between the other two. Betweenness axiom 4 will be modified as follows: B.4 Let A, B, and C be three non-collinear points, and let l be a line in the plane that contains the three points, and not passing through any of them, then i. If A and B are on the same side of l and B and C are on the same side of l, then A and C are on the same side of l.

118 118CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY ii. If A, and B are on opposite sides of l and B and C are on opposite sides of l, then A and C are on the same side of line l. Definition Let Γ be a plane and A and B are two distinct points not in Γ. We say that A and B are on the same side of Γ if A and B are on the same side of every line lying in Γ that is coplanar with AB. That is A and B are on the same side of γ if and only if the segment AB does not intersect Γ. Let Γ be any plane and A any point not in Γ. The set of all points that are on the same side of Γ as A is called half-space bounded by Γ containing A. We denote it by HS A,Γ. Theorem Space separation property Every plane determines exactly two disjoint half-spaces. Note that, all lines and points are considered to lie on the same plane unless otherwise stated. Now we state the axioms of congruence: C.1 If A and B are two distinct points and if C is any point, then for each given ray r emanating from C there is a unique point D on r such AB = CD. C.2 If AB = CD and AB = EF then CD = EF. Moreover, every segment is congruent to itself. C.3 (Segment Addition)If A B C, E F G, AB = EF, and BC = F G, then AC = EG. Congruence axiom 4 is modified as follows: C.4 Given BAC in a plane Γ 1 and any ray EF in a plane Γ2, then on a given side of the line EF in the plane Γ 2, there is a unique ray EG such that BAC = F EG. C.5 If A = B and A = C, then B = C. Moreover, every angle is congruent to itself. C.6 (SAS) If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent. The axiom of continuity is Dedekind Axiom: Suppose that the set of all points on a line l is the disjoint union 1 2 of two non-empty subsets, such that no points of 1 is between two points of 2 and vice versa. Then there is a unique point O lying on l such that P 1 O P 2 if and only if P 1 1 and P 2 2. That is one of the subsets is equal to a ray of l with vertex O and the other subset is equal to the complement. Finally, the axiom of parallelism is Hilbert s Parallel Axiom: For every line l and every point P not on l, there is at most one line m through P such that m is parallel to l and m pass through P.

119 5.2. SPHERICAL GEOMETRY: A 3-DIMENSIONAL EUCLIDEAN SPACE VIEW Spherical geometry: A 3-dimensional Euclidean Space View In this section, spherical geometry is the study of the surface of a sphere. Where the sphere is the set of all points in Euclidean 3-space, that have distance R from a particular point O called the centre of the sphere, and R is called the radius of the sphere. Let S be a unit sphere in Euclidean 3-space with centre the origin. Definition A great circle on the sphere S is the set of all points in the intersection of S and a plane passes through the origin. Theorem The shortest path on the sphere S between two points A and B on the sphere, lies a long a great circle connecting the two points. Proof. Definition An opposite point of A on the sphere S, is the point A on S which lies on a diameter of S which contains A. Now, suppose we have two points A, and B on a great circle l. These are two circular arcs that connect A and B, the shortest of these arcs must be the shortest path from A to B, we will denote it by ÂB. If B = A, then each of two arcs has the same length. In fact, if B is the opposite point of A, then there are infinitely many paths with shortest distance between A and its opposite B. For, there are infinitely many planes that can pass through A, B, and centre O, since the three points are collinear. If B is not opposite to A, then A, B, and O are not collinear, and hence determine a unique plane, thus there is a unique great circle through A and B. Thus, there is a unique shortest path between A and B. Theorem Any two great circles have exactly two opposite points in common. Proof. Let Γ 1 be the plane that determine the great circle l 1, and Γ 2 be the plane that determine the great circle l 2. That is, l 1 = Γ 1 S. l 2 = Γ 2 S. Then l 1 l 2 = (Γ 1 S) (Γ 2 S) = Γ 1 Γ 2 S. From Euclidean 3-space geometry, any two not parallel planes intersect in a line. The line of intersection contains the centre O. Hence, the line of intersection crosses the sphere exactly twice. Thus, l 1 l 2 consists of exactly two points, which are opposite points.

120 120CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Definition The angles between two great circles is defined to be the angle between tangent lines to the great circles. In spherical geometry it is possible to define a two-sided polygon, because any two distinct great circles intersect at two antipodal points and divide the sphere into four regions, each of which is called a lune(or biangle), since it has two sides and two vertices and two angles. The two angles of the lune are congruent, since the two angles are the two angles between the planes from which the two great circles are created. Proposition A lune whose angle is θ radians, then it has area 2θR 2. Proof. Let N be a point on S, divide the sphere into n equal lunes, then the angle of each lune will be 2π. And the area of each lune is the area of S divided n by n. That is 4πR 2 = 2( 2π n n )R2. That is, if the lune has angle θ then the area of the lune is 2θr 2. Definition Let A, B, and C be distinct points on S, such that no great circles contains all of them. The spherical triangle S ABC is defined to be the arcs ÂB BC ÂC. Definition If S ABC is a spherical triangle, the triangle S A B C, where A, B, and C are the opposites of A, B, and C respectively, is called the opposite triangle of S ABC. Lemma If S ABC is any spherical triangle, then S ABC = S A B C Theorem (Girard s Theorem) If S ABC is any spherical triangle with angles α, β, and gamma given in radians, then area( S ABC) = R 2 (α + β + γ π) Corollary If S ABC is any spherical triangle with angles α, β, and gamma given in radians, then α + β + γ = π + area( SABC) R 2 Theorem (Pythagorean Theorem on the Sphere) Let S ABC be a spherical right triangle with right angle at the vertex C. Let the arc length of the sides opposite to A, B, and C be a, b, and c respectively. Then cos( c R ) = cos( a R )cos( b R ).

121 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH Spherical Geometry; Axiomatic Approach In this section, we will introduce an axiom system for spherical geometry that is in the spirit of Hilbert s axiom system for Euclidean geometry. This axiom system is given in [1] Rational Geometry for Halstad. We begin by the undefined terms that are basis for defining all other terms in spherical geometry. They are: point line incidence with (lie on or pass through) between congruent. The set of axioms are divided into five groups: incidence axioms, betweenness axioms, congruence axioms, continuity axioms, and parallelism axiom. Incidence Axioms IS.1 For every point P, there exists always one other point P which with P does not determine a line. This second point P is called the opposite of P. IS.2 Any line incident with a point is also incident with its opposite. IS.3 Any two points not each the others opposite determine a unique line. IS.4 There are at least three points not incident with the same line. Now we will prove some consequences of the incidence axioms. Proposition If P is opposite of point P, then P is also opposite of P. Proof. We use contradiction. Assume P is opposite of point P and P is not opposite of point P. Then by IS.3, P and P determine a unique line l. By IS.4, there exists a point A not on l and A is not opposite point of P, then A P. By IS.3, A and P determine a unique line, say m. By IS.2, m is incident with P. Thus, P and P does not determine a unique line. Proposition Two distinct lines cannot have three points in common. Proof. Let l and m be two distinct lines. We use contradiction. Assume that A, B, and C be three distinct points that lie on both m and l. At least two of them not opposite points, say A, and B are not-opposite points. Then by IS.3, they determine a unique line, hence l = m, which is a contradiction. Betweenness Axioms BS.1 If A B C, then A, B, and C are distinct points and lie on one line, and C B A. BS.2 No point is between two opposites.

122 122CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY BS.3 Given any two non-opposite points A, and B, there exits points C, D, and E, such that, A C B, A B D, and E A B. BS.4 Given any three points, no more than one can be between the other two. BS.5 If A B C and A C D then A B D. BS.6 Between no two points are there two opposites. Proposition No point is between its opposites and any third point. Proof.Let A be opposite point of A. Let B be any third point. Use contradiction. Assume that B A A. Now, since A, B are not opposites, then by BS.3 there is a point C such that B A C. By BS.5 B A C. Then both A and its opposite lie between B and C, which is a contradiction to BS.6. Definition Let A and B be two non-opposite points on a line l. A segment AB is defined to be the set of all points C such that A C B together with A and B. A and B are called the endpoints of the segment AB. The segment AB will be denoted by AB. BS.7 (Pasch) Let A, B, and C be any three distinct points, that no line is incident with all of them, and no two of them are opposite points. Let l be a line that does not incident to any of them. IF l intersects AB then it must intersects either BC or AC but not both. Proposition Every line l separates the points not on l into two regions. Each of which is called a side of l. Let A and B be two points not on l. Then they are said to be in opposite sides of l if and only if the segment AB intersects l. They are said to be on same side of l if and only if AB does not intersect l. Proof. Proposition The points of any line l other than two opposites P and P are separated into two classes such that P or P is between any point of the one and any non-opposite point of the other, but neither P nor P is between two of the same class. Definition The parts of a line l determined by a point A and its opposite are called rays of l. If C is on l and not opposite of A, then the ray AC consists of point A, point C, and all points D such that either A D C or C D A. We say AC is emanating from A. Two distinct rays part of the same line, and emanating of the same point are called opposite rays. Proposition Two opposites cannot be on the same ray. Proposition Every line has exactly two points in common with any other line

123 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 123 Axioms of Congruence CS.1 If A and B are two non-opposite distinct points and if C is any point, then for each given ray r emanating from C there is a unique point D on r such AB = CD. CS.2 If AB = CD and AB = EF then CD = EF. Moreover, every segment is congruent to itself. CS.3 (Segment Addition) If A B C, E F G, AB = EF, and BC = F G, then AC = EG. Definition Let AB and AC be two distinct rays, that are parts of two distinct lines, then the angle BAC consists of AB and AC. And A is called the vertex of BAC. The rays AB and AC are called the sides of the angle BAC. CS.4 Given BAC and any ray EF, then on a given side of the line EF there is a unique ray EG such that BAC = F EG. CS.5 If A = B and A = C, then B = C. Moreover, every angle is congruent to itself. We conclude from this axiom that: If A = B then B = A. Definition A spherical n-polygon consists of n segments A 1 A 2 A 2 A 3 A 3 A 4 A n A 1, such that any two of them meet in at most one endpoint. The segments are called the sides of the polygon, and the endpoints of the segments are called vertices of the polygon. A spherical 3-polygon is called a triangle. Two triangles are said to be congruent if there is a one to one correspondence between their vertices so that the corresponding sides are congruent and corresponding angles are congruent. CS.6 (SAS) If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent. Corollary Given ABC and segment DE = AB, there is a unique point F on a given side of line DE such that ABC = DEF. Proof. Given any ABC and segment DE = AB. Then by CS.4 there is a unique ray DF on a given side of the line DE such that BAC = F DE. Then by CS.1 on the ray DF choose F the unique point such that AC = DF. Hence by SAS, ABC = DEF. Proposition (ASA) Given ABC and DEF with AB = DE, CAB = F DE, and CBA = F ED, then ABC = DEF.

124 124CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Proof. Given ABC and DEF with AB = DE, CAB = F DE, and CBA = F ED. By CS.1 there is a unique point G on ray AC, such that AG = DF. Then by SAS, ABG = DEF, and hence ABG = DEF. But by assumption, DEF = ABC. Then by uniqueness of CS.4, we have BG = BC. We claim that G = C. If not, that is G C then G AC BC, then by proposition???, AC = BC. But this contradicts that A, B, and C are non-collinear. Definition By AB < CD or CD > AB we mean that there exists a point E between C and D such that AB = CE. Definition A triangle is called isosceles if two of its sides are congruent. Proposition Given ABC, then: i. If ABC is an isosceles triangle then B = C. ii. If B = C then the triangle is isosceles. Proof. i. Given a triangle ABC in which AB = AC. Consider the triangles ABC and ACB. Then by CS.5, A = A, by hypothesis AB = AC, and by CS.2, we have AC = AB, then by SAS, ABC = ACB. Hence, B = C. Definition By BAC < DEF, we mean that, there is a ray EG between EF and ED such that BAC = GEF. Definition Two angles are called supplementary angles, if they have the same vertex, have a common side, and the other sides are opposite rays. An angle is called right angle, if it is congruent to its supplementary angle. Two angles are called vertical angles if they have the same vertex and the sides are opposite rays. Two lines meet at a point, say P are called perpendicular, if the angles consists of P and one side is a ray in the first line emanating from P, and the other side is a ray in the second line emanating from P, are right angles. Proposition i. Supplements of congruent angles are congruent. ii.vertical angles are congruent to each other. iii An angle congruent to a right angle is right. Proof. i. Given CAD = GF H. We show that BAD = EF H. By CS.1, choose G such that F G = AC, E such that EF = AB, and H such that F H = AD. By SAS, DAC = HF G. By segment addition BC = EG. Then, since DCA = HGF and DC = HG, so by SAS, DBC = HEG.

125 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 125 By congruence of triangles, HE = DB and DBC = HEG. Then by SAS, DBA = HEF. Finally, by congruence of triangles DAB = HF E. ii. Consider the following figure. 1 is supplementary to 2 and also supplementary to 4. By CS.5 1 = 1, then by part i 2 = 4. iii. Let 1 be a right angle and 2 is any angle congruent to 1. Since 1 is right angle, then it is congruent to its supplementary angle 3. Then by i, the supplementary angle of 2, which is 4, is congruent to angle 3. That is, 4 = 3 = 1 = 2. By CS.5, 4 = 2. Hence, 2 is right. Proposition For every line l and every point P, there exists a line through P that is perpendicular to l. Proof. Given any line l, and P any point. Then, either P l or P / l. Case 1: let P / l. By IS.2, there are two points, say A and B on l. By CS.4, on the opposite side of l from P, there exists a ray AG such that GAB = P AB. By C.1, there is a point P on AG such that AP = AP. Now P P intersects l at a point Q. Either Q = A or Q A. If Q = A, since P QB = P QB and they are supplementary angles, then they are right angles. Hence, P P is perpendicular to l. If Q A, then by SAS, P QA = P QA. Hence, P QA = P QA. Thus P P is perpendicular to l. Case 2: Let P l. By proposition there is a point not on l, say H. by case 1, we can drop a perpendicular from H to l, call it m. Let l and m intersects at a point G. Then either P = G or P G. If P = G, then we are done. If P G. By CS.4, consider angle HGP and any ray part of l emanating from P and a given side of l, there is a unique ray emanating from P, which produce an angle congruent to the right angle HGP. Proposition (Angle Addition) Given AD lies between AB and AC and ray EG lies between EF and EH, CAD = GEH, and DAB = GEF. Then CAB = F EH. Proof. Given AD lies between AB and AC and ray EG lies between EF and EH, CAD = GEH, and DAB = GEF. See the figure

126 126CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Then by Crossbar theorem, AD intersects BC at a point, say M, such that B M C. By C.1, choose F, G and H, such that AB = EF, AC = EH, and AM = EG. Then, by SAS, MAC = GEH, and BAM = F EG. Then HGE = CMA and F GE = BMA. But CMA and BMA are supplementary angles. By proposition i, BM A is congruent to the supplementary angle of HGE, and since F GE = BMA. Thus by uniqueness of C.4, the supplementary angle of HGE is F GE. Hence H G F. Since EHF = ACB, then by SAS, ABC = EHF. And by definition of congruent triangles, BAC = F EH. Proposition (SSS) Given ABC and DEF. If AB = DE, BC = EF, and AC = DF, then ABC = DEF. Proof. Given ABC and DEF, AB = DE, BC = EF, and AC = DF. By corollary of SAS, on the opposite side of DE as F, there is a unique point, say M such that ABC and DEM are congruent. Then BC = EM and CA = DM, by CS.2 EF = EM and F D = DM. Since F and M are in opposite sides of DE, F M intersects the line DE at a point say P. Then either P = D, P = E, P D E, D E P, or D P E. Case 1: If P = D, see the following figure. Then by proposition EF M = EMF. That is DF E = DME. But DME = ACB. Then by CS.4, we get ACB = DF E. Hence, by SAS ABC = DEF. Case 2: If P = E, the proof is similar to case 1.

127 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 127 Case 3. If P D E, see the following figure. Then by proposition 2.3.2, P F E = P ME, and P F D = P MD. Thus by angle subtraction DF E = DME. But DME = ACB. Then by C.5, we get ACB = DF E. By SAS, ABC = DEF. Case 4: If D E P, the proof is similar to case 3. Case 5: If D P E then F is in the interior of DME, and M in the interior of DF E. By proposition 2.3.2, in the triangle F EM, we get EF M = EMF, and

128 128CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY in the triangle F DM, we get DF M = DMF. Then by angle addition, we get that DF E = DME. But DME = ACB. The by CS.4, we get ACB = DF E. Hence, by SAS, ABC = DEF. Proposition If l and m are two distinct lines, that are perpendicular to a line n, then l and m intersect in a point, say P. And all segments from P to the line n are perpendicular to n, and all such segments are congruent. Proof: Given two distinct lines l and m that are perpendicular to a line n at the points C and A respectively. By proposition l and m intersect in exactly two points,let P be one of them. Let P be the opposite point of P, P is the other common point of l and m by IS.2. Let D be any point on n, we need to show that P D is perpendicular to n, and P D = P A. P A = P C, since in the triangle P AC, P CA = P AC, by proposition Also, by ASA P AC = P AC. Hence, P A = P A. Then P AD = P AD, by SAS. Thus, P DA = P DA, and hence, P DA is a right angle. Now, by proposition P DA is an isosceles triangle, that is P D = P A. Definition The two opposite points, say P and P at which two perpendiculars to a given line n intersect are called the poles of n, and n is called the polar of P, and P. A segment from a pole to its polar is called a quadrant. Proposition All quadrant are congruent. Proof. Let AB and EG be two quadrants, where A is the pole of the polar l, and B at l. And E is the pole of the polar m, and G on m. Choose C on l and F on m such that CB = F G. Since, B, C, G, and F are right angles and hence are congruent, then by ASA ABC = EGF. Thus, AB = EG. Proposition Let P be a point not on a line m, and let A and C be two points on m, such that P A = P C,and are congruent to a quadrant, then P is the pole of m. Proof. Given a line m and a point P not on m, such that P A = P C, and are congruent to a quadrant. Then the two perpendicular to m at A and at C meet at a point say, P, and are quadrants, since all quadrant are congruent, then P A = P A. By SSS, P AC = P AC. Then P AC = P AC. Thus, P is a pole of m.

129 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 129 Proposition If three segments from a point to a line are congruent, then they are quadrant. Proof. Given 3 segments from a point P to a line m, that are congruent. Then they are sides of two adjacent isosceles triangles, and hence are perpendicular. See the figure. Proposition Given any line l and any point P not on l. Then there exists a perpendicular from P to l. If P is not a pole of l, then the perpendicular from P to l is unique. Proof. Given any line l and any point P not on l. Then by proposition , there exists a perpendicular from P to l. To show uniqueness if P is not a pole. Let AB be any segment on l. Let Q be a point on the other side of l from P, such that P AB = QAB. Choose Q such that P A = QA. Then P Q intersects l at a point, say S. Then by SAS, P AB = QAB. Then P Q is perpendicular to l at S. If there is another perpendicular from P to l, then by the previous definition, P is a pole of l, which is a contradiction. Definition A point B on a given ray P P such that BP = BP is called the bisection-point of the ray. A point P between A and C such that P A = P C, is called midpoint of the segment AC. For any angle BAC, if a ray AD is between the ray AB and the ray AC, such that CAD = BAD, then AD is called a bisector of the angle anglebac. Lemma Given any two opposite points P and P, and r any ray emanating from P. Then there exists a point B r that is a bisection-point of r. Proof. Given any two opposite points P and P, and r any ray emanating from P. At any two points on r other than P there exists two perpendiculars to r. These two perpendiculars meet at a point say Q. Let P C be another ray emanating from O, and not part of the line through r. At any two points on P C other than P there exists two perpendiculars to P C. These two perpendiculars meet at a point say R. See the following figure.

130 130CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY The line RQ meets r at a point say, B. And meets AC at a point, say D. Since Q is a pole of the line containing r, and R is a pole of the line P C, then the angle at B and the angle at D are right, and hence are congruent. Then by ASA, P BD = P BD. Thus, P B = P B. Proposition If P and P are two opposites and A, C any two points distinct from P and P, and not both on the same line with P and P. Then AP C = AP C. Proof. Let P and P be two opposites and A, C any two points distinct from P and P, and not both on the same line with P and P. Bisect the ray P A at the point B, and the ray P C at the point D. Then by SSS P BD = P BD, hence AP C = AP C. Proposition In an isosceles triangle, the bisector of the angle between two congruent sides of the triangle bisects the third side at right angle. Proof. Given the isosceles triangle ABC, in which AC = AB. Let M be the midpoint of BC. Then by SSS, ADB = ADC. Then, BAD = CAD, and the two supplementary angles ADC and ADB are congruent and hence, are right angles. Then AD is a bisector of the angle BAC, and it bisects BC at a right angle. Proposition Given any two lines l and m with A and B as common points, if n is a line through the poles of l and m, then n is the polar of A and B. Proof. Given any two lines l and m with A and B as common points, let n be a line through the poles of l and m, which are P and Q respectively. Enough to show that n is the polar of A. Since A on l, and P is a pole of l, then P A is a quadrant. And, since A on m and Q is a pole of m, then QA is also a quadrant. Thus, P A and QA are quadrant, and n = P Q, then by previous proposition, n is a polar of A. Corollary The line through the poles of two lines is perpendicular to both.

131 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 131 Definition Given two triangles ABC, and A B C, such that A is a pole BC on the same side of BC as A, B is a pole AC on the same side of AC as B, and C is a pole BC on the same side of AB as C. Then A B C is called the polar triangle of ABC. Proposition If A B C is the polar triangle of ABC, then ABC is the polar triangle of A B C. Proof. Let A B C be a polar triangle of ABC. Since B is a pole of AC, then B A is a quadrant, and since C is a pole of AB, then C A is a quadrant. Thus, A is a pole of B C. In the same manner, we conclude that, B is a pole of A C, and C is a pole of A B. Moreover, since by hypothesis A and A are on same side BC, and A is the pole of BC, then A A is less than a quadrant. Therefore, A and A are on the same side of B C. In the same manner, we show that B and B are on the same side of A C, and C and C are on the same side of A B. Hence, ABC is the polar triangle of A B C. Definition Two segments AB and CD are called supplemental,if they are congruent to two segments made by a point on a ray, say r with its endpoints. That is, if r is a part of the line P P, emanating from P, and G r, such that AB = P G and CD = GP Proposition The supplements of congruent segments are congruent. Proof. Let AB = CD, EF be the supplement of AB, and HJ be the supplement CD. Then there exists a ray P P, and a point G P P, such that AB = P G and EF = GP. Also there exists a QQ, and a point on K QQ, such that QK = CD, and KQ = HJ. Then GP = QK. Enough to show that P G = Q K. If not that is P G > Q K or P G < Q K, we should get a contradiction. Consider the case P G > Q K. Then there exists I such that P I G and GI = KQ. Let M and N be the bisection points of P P, and QQ respectively. If G = M then we are done. If P G M, then since quadrants are congruent, GM = KN, then MI = Q N, which is a contradiction. If P M G, then MG = KN, and since P M = Q N, then MI = Q N, which is a contradiction. Lemma In a pair of polar triangles, any angle of either triangles intercepts, on the side of the other triangle which lies opposite it, a segment which is supplement of that side. Proof. Let ABC and A B C be two polar triangles. Let D and E be respectively the points where rays AB and AC meet B C. Since B is the pole of AC, then B E is a quadrant, and since C is a pole of AB, then C D is a quadrant. Since C D and B E are two quadrants, and B E+C D = B C +ED. Thus ED is the supplement of B C.

132 132CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Proposition AAA For any two triangles, that have three angles of respectively congruent to three angles of the other are congruent triangles. Proof. Let ABC and DEF be two triangles in which A = D, B = E, and C = F. Let A B C be the polar triangle of ABC, and D E F be the polar triangle of DEF. See the figure. Claim: If ABC and DEF are equiangular, then their polar triangles A B C and D E F are equilateral. By SAS, congruent angles at the poles of lines, intercepts congruent segments on those lines, since all quadrants are congruent. By the previous lemma, these congruent segments are the supplements of corresponding sides of the polar triangles. Since the supplements of congruent segments are congruent, then these polar triangles have three sides respectively congruent. Since the polar triangles A B C and D E F are equilateral then by definition of congruent triangles, are equiangular. Thus, since the claim is true, their polar triangles, which are ABC and DEF, are equilateral. Therefore are congruent by SSS. Appendix: Some results in Euclidean Geometry Theorem In Euclidean geometry, if the two triangles ABC and A B C are similar then the corresponding sides are proportional. Proof. Without loss of generality, we suppose that A B < AB. Let D AB such that AD = A B and E AC such that AE = A C. Since B = D, and then the line through D and E is parallel to side BC and E is between A and C. Now the corollary above implies that AD AB = AE AC. And since AD = A B

133 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 133 and AE = A C we have A B AB = A C AC. Now consider F BC such that BF = B C and D AB such that BD = B A. Similarly, one obtains that BF BC = BD BA and hence B C BC = A B BA. Proposition In Euclidean geometry, the shortest segment from a point P to a line l is the perpendicular from P to l. Proof. Given any line l and any point P not on l. Let P S be the shortest segment from P to l. Let P Q be the perpendicular from P to l at the point Q. Consider the triangle P QS. Then angle P QS is right and hence the other two angles are acute angles. Then the greater angle is opposite to greater side. Then P S > P Q which is a contradiction since P S > P Q unless S = Q. Proposition In Euclidean geometry, let γ be a circle with radius r and centre O. Then a line t is tangent to γ at the point P if and only if OP t at P. Proof. Given a circle γ with centre O and radius r, and given a line t. = Let the line t be tangent to γ at the point P. If S is any other point on t. Then S lies outside γ, that is OS > r = OP. That is, OP is the shortest distance from O to the line t. And hence, OP t. = Let OP t at the point P. If t is not tangent to γ. Then t intersects γ at other points say, R. Then P RO is a triangle with OP = OR, Then OP R = ORP. Hence this triangle has two right angles which is a contradiction. Proposition In Euclidean geometry, if AB is a chord of a circle γ, and C is the intersection of the tangent lines to γ at A and B. Then ABC is an isosceles. Proof. Exercise. Proposition Given a circle γ with centre O. If A, B and C are three distinct points on γ, then ( BAC) = 1 2 ( BOC). Proof. First, we consider the case when one side of the angle BAC is a diameter, say AC. See the figure.

134 134CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY In the triangle OBA is an isosceles triangle, then ABO = OAB. By exterior angle theorem, ( BAD) = ( ABO) + ( BAO) = 2( BAO). Thus, ( BAC) = 1 2 ( BOC). Now, we suppose that neither of its sides is a diameter and consider a point D γ such that AD is a diameter. Then, the first part of this proof implies that ( BOD) = 2( BAD) ( DOC) = 2( DAC). Now, either AD is between AC and AB, or AD is not between AC and AB. Case 1: Let AD is not between AC and AB. Without loss of generality, assume that AC is between AB and AD. See the figure. Then, ( BAD) = 1 2 ( BOD) ( CAD) = 1 2 ( COD) ( BAC) = ( BAD) ( CAD) = 1 2 [( BOD) ( COD) ] = 1 2 ( BOC) Case 2: Assume that AD is between AC and AB. Then ( BAC) = ( BAD) +( DAC). Therefore, ( BAC) = 1 2 [( BOD) +( DOC) ]. Then ( COB) = 2( BAC). Proposition Given a circle γ with centre O. If A and B are two distinct points on γ. Let t be the tangent to γ at B. Let P t such that OP lies between the rays OA and OB. Then ( P BA) = 1 2 ( AOB) Proof. Given a circle γ with centre O. If A and B are two distinct points on γ. Let t be the tangent to γ at B. Let P t such that OP lies between the rays OA and OB. Since BO P B, we have ( P BA) = 90 ( ABO). By previous proposition, ( ABO) = 1 2 ( AOD). Since ( AOD) = 180 ( AOB), substituting above, we get that ( P BA) = 1 2 ( AOB). Proposition Given a circle γ with centre O. Let t be the tangent to γ at A. Let BC be a chord in γ, and let P t such that C B P. Then P CA is similar to P AB. Proof. Given a circle γ with centre O. Let t be the tangent to γ at A. Let BC be a chord in γ, and let P t such that C B P. See the figure.

135 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 135 The two triangle have a common angle, hence, it is enough to find another pair of congruent angles. We show that ACP = P AB. By previous proposition, ( P AB) = 1 2 ( AOB), and by the other proposition ( ACB) = 1 2 ( AOB). Thus, we get the result. Proposition Any three distinct non-collinear points determine a unique circle. Proof. Let A, B and C be three distinct non-collinear points. First, in the triangle ABC we prove that the perpendicular bisectors of the sides of ABC all meet at a single point. Let l and m be the perpendicular bisector of segments AB and BC respectively. We claim that l and m meet at some point O. In fact, suppose that l m. Since AB l, then AB m. Since BC m, then alternate interior angle theorem implies that AB BC, which is a contradiction, since they both meet at B. Now, we claim that OA = OB = OC. Assume that l meet AB at L, and m meet BC at M. Note that by SAS, AOL = BOL, and hence OA = OB. Also, BOM = COM, by SAS, which implies that OB = OC. See the figure. Let N be the midpoint of AC. To complete the proof we need to show that ON is perpendicular bisector of AC, that is, ON OC. Since AON = CON by SSS, we obtain ( ONC) = ( ONA) = 90. Second, the circle with centre O and radius OA pass through the three points A, B, and C. Uniqueness: To show that there is a unique circle passing through A, B and C. Assume there is another circle, say γ with centre O and radius r, passing through A, B and C. Then r = O A = O B = O C

136 136CHAPTER 5. AXIOM SYSTEM OF EUCLIDEAN 3-SPACE AND SPHERICAL GEOMETRY Since O A = O B, then O lies on the perpendicular bisector of AB. Since O C = O B, then O lies on the perpendicular bisector of CB. Since O A = O C, then O lies on the perpendicular bisector of AC. Hence the three perpendicular bisectors are concurrent at O. Since this point is unique, then O = O. Otherwise, the three perpendicular bisectors are equal, and hence the lines containing the sides of the triangle are parallel, since they have a common perpendicular, which is a contradiction. Proposition Given a circle γ and a point P outside γ, then there is two tangent lines to γ through P. Proof. Given a circle γ with centre O and a point P outside γ. We want to find two points Q and R on γ such that the line P Q is tangent to γ, and the line P R is tangent to γ. Let M be the midpoint of the segment P O. Consider the circle δ with centre M and radius MP. Then P lies outside the circle γ, and the point O lies inside the circle γ. Then by circular continuity principle, γ and delta intersects at two points, say Q and R. See the figure. Now, P QO and P RO are right angles by previous proposition. Then both lines are tangent to the circle γ. Let γ and δ be any two circles. Then only one of the followings occur: i. γ δ =, ii. the two circles tangent to each other, iii. the two circles intersect at two points, iv. or γ = δ

137 5.3. SPHERICAL GEOMETRY; AXIOMATIC APPROACH 137

CHAPTER 5 INTRODUCTION TO EUCLID S GEOMETRY. 5.1 Introduction

CHAPTER 5 INTRODUCTION TO EUCLID S GEOMETRY. 5.1 Introduction 78 MATHEMATICS INTRODUCTION TO EUCLID S GEOMETRY CHAPTER 5 5.1 Introduction The word geometry comes form the Greek words geo, meaning the earth, and metrein, meaning to measure. Geometry appears to have

More information

Lecture 1: Axioms and Models

Lecture 1: Axioms and Models Lecture 1: Axioms and Models 1.1 Geometry Although the study of geometry dates back at least to the early Babylonian and Egyptian societies, our modern systematic approach to the subject originates in

More information

Class IX Chapter 5 Introduction to Euclid's Geometry Maths

Class IX Chapter 5 Introduction to Euclid's Geometry Maths Class IX Chapter 5 Introduction to Euclid's Geometry Maths Exercise 5.1 Question 1: Which of the following statements are true and which are false? Give reasons for your answers. (i) Only one line can

More information

Contact. Emina. Office: East Hall 1825 Phone:

Contact. Emina.   Office: East Hall 1825 Phone: to Contact Emina Email: eminaa@umich.edu Office: East Hall 1825 Phone: 734 647 5518 About me Born in Bosnia: Real home Utah Family Your turn Please fill out the questionnaire Back to business Class website

More information

Greece. Chapter 5: Euclid of Alexandria

Greece. Chapter 5: Euclid of Alexandria Greece Chapter 5: Euclid of Alexandria The Library at Alexandria What do we know about it? Well, a little history Alexander the Great In about 352 BC, the Macedonian King Philip II began to unify the numerous

More information

Euclidean Geometry. The Elements of Mathematics

Euclidean Geometry. The Elements of Mathematics Euclidean Geometry The Elements of Mathematics Euclid, We Hardly Knew Ye Born around 300 BCE in Alexandria, Egypt We really know almost nothing else about his personal life Taught students in mathematics

More information

Exercise 5.1: Introduction To Euclid s Geometry

Exercise 5.1: Introduction To Euclid s Geometry Exercise 5.1: Introduction To Euclid s Geometry Email: info@mywayteaching.com Q1. Which of the following statements are true and which are false? Give reasons for your answers. (i)only one line can pass

More information

CMA Geometry Unit 1 Introduction Week 2 Notes

CMA Geometry Unit 1 Introduction Week 2 Notes CMA Geometry Unit 1 Introduction Week 2 Notes Assignment: 9. Defined Terms: Definitions betweenness of points collinear points coplanar points space bisector of a segment length of a segment line segment

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2005-02-16) Logic Rules (Greenberg): Logic Rule 1 Allowable justifications.

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2009-03-26) Logic Rule 0 No unstated assumptions may be used in a proof.

More information

Logic, Proof, Axiom Systems

Logic, Proof, Axiom Systems Logic, Proof, Axiom Systems MA 341 Topics in Geometry Lecture 03 29-Aug-2011 MA 341 001 2 Rules of Reasoning A tautology is a sentence which is true no matter what the truth value of its constituent parts.

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Undefined Terms: Point, Line, Incident, Between, Congruent. Incidence Axioms:

More information

3.C. Further comments on axioms for geometry

3.C. Further comments on axioms for geometry 3.C. Further comments on axioms for geometry One important feature of the Elements is that it develops geometry from a very short list of assumptions. Although axiom systems like Hilbert s (or G. D. Birkhoff

More information

October 16, Geometry, the Common Core, and Proof. John T. Baldwin, Andreas Mueller. The motivating problem. Euclidean Axioms and Diagrams

October 16, Geometry, the Common Core, and Proof. John T. Baldwin, Andreas Mueller. The motivating problem. Euclidean Axioms and Diagrams October 16, 2012 Outline 1 2 3 4 5 Agenda 1 G-C0-1 Context. 2 Activity: Divide a line into n pieces -with string; via construction 3 Reflection activity (geometry/ proof/definition/ common core) 4 mini-lecture

More information

HIGHER GEOMETRY. 1. Notation. Below is some notation I will use. KEN RICHARDSON

HIGHER GEOMETRY. 1. Notation. Below is some notation I will use. KEN RICHARDSON HIGHER GEOMETRY KEN RICHARDSON Contents. Notation. What is rigorous math? 3. Introduction to Euclidean plane geometry 3 4. Facts about lines, angles, triangles 6 5. Interlude: logic and proofs 9 6. Quadrilaterals

More information

Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitu

Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitu Chapter 3 Greeks Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitude of Mediterranean islands. The Greeks

More information

Lesson 14: An Axiom System for Geometry

Lesson 14: An Axiom System for Geometry 219 Lesson 14: n xiom System for Geometry We are now ready to present an axiomatic development of geometry. This means that we will list a set of axioms for geometry. These axioms will be simple fundamental

More information

Solutions to Exercises in Chapter 1

Solutions to Exercises in Chapter 1 Solutions to Exercises in hapter 1 1.6.1 heck that the formula 1 a c b d works for rectangles but not for 4 parallelograms. b a c a d d b c FIGURE S1.1: Exercise 1.6.1. rectangle and a parallelogram For

More information

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for Name Period GEOMETRY Chapter One BASICS OF GEOMETRY Geometry, like much of mathematics and science, developed when people began recognizing and describing patterns. In this course, you will study many

More information

Honors 213 / Math 300. Second Hour Exam. Name

Honors 213 / Math 300. Second Hour Exam. Name Honors 213 / Math 300 Second Hour Exam Name Monday, March 6, 2006 95 points (will be adjusted to 100 pts in the gradebook) Page 1 I. Some definitions (5 points each). Give formal definitions of the following:

More information

Math 1230, Notes 2. Aug. 28, Math 1230, Notes 2 Aug. 28, / 17

Math 1230, Notes 2. Aug. 28, Math 1230, Notes 2 Aug. 28, / 17 Math 1230, Notes 2 Aug. 28, 2014 Math 1230, Notes 2 Aug. 28, 2014 1 / 17 This fills in some material between pages 10 and 11 of notes 1. We first discuss the relation between geometry and the quadratic

More information

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118).

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118). Chapter 3 Betweenness (ordering) Point B is between point A and point C is a fundamental, undefined concept. It is abbreviated A B C. A system satisfying the incidence and betweenness axioms is an ordered

More information

MAT 3271: Selected solutions to problem set 7

MAT 3271: Selected solutions to problem set 7 MT 3271: Selected solutions to problem set 7 Chapter 3, Exercises: 16. Consider the Real ffine Plane (that is what the text means by the usual Euclidean model ), which is a model of incidence geometry.

More information

MATHEMATICS (IX-X) (CODE NO. 041) Session

MATHEMATICS (IX-X) (CODE NO. 041) Session MATHEMATICS (IX-X) (CODE NO. 041) Session 2018-19 The Syllabus in the subject of Mathematics has undergone changes from time to time in accordance with growth of the subject and emerging needs of the society.

More information

MEI Conference Squaring the Circle and Other Shapes

MEI Conference Squaring the Circle and Other Shapes MEI Conference 2017 Squaring the Circle and Other Shapes Kevin Lord kevin.lord@mei.org.uk Can you prove that the area of the square and the rectangle are equal? Use the triangle HPN to show that area of

More information

Neutral Geometry. October 25, c 2009 Charles Delman

Neutral Geometry. October 25, c 2009 Charles Delman Neutral Geometry October 25, 2009 c 2009 Charles Delman Taking Stock: where we have been; where we are going Set Theory & Logic Terms of Geometry: points, lines, incidence, betweenness, congruence. Incidence

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1 Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Foundations of Neutral Geometry

Foundations of Neutral Geometry C H A P T E R 12 Foundations of Neutral Geometry The play is independent of the pages on which it is printed, and pure geometries are independent of lecture rooms, or of any other detail of the physical

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1) Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

EUCLID S AXIOMS A-1 A-2 A-3 A-4 A-5 CN-1 CN-2 CN-3 CN-4 CN-5

EUCLID S AXIOMS A-1 A-2 A-3 A-4 A-5 CN-1 CN-2 CN-3 CN-4 CN-5 EUCLID S AXIOMS In addition to the great practical value of Euclidean Geometry, the ancient Greeks also found great aesthetic value in the study of geometry. Much as children assemble a few kinds blocks

More information

4 Arithmetic of Segments Hilbert s Road from Geometry

4 Arithmetic of Segments Hilbert s Road from Geometry 4 Arithmetic of Segments Hilbert s Road from Geometry to Algebra In this section, we explain Hilbert s procedure to construct an arithmetic of segments, also called Streckenrechnung. Hilbert constructs

More information

Geometry I (CM122A, 5CCM122B, 4CCM122A)

Geometry I (CM122A, 5CCM122B, 4CCM122A) Geometry I (CM122A, 5CCM122B, 4CCM122A) Lecturer: Giuseppe Tinaglia Office: S5.31 Office Hours: Wed 1-3 or by appointment. E-mail: giuseppe.tinaglia@kcl.ac.uk Course webpage: http://www.mth.kcl.ac.uk/

More information

MATHEMATICS AND ITS HISTORY. Jimmie Lawson

MATHEMATICS AND ITS HISTORY. Jimmie Lawson MATHEMATICS AND ITS HISTORY Jimmie Lawson Spring, 2005 Chapter 1 Mathematics of Ancient Egypt 1.1 History Egyptian mathematics dates back at least almost 4000 years ago. The main sources about mathematics

More information

Activity Sheet 1: Constructions

Activity Sheet 1: Constructions Name ctivity Sheet 1: Constructions Date 1. Constructing a line segment congruent to a given line segment: Given a line segment B, B a. Use a straightedge to draw a line, choose a point on the line, and

More information

The analysis method for construction problems in the dynamic geometry

The analysis method for construction problems in the dynamic geometry The analysis method for construction problems in the dynamic geometry Hee-chan Lew Korea National University of Education SEMEO-RECSAM University of Tsukuba of Tsukuba Joint Seminar Feb. 15, 2016, Tokyo

More information

Exercise 2.1. Identify the error or errors in the proof that all triangles are isosceles.

Exercise 2.1. Identify the error or errors in the proof that all triangles are isosceles. Exercises for Chapter Two He is unworthy of the name of man who is ignorant of the fact that the diagonal of a square is incommensurable with its side. Plato (429 347 B.C.) Exercise 2.1. Identify the error

More information

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1 Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1 ALGEBRA I A.1 Mathematical process standards. The student

More information

16 circles. what goes around...

16 circles. what goes around... 16 circles. what goes around... 2 lesson 16 this is the first of two lessons dealing with circles. this lesson gives some basic definitions and some elementary theorems, the most important of which is

More information

Exercises for Unit V (Introduction to non Euclidean geometry)

Exercises for Unit V (Introduction to non Euclidean geometry) Exercises for Unit V (Introduction to non Euclidean geometry) V.1 : Facts from spherical geometry Ryan : pp. 84 123 [ Note : Hints for the first two exercises are given in math133f07update08.pdf. ] 1.

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005

Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005 Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005 The underlying assumption for all problems is that all points, lines, etc., are taken within the Poincaré plane (or Poincaré

More information

THE FIVE GROUPS OF AXIOMS.

THE FIVE GROUPS OF AXIOMS. 2 THE FIVE GROUPS OF AXIOMS. 1. THE ELEMENTS OF GEOMETRY AND THE FIVE GROUPS OF AXIOMS. Let us consider three distinct systems of things. The things composing the first system, we will call points and

More information

3. Euclid and the Elements

3. Euclid and the Elements 3. Euclid and the Elements (Burton, 4.1 4.3) Alexander the Great s political empire fragmented shortly after his death in 323 B. C. E., but the cultural effects of his conquests were irreversible and defined

More information

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words.

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words. Standard 1: Algebra and Functions Students graph linear inequalities in two variables and quadratics. They model data with linear equations. IM2.1.1 Graph a linear inequality in two variables. IM2.1.2

More information

Chapter 12: Ruler and compass constructions

Chapter 12: Ruler and compass constructions Chapter 12: Ruler and compass constructions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Spring 2014 M. Macauley (Clemson) Chapter

More information

Euclid and The Elements

Euclid and The Elements Euclid and The Elements C R Pranesachar When a crime is committed and the culprit responsible for the crime is nabbed, the job of the investigators is not over. To convince the judge, they have to prove

More information

REVISED vide circular No.63 on

REVISED vide circular No.63 on Circular no. 63 COURSE STRUCTURE (FIRST TERM) CLASS -IX First Term Marks: 90 REVISED vide circular No.63 on 22.09.2015 UNIT I: NUMBER SYSTEMS 1. REAL NUMBERS (18 Periods) 1. Review of representation of

More information

CLASS IX : CHAPTER - 1 NUMBER SYSTEM

CLASS IX : CHAPTER - 1 NUMBER SYSTEM MCQ WORKSHEET-I CLASS IX : CHAPTER - 1 NUMBER SYSTEM 1. Rational number 3 40 is equal to: (a) 0.75 (b) 0.1 (c) 0.01 (d) 0.075. A rational number between 3 and 4 is: (a) 3 (b) 4 3 (c) 7 (d) 7 4 3. A rational

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations Strand One: Number Sense and Operations Concept 1: Number Sense Understand and apply numbers, ways of representing numbers, the relationships among numbers, and different number systems. Justify with examples

More information

Tin Ka Ping Secondary School F.2 Mathematics Teaching Syllabus

Tin Ka Ping Secondary School F.2 Mathematics Teaching Syllabus Tin Ka Ping Secondary School 05-06 F. Mathematics Syllabus Chapter Rate and Time Guide. Rates. s A. Basic Concept of s B. s of Three Quantities Learn the concept of a rate. Learn the concepts of a ratio

More information

THE GEOMETRY OF THALES

THE GEOMETRY OF THALES THE GEOMETRY OF THALES BY PERCY J. HARDING. In this paper there will, of course, be found no new facts ; but merely a review of well-known historical statements and an attempt to connect them. It has often

More information

Foundations of Basic Geometry

Foundations of Basic Geometry GENERAL I ARTICLE Foundations of Basic Geometry Jasbir S Chahal Jasbir S Chahal is Professor of Mathematics at Brigham Young University, Provo, Utah, USA. His research interest is in number theory. The

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

COURSE STRUCTURE CLASS IX Maths

COURSE STRUCTURE CLASS IX Maths COURSE STRUCTURE CLASS IX Maths Units Unit Name Marks I NUMBER SYSTEMS 08 II ALGEBRA 17 III COORDINATE GEOMETRY 04 IV GEOMETRY 28 V MENSURATION 13 VI STATISTICS & PROBABILITY 10 Total 80 UNIT I: NUMBER

More information

Jennifer Duong Daniel Szara October 9, 2009

Jennifer Duong Daniel Szara October 9, 2009 Jennifer Duong Daniel Szara October 9, 2009 By around 2000 BC, Geometry was developed further by the Babylonians who conquered the Sumerians. By around 2000 BC, Rational and Irrational numbers were used

More information

Euclidean Geometry Proofs

Euclidean Geometry Proofs Euclidean Geometry Proofs History Thales (600 BC) First to turn geometry into a logical discipline. Described as the first Greek philosopher and the father of geometry as a deductive study. Relied on rational

More information

3. MATHEMATICS (CODE NO. 041) The Syllabus in the subject of Mathematics has undergone changes from time to time in accordance with growth of the subject and emerging needs of the society. The present

More information

MA 460 Supplement: Analytic geometry

MA 460 Supplement: Analytic geometry M 460 Supplement: nalytic geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus Mathematics Class 9 Syllabus Course Structure First Term Units Unit Marks I Number System 17 II Algebra 25 III Geometry 37 IV Co-ordinate Geometry 6 V Mensuration 5 Total 90 Second Term Units Unit Marks

More information

For math conventions used on the GRE, refer to this link:

For math conventions used on the GRE, refer to this link: GRE Review ISU Student Success Center Quantitative Workshop One Quantitative Section: Overview Your test will include either two or three 35-minute quantitative sections. There will be 20 questions in

More information

Section 2-1. Chapter 2. Make Conjectures. Example 1. Reasoning and Proof. Inductive Reasoning and Conjecture

Section 2-1. Chapter 2. Make Conjectures. Example 1. Reasoning and Proof. Inductive Reasoning and Conjecture Chapter 2 Reasoning and Proof Section 2-1 Inductive Reasoning and Conjecture Make Conjectures Inductive reasoning - reasoning that uses a number of specific examples to arrive at a conclusion Conjecture

More information

Math Project 1 We haven t always been a world where proof based mathematics existed and in fact, the

Math Project 1 We haven t always been a world where proof based mathematics existed and in fact, the 336 Math Project 1 We haven t always been a world where proof based mathematics existed and in fact, the 1 use of proofs emerged in ancient Greek mathematics sometime around 300 BC. It was essentially

More information

1) If AB is congruent to AC, then B is congruent to C.

1) If AB is congruent to AC, then B is congruent to C. 233 1) If is congruent to, then is congruent to. Proof of 1). 1) ssume ". (We must prove that ".) 2) ", because the identity is a rigid motion that moves to. 3) Therefore, Δ " Δ by the xiom. (The correspondence

More information

CHAPTER 1 NUMBER SYSTEMS. 1.1 Introduction

CHAPTER 1 NUMBER SYSTEMS. 1.1 Introduction N UMBER S YSTEMS NUMBER SYSTEMS CHAPTER. Introduction In your earlier classes, you have learnt about the number line and how to represent various types of numbers on it (see Fig..). Fig.. : The number

More information

p, p or its negation is true, and the other false

p, p or its negation is true, and the other false Logic and Proof In logic (and mathematics) one often has to prove the truthness of a statement made. A proposition is a (declarative) sentence that is either true or false. Example: An odd number is prime.

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Quiz #1. Wednesday, 13 September. [10 minutes] 1. Suppose you are given a line (segment) AB. Using

More information

STAAR STANDARDS ALGEBRA I ALGEBRA II GEOMETRY

STAAR STANDARDS ALGEBRA I ALGEBRA II GEOMETRY STANDARDS ALGEBRA I ALGEBRA II GEOMETRY STANDARDS ALGEBRA I TEKS Snapshot Algebra I (New TEKS 2015-16) Mathematical Process Standards A.1 Mathematical process standards. The student uses mathematical processes

More information

Common Core Georgia Performance Standards Mathematics Grades Adopted Reason quantitatively and use units to solve problems.

Common Core Georgia Performance Standards Mathematics Grades Adopted Reason quantitatively and use units to solve problems. , VersaTiles (R), High School Level, Book 2, VersaTiles (R), High School Level, Book 3,, VersaTiles (R), High School Level, Book 5 Grades: 9, 10, 11, 12 State: Georgia Common Core Standards Subject: Mathematics

More information

JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET SCHOOL YEAR. Geometry

JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET SCHOOL YEAR. Geometry JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET 2015-2016 SCHOOL YEAR Geometry STUDENT NAME: THE PARTS BELOW WILL BE COMPLETED ON THE FIRST DAY OF SCHOOL: DUE DATE: MATH TEACHER: PERIOD: Algebra

More information

Geometry. Commensurate and incommensurate segments. The Euclidean algorithm.

Geometry. Commensurate and incommensurate segments. The Euclidean algorithm. September 24, 2017 Geometry. Commensurate and incommensurate segments. The Euclidean algorithm. Definition. Two segments, and, are commensurate if there exists a third segment,, such that it is contained

More information

Axiomatic Systems for Geometry

Axiomatic Systems for Geometry Axiomatic Systems for Geometry George Francis 15 January 2002 1 Basic Concepts An axiomatic system contains a set of primitives and axioms. The primitives are object names, but the objects they name are

More information

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT.

1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT. 1 Line n intersects lines l and m, forming the angles shown in the diagram below. 4 In the diagram below, MATH is a rhombus with diagonals AH and MT. Which value of x would prove l m? 1) 2.5 2) 4.5 3)

More information

Pappus in a Modern Dynamic Geometry: An Honest Way for Deductive Proof Hee-chan Lew Korea National University of Education

Pappus in a Modern Dynamic Geometry: An Honest Way for Deductive Proof Hee-chan Lew Korea National University of Education Pappus in a Modern Dynamic Geometry: An Honest Way for Deductive Proof Hee-chan Lew Korea National University of Education hclew@knue.ac.kr Abstract. This study shows that dynamic geometry using the "analysis"

More information

CME Project, Geometry 2009 Correlated to: Kentucky Core Content for Mathematics Assessment 4.1 (High School, Grade 11)

CME Project, Geometry 2009 Correlated to: Kentucky Core Content for Mathematics Assessment 4.1 (High School, Grade 11) Number Properties and Operations High school students should enter high school with a strong background in rational numbers and numerical operations and expand this to real numbers. This becomes the foundation

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

MATH10040: Chapter 0 Mathematics, Logic and Reasoning

MATH10040: Chapter 0 Mathematics, Logic and Reasoning MATH10040: Chapter 0 Mathematics, Logic and Reasoning 1. What is Mathematics? There is no definitive answer to this question. 1 Indeed, the answer given by a 21st-century mathematician would differ greatly

More information

Mathematics Std IX and X

Mathematics Std IX and X 5 Mathematics Std IX and X Introduction Mathematics is the language of all sciences. Mathematics as a subject at the secondary level has great importance in a progressive country like India as it develops

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

The Common Core Georgia Performance Standards (CCGPS) for Grades K-12 Mathematics may be accessed on-line at:

The Common Core Georgia Performance Standards (CCGPS) for Grades K-12 Mathematics may be accessed on-line at: FORMAT FOR CORRELATION TO THE COMMON CORE GEORGIA PERFORMANCE STANDARDS (CCGPS) Subject Area: Mathematics Textbook Title: State-Funded Course: 27.09720 Analytic Geometry,, I Publisher: Agile Mind Standard

More information

1/22/2010. Favorite? Topics in geometry. Meeting place. Reconsider the meeting place. Obvious fact? How far are they from each other?

1/22/2010. Favorite? Topics in geometry. Meeting place. Reconsider the meeting place. Obvious fact? How far are they from each other? Topics in geometry Dive straight into it! Favorite? Have you every taught geometry? When? How often? Do you enjoy it? What is geometry to you? On a sheet of paper please list your 3 favorite facts from

More information

Numbers, proof and all that jazz.

Numbers, proof and all that jazz. CHAPTER 1 Numbers, proof and all that jazz. There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A law will remain a law,

More information

MA 460 Supplement on Analytic Geometry

MA 460 Supplement on Analytic Geometry M 460 Supplement on nalytic Geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

Prentice Hall PreCalculus, 3rd Edition 2007, (Blitzer)

Prentice Hall PreCalculus, 3rd Edition 2007, (Blitzer) Prentice Hall PreCalculus, 3rd Edition 2007, (Blitzer) C O R R E L A T E D T O Number Properties and Operations High school students should enter high school with a strong background in rational numbers

More information

Prentice Hall Intermediate Algebra, 5th Edition 2009 (Martin-Gay)

Prentice Hall Intermediate Algebra, 5th Edition 2009 (Martin-Gay) Prentice Hall Intermediate Algebra, 5th Edition 2009 (Martin-Gay) C O R R E L A T E D T O Number Properties and Operations High school students should enter high school with a strong background in rational

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: Notice School Name: Print your name and the

More information

Euclid Geometry And Non-Euclid Geometry. Have you ever asked yourself why is it that if you walk to a specific place from

Euclid Geometry And Non-Euclid Geometry. Have you ever asked yourself why is it that if you walk to a specific place from Hu1 Haotian Hu Dr. Boman Math 475W 9 November 2016 Euclid Geometry And Non-Euclid Geometry Have you ever asked yourself why is it that if you walk to a specific place from somewhere, you will always find

More information

Geometry. Thales (intercept) theorem. Similarity and related concepts. Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί)

Geometry. Thales (intercept) theorem. Similarity and related concepts. Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί) September 21, 2014 Geometry Thales (intercept) theorem Similarity and related concepts Megiston topos: hapanta gar chorei (Μέγιστον τόπος άπαντα γαρ χωρεί) Space is the greatest thing, as it contains all

More information

MTH 250 Graded Assignment 4

MTH 250 Graded Assignment 4 MTH 250 Graded Assignment 4 Measurement Material from Kay, sections 2.4, 3.2, 2.5, 2.6 Q1: Suppose that in a certain metric geometry* satisfying axioms D1 through D3 [Kay, p78], points A, B, C and D are

More information

Hyperbolic Transformations

Hyperbolic Transformations C H A P T E R 17 Hyperbolic Transformations Though the text of your article on Crystal Symmetry and Its Generalizations is much too learned for a simple, selfmade pattern man like me, some of the text-illustrations

More information

Hon 213. Third Hour Exam. Name

Hon 213. Third Hour Exam. Name Hon 213 Third Hour Exam Name Friday, April 27, 2007 1. (5 pts.) Some definitions and statements of theorems (5 pts. each) a, What is a Lambert quadrilateral? b. State the Hilbert Parallel Postulate (being

More information

Chapter 2. Reasoning and Proof

Chapter 2. Reasoning and Proof Chapter 2 Reasoning and Proof 2.1 Use Inductive Reasoning Objective: Describe patterns and use deductive reasoning. Essential Question: How do you use inductive reasoning in mathematics? Common Core: CC.9-12.G.CO.9

More information

Euclid s Elements Part II

Euclid s Elements Part II Euclid s Elements Part II The discovery of incommensurable magnitudes steered the ancient Greeks away from the study of number and towards the development of geometry. s a result, geometry was pushed in

More information

Axiomatic Systems and Incidence Geometry. Summer 2009 MthEd/Math 362 Chapter 2 1

Axiomatic Systems and Incidence Geometry. Summer 2009 MthEd/Math 362 Chapter 2 1 Axiomatic Systems and Incidence Geometry Summer 2009 MthEd/Math 362 Chapter 2 1 Axiomatic System An axiomatic system, or axiom system, includes: Undefined terms Such terms are necessary to avoid circularity:

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction A typical Modern Geometry course will focus on some variation of a set of axioms for Euclidean geometry due to Hilbert. At the end of such a course, non-euclidean geometries (always

More information

Grade 6 Math Circles. Ancient Mathematics

Grade 6 Math Circles. Ancient Mathematics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles October 17/18, 2017 Ancient Mathematics Centre for Education in Mathematics and Computing Have you ever wondered where

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

35 Chapter CHAPTER 4: Mathematical Proof

35 Chapter CHAPTER 4: Mathematical Proof 35 Chapter 4 35 CHAPTER 4: Mathematical Proof Faith is different from proof; the one is human, the other is a gift of God. Justus ex fide vivit. It is this faith that God Himself puts into the heart. 21

More information

CBSE OSWAAL BOOKS LEARNING MADE SIMPLE. Published by : 1/11, Sahitya Kunj, M.G. Road, Agra , UP (India) Ph.: ,

CBSE OSWAAL BOOKS LEARNING MADE SIMPLE. Published by : 1/11, Sahitya Kunj, M.G. Road, Agra , UP (India) Ph.: , OSWAAL BOOKS LEARNING MADE SIMPLE CBSE SOLVED PAPER 2018 MATHEMATICS CLASS 9 Published by : OSWAAL BOOKS 1/11, Sahitya Kunj, M.G. Road, Agra - 282002, UP (India) Ph.: 0562 2857671, 2527781 email: contact@oswaalbooks.com

More information

Math Number 842 Professor R. Roybal MATH History of Mathematics 24th October, Project 1 - Proofs

Math Number 842 Professor R. Roybal MATH History of Mathematics 24th October, Project 1 - Proofs Math Number 842 Professor R. Roybal MATH 331 - History of Mathematics 24th October, 2017 Project 1 - Proofs Mathematical proofs are an important concept that was integral to the development of modern mathematics.

More information