Quark-Parton Phase Transitions and the Entropy Problem in Quantum Mechanics

Size: px
Start display at page:

Download "Quark-Parton Phase Transitions and the Entropy Problem in Quantum Mechanics"

Transcription

1 Quark-Paron Phase Transiions and he Enropy Problem in Quanum Mechanics Y. S. Kim Deparmen of Physics, Universiy of Maryland, College Park, Maryland 20742, U.S.A. Absrac Since Feynman proposed his paron model in 1969, one of he mos pressing problems in high-energy physics has been wheher parons are quarks. I is shown ha he quark model and he paron model are wo differen manifesaions of one covarian eniy. The naure of ransiion from he confined quarks o plasma-like parons is sudied in erms of he enropy and emperaure coming from he ime-separaion variable. According o Einsein, he ime-separaion variable exiss wherever here is a spaial separaion, bu i is no observed in he presen form of quanum mechanics. The failure o observe his variable causes an increase in enropy. Typese using REVTEX elecronic mail: yskim@physics.umd.edu 1

2 I. INTRODUCTION In 1969, Feynman proposed his paron model for hadrons moving wih speed close o ha of ligh [1]. He observed ha he hadron appears as a collecion of infinie number of parons. Since he parons appear o have properies quie differen from hose of he quarks, one of he mos pressing pules in high-energy physics has been wheher he parons are quarks, or wheher he quark model and he paron model are wo differen manifesaions of one covarian formalism. In 1970, a he April meeing of he American Physical Sociey held in Washingon, DC U.S.A.), Feynman gave an invied alk on a model of hadrons. His alk was published in a paper by Feynman, Kislinger and Ravndal in 1971 [2]. There, he auhors aemped o consruc a covarian model for hadrons consising of quarks joined ogeher by an oscillaor force. They indeed formulaed a Loren-invarian oscillaor equaion. They also worked ou he degeneracies of he oscillaor saes which are consisen wih observed mesonic and baryonic mass specra. However, heir wave funcions are no normaliable in he space-ime coordinae sysem. They never considered he quesion of covariance. In his 1972 book on saisical mechanics [3], Feynman says When we solve a quanummechanical problem, wha we really do is divide he universe ino wo pars - he sysem in which we are ineresed and he res of he universe. We hen usually ac as if he sysem in which we are ineresed comprised he enire universe. To moivae he use of densiy marices, le us see wha happens when we include he par of he universe ouside he sysem. Feynman s res of he universe has been sudied in deail in erms of wo coupled oscillaors [4]. In his repor, we combine hese hree componens of Feynman s research effors o show ha he quark and paron models are indeed wo differen manifesaions of he same covarian eniy. In order o achieve his purpose, we fix up firs he mahemaical deficiencies of he paper of Feynman e al. [2]. The idea is o consruc a harmonic oscillaor wave funcion which can be Loren-boosed. We can firs see wheher he wave funcion is applicable o he quark model when he hadron is slow, and hen see wheher he same wave funcion describes he paron model when he hadron is boosed o an infinie-momenum frame. The 1971 paper by Feynman e al. [2] conains very serious mahemaical flaws, bu hey have been all cleaned up wihin he framework of Wigner s lile groups which dicae he inernal space-ime symmeries relaivisic paricles [5,6]. This covarian formulaion solves he covariance problem. However, since we live in he hree-dimensional world, i is possible ha we miss somehing in he four-dimensional world. The ime-separaion variable beween he quarks is a case in poin. In non-relaivisic quanum mechanics, he Bohr radius is spacial separaion beween he quarks or proon and elecron). According o Einsein, here mus be a ime separaion beween he quarks, since oherwise he world will no be covarian. Since we are no dealing wih his ime-separaion variable in he presen form of quanum mechanics, he failure o measure i leads o an increase in enropy [3]. In his repor, we show ha his enropy allows us o define he phase ransiion beween he confined phase of he quark model and he plasma phase of he paron model. In Sec. II, we inroduce he covarian harmonic oscillaor formalism wih normaliable wave funcions which can be Loren boosed. In Sec. III, we use he oscillaor wave func- 2

3 ion o solve he quark-paron pule. In Sec. IV, we deal wih he problems arising from measuring of four-dimensional physics in he hree-dimensional world. The enropy plays a major role. II. COVARIANT HARMONIC OSCILLATORS Le us consider a hadron consising of wo quarks. Then here is a Bohr-like radius measuring he space-like separaion beween he quarks. There is also a ime-like separaion beween he quarks, and his variable becomes mixed wih he longiudinal spaial separaion as he hadron moves wih a relaivisic speed. While here are no quanum exciaions along he ime-like direcion, here is he ime-energy uncerainy relaion which allows quanum ransiions. I is possible o accommodae hese aspecs wihin he framework of he presen form of quanum mechanics. The uncerainy relaion beween he ime and energy variables is he c-number relaion [7], which does no allow exciaions along he ime-like coordinae, as illusraed in Fig. 1 Dirac: Uncerainy wihou Exciaions Heisenberg: Uncerainy wih Exciaions FIG. 1. Presen form of quanum mechanics. There are exciaions along he space-like dimensions, bu here are no exciaions along he ime-like direcion. However, here sill is a ime-energy uncerainy relaion. We call his Dirac s c-number ime-energy uncerainy relaion. I is very imporan o noe ha his space-ime asymmery is quie consisen wih he concep of covariance For a hadron consising of wo quarks, we can consider heir space-ime posiions x a and x b, and use he variables X =x a + x b )/2, x =x a x b )/2 2. 1) The four-vecor X specifies where he hadron is locaed in space and ime, while he variable x measures he space-ime separaion beween he quarks. Since he hree-dimensional oscillaor differenial equaion is separable in boh spherical and Caresian coordinae sysems, he wave funcion consiss of Hermie polynomials of 3

4 x, y, and. If he Loren boos is made along he direcion, he x and y coordinaes are no affeced, and can be emporarily dropped from he wave funcion. Along he space-like longiudinal direcion, here are exciaions. On he oher hand, along he ime-like direcion, here is an uncerainy relaion even hough here are no exciaions. The covarian harmonic oscillaor formalism accommodaes his space-ime asymmery [6]. However, since we are ineresed here only in Loren-boos properies of he wave funcion, we resric ourselves o he ground-sae wave funcion. The wave funcion hen can be wrien as ) 1 1/2 { ψ, ) = exp )}, 2) π 2 which accommodaes he uncerainy relaions along he longiudinal and ime-like direcions. The expression given in Eq.2) is no Loren-invarian. I is covarian. This wave funcion describes he presen form of quanum mechanic if he ime-separaion variable is facored ou, inegraed ou, or ignored. However, he ime-separaion variable is absoluely needed when we consider Loren covariance. The quesion is wheher he above wave funcion can describe he paron model when i is boosed o an infinie-momenum limi. I is convenien o use he ligh-cone variables o describe Loren booss. The ligh-cone coordinae variables are u = + )/ 2, v = )/ 2. 3) In erms of hese variables, he Loren boos along he direcion, akes he simple form ) = ) ) cosh η sinh η, 4) sinh η cosh η u = e η u, v = e η v, 5) where η is he boos parameer and is anh 1 v/c). Indeed, he u variable becomes expanded while he v variable becomes conraced. This is he squeee mechanism illusraed discussed exensively in he lieraure [8,9]. This squeee ransformaion is also illusraed in Fig. 2. Thus, one way o combine quanum mechanics wih relaiviy is o incorporae Fig. 1 ino Fig. 2, and produce he ellipic deformaion illusraed in Fig. 3. If he sysem is boosed, he wave funcion becomes ) 1 1/2 { ψ η, ) = exp 1 e 2η u 2 + e 2η v 2)}. 6) π 2 We noe here ha he ransiion from Eq.2) o Eq.6) is a squeee ransformaion. The wave funcion of Eq.2) is disribued wihin a circular region in he uv plane, and hus in he plane. On he oher hand, he wave funcion of Eq.6) is disribued in an ellipic region. This ellipse is a squeeed circle wih he same area as he circle, as is illusraed in Fig. 3. 4

5 v u A=4u v A=4uv =2 2 2 ) FIG. 2. Furher conens of Loren booss. In he ligh-cone coordinae sysem, he Loren boos akes he form of he lower par of his figure. In erms of he longiudinal and ime-like variables, he ransformaion is illusraed in he upper porion of his figure. III. FEYNMAN S PARTON PICTURE In 1969 [1] Feynman made he following sysemaic observaions on hadrons moving wih speed close o ha of ligh. a). The picure is valid only for hadrons moving wih velociy close o ha of ligh. b). The ineracion ime beween he quarks becomes dilaed, and parons behave as free independen paricles. c). The momenum disribuion of parons becomes widespread as he hadron moves very fas. FIG. 3. Effec of he Loren boos on he space-ime wave funcion. The circular space-ime disribuion a he res frame becomes Loren-squeeed o become an ellipic disribuion. 5

6 d). The number of parons seems o be infinie and much larger han ha of quarks. These observaions consiue Feynman s paron picure. Because he hadron is believed o be a bound sae of wo or hree quarks, each of he above phenomena appears as a paradox, paricularly b) and c) ogeher. If he quarks have he four-momena p a and p b, we can consruc wo independen fourmomenum variables [2] P = p a + p b, q = 2p a p b ). 7) The four-momenum P is he oal four-momenum and is hus he hadronic fourmomenum. q measures he four-momenum separaion beween he quarks. QUARKS PARTONS β=0 BOOST β=0.8 Time dilaion TIME-ENERGY UNCERTAINTY SPACE-TIME DEFORMATION q o β=0 BOOST β=0.8 Weaker spring consan Quarks become almos) free q o q q Energy disribuion MOMENTUM-ENERGY DEFORMATION Paron momenum disribuion becomes wider FIG. 4. Loren-squeeed space-ime and momenum-energy wave funcions. As he hadron s speed approaches ha of ligh, boh wave funcions become concenraed along heir respecive posiive ligh-cone axes. These ligh-cone concenraions lead o Feynman s paron picure. Since we are using here he harmonic oscillaor, he mahemaical form of he above momenum-energy wave funcion is idenical o ha of he space-ime wave funcion, and is ransformaion properies are he same. The Loren squeee properies of hese wave funcions are also he same, as are indicaed in Fig. 4. When he hadron is a res wih η = 0, boh wave funcions behave like hose for he saic bound sae of quarks. As η increases, he wave funcions become coninuously squeeed unil hey become concenraed 6

7 along heir respecive posiive ligh-cone axes. Indeed, his figure provides he answer o he quark-paron pule [6]. The quesion hen is wheher he ellipic deformaions given in Fig. 4 produce any quaniaive resuls which can be compared wih wha we measure in laboraories. Indeed, according o Hussar s calculaion [10], he Loren-boosed oscillaor wave funcion produces a reasonably accurae paron disribuion, as indicaed in Fig. 5 x) Experimenal Harmonic Oscillaor FIG. 5. Paron disribuion. I is possible o calculae he paron disribuion from he Loren-boosed oscillaor wave funcion. This heoreical curve is compared wih he experimenal curve. IV. ENTROPY PROBLEMS The covarian harmonic oscillaor formalism presened in Sec. II produces he Loren squeee propery summaried in Fig. 4. This figure ells us ha he quark model and he paron model are wo differen manifesaions of one covarian formulaion. In his figure, he ime-separaion variable plays he essenial role. However, we are no able o deal wih his variable in he presen form of quanum mechanics. If here is a physical which we canno measure, he variable cerainly belongs o Feynman s res of he universe [3,4]. Then here is a well-defined procedure o deal wih his problem: consruc a densiy marix from he wave funcion and inegrae over he variable which we do no observe. In he presen case, he variable we do no observe is he imeseparaion variable. This process leads o an increase in enropy [11]. I is sraigh-forward o calculae his enropy [4], and he resul is S =2 { cosh 2 η)lncoshη) sinh 2 η) lnsinh η) }. 8) This form is idenical o he enropy caused by hermally excied harmonic oscillaors, if we wrie ) hω anh 2 η) =exp. 9) kt The enropy of Eq.8) akes he form [11,12] 7

8 S = [ hω/kt exp hω/kt ) 1 ln 1 exp )] hω. 10) kt LeusgobackoEq.9). Thevelociy) 2 is ploed agains he emperaure in Fig. 6. Is behavior makes a sudden change as he emperaure rises. If he hadronic velociy is low, he emperaure is relaively insensiive o he velociy, bu for high velociies, i is in he oher way around. We can use his behavior o ell he difference beween he confinemen phase of he quarks and he plasma phase of he parons. FIG. 6. The hadronic velociy versus he hadronic emperaure given in Eq.9). Here we used he uni sysem where hω/k = 1, and anh η = v/c. 8

9 REFERENCES [1] R. P. Feynman, in High Energy Collisions, Proceedings of he Third Inernaional Conference, Sony Brook, New York, edied by C. N. Yang e al. Gordon and Breach, New York, 1969). [2] R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3, ). [3] R. P. Feynman, Saisical Mechanics Benjamin, Reading, MA, 1972). [4]D.Han,Y.S.Kim,andM.E.No,Am.J.Phys.67, ). [5]E.P.Wigner,Ann.Mah.40, ). [6]Y.S.KimandM.E.No,Theory and Applicaions of he Poincaré GroupReidel, Dordrech, 1986). [7]P.A.M.Dirac,Proc.Roy.Soc.London)A114, 243 and ). [8]Y.S.KimandM.E.No,Phys.Rev.D8, ). [9]Y.S.KimandM.E.No,Phase Space Picure of Quanum Mechanics World Scienific, Singapore, 1991). [10] P. E. Hussar, Phys. Rev. D 23, ). [11] Y. S. Kim and E. P. Wigner, Phys. Le. A 147, ). [12] D. Han, Y. S. Kim, and M. E. No, Phys. Le. A 144, ). 9

Time separation as a hidden variable to the Copenhagen school of quantum mechanics

Time separation as a hidden variable to the Copenhagen school of quantum mechanics Time separaion as a hidden variable o he Copenhagen school of quanum mechanics Y. S. Kim and M. E. No 1 Cener for Fundamenal Physics, Universiy of Maryland, College Park, Maryland 074, U.S.A. Deparmen

More information

Einstein s Hydrogen Atom

Einstein s Hydrogen Atom Einsein s Hydrogen Aom Y. S. Kim Maryland Cener for Fundamenal Physics, Universiy of Maryland, College Park, Maryland 074, USA Email: yskim@umd.edu Absrac In 1905, Einsein formulaed his special relaiviy

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity The Maxwell Equaions, he Lorenz Field and he Elecromagneic Nanofield wih Regard o he Quesion of Relaiviy Daniele Sasso * Absrac We discuss he Elecromagneic Theory in some main respecs and specifically

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

The Paradox of Twins Described in a Three-dimensional Space-time Frame

The Paradox of Twins Described in a Three-dimensional Space-time Frame The Paradox of Twins Described in a Three-dimensional Space-ime Frame Tower Chen E_mail: chen@uguam.uog.edu Division of Mahemaical Sciences Universiy of Guam, USA Zeon Chen E_mail: zeon_chen@yahoo.com

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

A Special Hour with Relativity

A Special Hour with Relativity A Special Hour wih Relaiviy Kenneh Chu The Graduae Colloquium Deparmen of Mahemaics Universiy of Uah Oc 29, 2002 Absrac Wha promped Einsen: Incompaibiliies beween Newonian Mechanics and Maxwell s Elecromagneism.

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Today in Physics 218: radiation reaction

Today in Physics 218: radiation reaction Today in Physics 18: radiaion reacion Radiaion reacion The Abraham-Lorenz formula; radiaion reacion force The pah of he elecron in oday s firs example (radial decay grealy exaggeraed) 6 March 004 Physics

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring Chaper Q1 Inroducion o Quanum Mechanics End of 19 h Cenury only a few loose ends o wrap up. Led o Relaiviy which you learned abou las quarer Led o Quanum Mechanics (1920 s-30 s and beyond) Behavior of

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry Chaper 15 Lasers, Laser Specroscopy, and Phoochemisry ackground: In his chaper we will alk abou ligh amplificaion by simulaed emission of radiaion (LASER), heir impac on specroscopy and ligh-iniiaed reacions

More information

CONFIDENCE LIMITS AND THEIR ROBUSTNESS

CONFIDENCE LIMITS AND THEIR ROBUSTNESS CONFIDENCE LIMITS AND THEIR ROBUSTNESS Rajendran Raja Fermi Naional Acceleraor laboraory Baavia, IL 60510 Absrac Confidence limis are common place in physics analysis. Grea care mus be aken in heir calculaion

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Starting from a familiar curve

Starting from a familiar curve In[]:= NoebookDirecory Ou[]= C:\Dropbox\Work\myweb\Courses\Mah_pages\Mah_5\ You can evaluae he enire noebook by using he keyboard shorcu Al+v o, or he menu iem Evaluaion Evaluae Noebook. Saring from a

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

Lecture 4 January 14, 2016

Lecture 4 January 14, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winer 206 Elemens of Modern Signal Processing Lecure 4 January 4, 206 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long; Edied by E. Candes & E. Baes Ouline

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie e Quanum eory of Aoms and Molecules: e Scrodinger equaion Hilary erm 008 Dr Gran Ricie An equaion for maer waves? De Broglie posulaed a every paricles as an associaed wave of waveleng: / p Wave naure of

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course OMP: Arificial Inelligence Fundamenals Lecure 0 Very Brief Overview Lecurer: Email: Xiao-Jun Zeng x.zeng@mancheser.ac.uk Overview This course will focus mainly on probabilisic mehods in AI We shall presen

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis TRANSPORTATION RESEARCH RECORD 155 35 Curling Sress Equaion for Transverse Join Edge of a Concree Pavemen Slab Based on Finie-Elemen Mehod Analysis TATSUO NISHIZAWA, TADASHI FUKUDA, SABURO MATSUNO, AND

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Wave Particle Duality & Interference Explained

Wave Particle Duality & Interference Explained Journal of Modern Physics, 016, 7, 67-76 Published Online February 016 in SciRes. hp://www.scirp.org/journal/jmp hp://dx.doi.org/10.436/jmp.016.7306 Wave Paricle Dualiy & Inerference Explained Narendra

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs.

More information

Entanglement and complexity of many-body wavefunctions

Entanglement and complexity of many-body wavefunctions Enanglemen and complexiy of many-body wavefuncions Frank Versraee, Universiy of Vienna Norber Schuch, Calech Ignacio Cirac, Max Planck Insiue for Quanum Opics Tobias Osborne, Univ. Hannover Overview Compuaional

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Unsteady Mass- Transfer Models

Unsteady Mass- Transfer Models See T&K Chaper 9 Unseady Mass- Transfer Models ChEn 6603 Wednesday, April 4, Ouline Conex for he discussion Soluion for ransien binary diffusion wih consan c, N. Soluion for mulicomponen diffusion wih

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information