Physics Lecture 08: MON 02 FEB

Size: px
Start display at page:

Download "Physics Lecture 08: MON 02 FEB"

Transcription

1 Physics 2113 Jonathan Dowling Physics 2113 Lecture 08: MON 02 FEB Electric Fields III Charles-Augustin de Coulomb ( )

2 Electric Charges and Fields First: Given Electric Charges, We Calculate the Electric Field Using E=kqr/r 3. Example: the Electric Field Produced By a Single Charge, or by a Dipole: Charge Produces E- Field Second: Given an Electric Field, We Calculate the Forces on Other Charges Using F=qE Examples: Forces on a Single Charge When Immersed in the Field of a Dipole, Torque on a Dipole When Immersed in an Uniform Electric Field. E-Field Then Produces Force on Another Charge

3 Continuous Charge Distribution Thus Far, We Have Only Dealt With Discrete, Point Charges. Imagine Instead That a Charge q Is q Smeared Out Over A: LINE AREA q q VOLUME How to Compute the Electric Field E? Calculus!!! q

4 Charge Density Useful idea: charge density λ = q/l Line of charge: per unit length = λ Sheet of charge: per unit area = σ Volume of charge: per unit volume = ρ charge charge charge σ = q/a ρ = q/v

5 Computing Electric Field of Continuous Charge Distribution Approach: Divide the Continuous Charge Distribution Into Infinitesimally Small Differential Elements dq Treat Each Element As a POINT Charge & Compute Its Electric Field Sum (Integrate) Over All Elements Always Look for Symmetry to Simplify Calculation! dq = λ dl dq = σ ds dq = ρ dv

6 Differential Form of Coulomb s! E = k q 2 12 r 2 12 Law E-Field at Point! E 12 q 2 P 1 P 2 d! E 12 = k dq 2 r 12 2 Differential de-field at Point d! E 12 P 1 dq 2

7 ICPP: Arc of Charge Figure shows a uniformly charged rod of charge Q bent into a circular arc of radius R, centered at (0,0). What is the direction of the electric field at the origin? (a) Field is 0. (b) Along +y (c) Along -y Choose symmetric elements x components cancel y x

8 Arc of Charge: Quantitative Figure shows a uniformly charged rod of charge Q bent into a circular arc of radius R, centered at (0,0). ICPP: Which way does net E-field point? Compute the direction & magnitude of E at the origin. E x = E x de x = de cosθ = kdq R cosθ 2 π / 2 π / 2 k( λrdθ )cosθ kλ = R R 0 0 = kλ R cosθdθ 2 E y kλ R y de!!" net, y = E net = 2 kλ R y E!" net de!!" net, x 45 0 q λ = Q L = dq Q Q 2π R / 4 = 2Q π R E = E x 2 + E y 2 x x dq = λrdθ

9 (a) toward positive y; (b) toward positive x; (c) toward negative y

10 Charged Ring 22-4 The Electric Field Due to a Line of Charge Canceling Components - Point P is on the axis: In the Figure (right), consider the charge element on the opposite side of the ring. It too contributes the field magnitude de but the field vector leans at angle θ in the opposite direction from the vector from our first charge element, as indicated in the side view of Figure (bottom). Thus the two perpendicular components cancel. All around the ring, this cancelation occurs for every charge element and its symmetric partner on the opposite side of the ring. So we can neglect all the perpendicular components. The components perpendicular to the z axis cancel; the parallel components add. A ring of uniform positive charge. A differential element of charge occupies a length ds (greatly exaggerated for clarity). This element sets up an electric field de at point P.

11 Charged Ring 22-4 The Electric Field Due to a Line of Charge Adding Components. From the figure (bottom), we see that the parallel components each have magnitude de cosθ. We can replace cosθ by using the right triangle in the Figure (right) to write The components perpendicular to the z axis cancel; the parallel components add. A ring of uniform positive charge. A differential element of charge occupies a length ds (greatly exaggerated for clarity). This element sets up an electric field de at point P.

12 Charged Ring 22-4 The Electric Field Due to a Line of Charge Integrating. Because we must sum a huge number of these components, each small, we set up an integral that moves along the ring, from element to element, from a starting point (call it s=0) through the full circumference (s=2πr). Only the quantity s varies as we go through the elements. We find Finally, The components perpendicular to the z axis cancel; the parallel components add. A ring of uniform positive charge. A differential element of charge occupies a length ds (greatly exaggerated for clarity). This element sets up an electric field de at point P.

13 x ICPP: Field on Axis of Charged Disk A uniformly charged circular disk (with positive charge) What is the direction of E at point P on the axis? P (a) Field is 0 (b) Along +z (c) Somewhere in the x-y plane z + + y

14 Charged Disk is Integral of Charged Rings σ = Q π R 2 dq = σ da = σ 2πrdr Taking R gives E field above an infinite charged plane: E plane = σ 2ε 0 A disk of radius R and uniform positive charge. The ring shown has radius r and radial width dr. It sets up a differential electric field de at point P on its central axis.

15 Force on a Charge in Electric Definition of Field! E =! F Electric Field: q Force on Charge Due to!! F = q E Electric Field:

16 Force on a Charge in Electric Field Positive Charge E E Force in Same Direction as E- Field (Follows) Negative Charge Force in Opposite Direction as E- Field (Opposes)

17 (a) left (b) left F!" (c) decrease

18 Electric Dipole in a Uniform Field Net force on dipole = 0; center of mass stays where it is. Net TORQUE τ : INTO page. Dipole rotates to line up in direction of E. = 2(qE)(d/2)(sin ) = (qd)(e)sin = p E sin = p x E The dipole tends to align itself with the field lines. ICPP: What happens if the field is NOT UNIFORM?? p = qd Distance Between Charges = d

19 + +

20 Electric Dipole in a Uniform Field Net force on dipole = 0; center of mass stays where it is. Potential Energy U is smallest when p is aligned with E and largest when p anti-aligned with E. The dipole tends to align itself with the field lines. U = p!" i E!" = pe cosθ Distance Between Charges = d p!" E!" U = pe cos0 = pe p!" E!" U = pe cos180 = + pe

21 1 and 3 are uphill. 2 and 4 are downhill. U1 = U3 > U2 = U4 = 45 U 1 = pe cos 135 U 2 = pe cos +45 U 3 = pe cos 135 U 4 = pe cos 45 ( ) == +0.71pE ( ) == 0.71pE ( ) == +0.71pE ( ) == 0.71pE τ 1 = pe sin( ) = pe sin( 135 ) = 0.71pE τ 2 = pe sin( 45 ) = 0.71pE τ 3 = pe sin( 135 ) = 0.71pE τ 4 = pe sin( 45 ) = 0.71pE (a) all tie; (b) 1 and 3 tie, then 2 and 4 tie τ 1 = τ 2 = τ 3 = τ 4

22

23 Summary The electric field produced by a system of charges at any point in space is the force per unit charge they produce at that point. We can draw field lines to visualize the electric field produced by electric charges. Electric field of a point charge: E=kq/r 2 Electric field of a dipole: E~kp/r 3 An electric dipole in an electric field rotates to align itself with the field. Use CALCULUS to find E-field from a continuous charge distribution.

Physics Lecture 07

Physics Lecture 07 Physics 2113 Jonathan Dowling Physics 2113 Lecture 07 Electric Fields III Charles-Augustin de Coulomb (1736-1806) Electric Charges and Fields First: Given Electric Charges, We Calculate the Electric Field

More information

Physics 2212 K Quiz #1 Solutions Summer 2015

Physics 2212 K Quiz #1 Solutions Summer 2015 Physics 2212 K Quiz #1 Solutions Summer 2015 e Fundamental charge m e Mass of an electron K Coulomb constant = 1/4πϵ 0 g Magnitude of Free Fall Acceleration Unless otherwise directed, drag should be neglected.

More information

Physics Lecture 13

Physics Lecture 13 Physics 113 Jonathan Dowling Physics 113 Lecture 13 EXAM I: REVIEW A few concepts: electric force, field and potential Gravitational Force What is the force on a mass produced by other masses? Kepler s

More information

23.5 Electric field of a charged particle

23.5 Electric field of a charged particle Electric field II The heart is a large electric dipole that changes its orientation and strength during each heart beat. An electrocardiogram measures this dipole electric field of the heart. Reading:

More information

PH 222-3A Spring 2007

PH 222-3A Spring 2007 PH -3A Spring 7 ELECTRIC FIELDS Lectures,3 Chapter (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter Electric Fields In this chapter we will introduce the concept of an electric

More information

Notice that now the electric field is perpendicular to the x=axis. It has magnitude

Notice that now the electric field is perpendicular to the x=axis. It has magnitude home Physics 415: Lecture 3 Michael Fowler, UVa, 8/9/09 The Dipole Suppose now that in the previous example we replace the lower charge by Q: Q d x-axis -Q y-axis x r E total E = kqrˆ r upper charge Notice

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

Lecture 2 Electric Fields Ch. 22 Ed. 7

Lecture 2 Electric Fields Ch. 22 Ed. 7 1 2 Lecture 2 Electric Fields Ch. 22 Ed. 7 Cartoon - Analogous to gravitational field Topics Electric field = Force per unit Charge Electric Field Lines Electric field from more than 1 charge Electric

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information

Phys 122 Lecture 3 G. Rybka

Phys 122 Lecture 3 G. Rybka Phys 122 Lecture 3 G. Rybka A few more Demos Electric Field Lines Example Calculations: Discrete: Electric Dipole Overview Continuous: Infinite Line of Charge Next week Labs and Tutorials begin Electric

More information

ConcepTest: Electric Potential

ConcepTest: Electric Potential ConcepTest: Electric Potential Which point has the largest potential when Q > 0? E Which two points have the same potential? (a) A and C (b) B and E (c) B and D (d) C and D (e) no pair C A Smallest radius

More information

Physics Jonathan Dowling. Final Exam Review

Physics Jonathan Dowling. Final Exam Review Physics 2102 Jonathan Dowling Physics 2102 Final Exam Review A few concepts: electric force, field and potential Electric force: What is the force on a charge produced by other charges? What is the force

More information

CH 24. Electric Potential

CH 24. Electric Potential CH 24 Electric Potential [SHIVOK SP212] January 8, 2016 I. Electric Potential Energy A. Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Council of Student Organizations De La Salle University Manila

Council of Student Organizations De La Salle University Manila Council of Student Organizations De La Salle University Manila PHYENG2 Quiz 1 Problem Solving: 1. (a) Find the magnitude and direction of the force of +Q on q o at (i) P 1 and (ii) P 2 in Fig 1a below.

More information

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 24 Electric Potential Copyright 24-1 What is Physics? Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric

More information

Physics Lecture: 15 FRI 20 FEB

Physics Lecture: 15 FRI 20 FEB Physics 2113 Jonathan Dowling Physics 2113 Lecture: 15 FRI 20 FEB Electric Potential III Conservative Forces, Work, and Potential Energy W = ( ) F r dr Work Done (W) is Integral of Force (F) U = W F (

More information

IClicker question. We have a negative charge q=-e. How electric field is directed at point X? q=-e (negative charge) X A: B: C: D: E: E=0

IClicker question. We have a negative charge q=-e. How electric field is directed at point X? q=-e (negative charge) X A: B: C: D: E: E=0 We have a negative charge q=-e. How electric field is directed at point X? IClicker question q=-e (negative charge) X A: B: C: D: E: E=0 1 A: q=-e (negative charge) F X E Place positive charge q0 Force

More information

Electric Potential of Charged Rod

Electric Potential of Charged Rod Electric Potential of Charged Rod Charge per unit length: λ = Q/L y dq = λ d Charge on slice d: dq = λd dv d L Electric potential generated by slice d: dv = kdq = kλd Electric potential generated by charged

More information

Lecture 2 Electric Fields Chp. 22 Ed. 7

Lecture 2 Electric Fields Chp. 22 Ed. 7 Lecture Electric Fields Chp. Ed. 7 Cartoon - Analogous to gravitational field Warm-up problems, Physlet Topics Electric field Force per unit Charge Electric Field Lines Electric field from more than 1

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

Physics 2212 GJ Quiz #1 Solutions Fall 2015

Physics 2212 GJ Quiz #1 Solutions Fall 2015 Physics 2212 GJ Quiz #1 Solutions Fall 2015 I. (14 points) A 2.0 µg dust particle, that has a charge of q = +3.0 nc, leaves the ground with an upward initial speed of v 0 = 1.0 m/s. It encounters a E =

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

Physics Lecture: 09

Physics Lecture: 09 Physics 2113 Jonathan Dowling Physics 2113 Lecture: 09 Flux Capacitor (Schematic) Gauss Law II Carl Friedrich Gauss 1777 1855 Gauss Law: General Case Consider any ARBITRARY CLOSED surface S -- NOTE: this

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 004: Electric Fields and Their Effect on Matter SteveSekula, 9 January 011 (created 6 January 011) Goals of the Lecture no tags Discuss different

More information

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P.

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. week 4 Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. 1) P 1 2) P 2 3) P 3 4) P 4 5) all require the same amount of work

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

27 the electric field

27 the electric field 27 the electric field With every point in space near the earth we can associate a gravitational field vector g (see Eq. 16-12). This is the gravitational acceleration that a test body, placed at that point

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Chapter 1 Electric Charges, Forces, and Fields

Chapter 1 Electric Charges, Forces, and Fields Chapter 1 Electric Charges, Forces, and Fields 1 Units of Chapter 1 Electric Charge Insulators and Conductors Coulomb s Law The Electric Field Electric Field Lines Electric Fields Generated by simple distributions

More information

PHYS 1444 Section 02. Lecture #3

PHYS 1444 Section 02. Lecture #3 PHYS 1444 Section 0 Chapter 1 Electric Fields Electric Dipoles Lecture #3 Tuesday Jan 5, 011 Dr. Andrew Brandt Homework on Ch 1 is due 9pm Thursday, Jan. 7 1 Angle: After calculating magnitudes, take x+y

More information

Chapter 24. Electric Potential

Chapter 24. Electric Potential Chapter 24 Chapter 24 Electric Potential Electric Potential Energy When an electrostatic force acts between two or more charged particles within a system of particles, we can assign an electric potential

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Lecture 36: WED 19 NOV CH32: Maxwell s Equations II

Lecture 36: WED 19 NOV CH32: Maxwell s Equations II Physics 2113 Jonathan Dowling Lecture 36: WED 19 NOV CH32: Maxwell s Equations II James Clerk Maxwell (1831-1879) Maxwell s Displacement Current B E B If we are charging a capacitor, there is a current

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug 1.0 0.5 0.0-0.5-0.5 0.0 0.5 1.0 Lecture 17 - The Secrets we have Swept Under the Rug A Puzzle... What makes 3D Special? Example (1D charge distribution) A stick with uniform charge density λ lies between

More information

Lecture 32: MON 09 NOV Review Session A : Midterm 3

Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling Lecture 32: MON 09 NOV Review Session A : Midterm 3 EXAM 03: 6PM WED 11 NOV in Cox Auditorium The exam will cover: Ch.27.4 through Ch.30 The exam will be based on: HW08 11

More information

21.4 Electric Field and Electric Forces

21.4 Electric Field and Electric Forces 21.4 Electric Field and Electric Forces How do charged particles interact in empty space? How do they know the presence of each other? What goes on in the space between them? Body A produces an electric

More information

Integrals in Electrostatic Problems

Integrals in Electrostatic Problems PHYS 119 Integrals in Electrostatic Problems Josh McKenney University of North Carolina at Chapel Hill (Dated: January 6, 2016) 1 FIG. 1. Three positive charges positioned at equal distances around an

More information

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Exam 1: Physics 2113 Spring 2016 6:00 PM, Monday, February 3, 2016 Last Name First Name Clearly circle your section: MON/WEDS/FRI SECTIONS TUES/THURS SECTIONS Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

INTERACTION BETWEEN ELECTRIC CHARGES

INTERACTION BETWEEN ELECTRIC CHARGES Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego AUTHOR G. Jarosz INTERACTION BETWEEN ELECTRIC CHARGES When we rub plastic rods with a piece of fur,

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

03. Electric Field III and Electric Flux

03. Electric Field III and Electric Flux Universit of Rhode Island DigitalCommons@URI PHY 204: lementar Phsics II Phsics Course Materials 2015 03. lectric Field III and lectric Flu Gerhard Müller Universit of Rhode Island, gmuller@uri.edu Creative

More information

Lecture 2 [Chapter 21] Tuesday, Jan 17th

Lecture 2 [Chapter 21] Tuesday, Jan 17th Lecture 2 [Chapter 21] Tuesday, Jan 17th Administrative Items Assignments this week: read Ch 21 and Ch 22 in the textbook complete Pre-Lecture Ch22 HW assignment complete Ch 21 HW assignment [Pre-Lecture

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Electrical Potential Energy and Electric Potential (Chapter 29)

Electrical Potential Energy and Electric Potential (Chapter 29) Electrical Potential Energy and Electric Potential (Chapter 29) A Refresher Course on Gravity and Mechanical Energy Total mechanical energy: E mech = K + U, K= 1 2 mv2,u = potential energy f W = F!" ids

More information

Near the surface of the earth, we agreed to call the force of gravity of constant.

Near the surface of the earth, we agreed to call the force of gravity of constant. Electric Fields 1. A field 2. Field lines 3. The Electric Field 4. Field from a dipole 5. Line charge 6. Other configurations Near the surface of the earth, we agreed to call the force of gravity of constant.

More information

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16 The Direction of Magnetic Field Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16 The Magnetic Field We introduced electric field to explain-away long-range electric

More information

Lecture 31: MON 30 MAR Review Session : Midterm 3

Lecture 31: MON 30 MAR Review Session : Midterm 3 Physics 2113 Jonathan Dowling Lecture 31: MON 30 MAR Review Session : Midterm 3 EXAM 03: 8PM MON 30 MAR in Cox Auditorium The exam will cover: Ch.26 through Ch.29 The exam will be based on: HW07 HW10.

More information

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /.

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /. Practice Questions Exam 1/page1 PES 110 - Physics Practice Exam 1 Questions Name: Score: /. Instructions Time allowed for this is exam is 1 hour 15 minutes 5 multiple choice (5 points) 3 to 5 written problems

More information

9/4/2018. Electric Field Models. Electric Field of a Point Charge. The Electric Field of Multiple Point Charges

9/4/2018. Electric Field Models. Electric Field of a Point Charge. The Electric Field of Multiple Point Charges Electric Field Models One thing learned from last chapter was that sources determine the electric field. We can understand the essential physics on the basis of simplified models of the sources of electric

More information

Electric Field Models

Electric Field Models Electric Field Models One thing learned from last chapter was that sources determine the electric field. We can understand the essential physics on the basis of simplified models of the sources of electric

More information

#7: Distributions of Charge

#7: Distributions of Charge 22.4-22.6 #7: Distributions of Charge We often charge a macroscopic object. Distributions of charges in the real world are usually complex and not well-known. The electric field can be experimentally mapped

More information

is at the origin, and charge q μc be located if the net force on q

is at the origin, and charge q μc be located if the net force on q Term: 152 Saturday, April 09, 2016 Page: 1 Q1. Three point charges are arranged along the x-axis. Charge q 3.0 0 μc 1 is at the origin, and charge q 5.0 0 μc 2 is at x = 0.200 m. Where should a third charge

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Electric Field and Gauss s law. January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1

Electric Field and Gauss s law. January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1 Electric Field and Gauss s law January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1 Missing clickers! The following clickers are not yet registered! If your clicker number is in this list,

More information

Electric Fields and Continuous Charge Distributions Challenge Problem Solutions

Electric Fields and Continuous Charge Distributions Challenge Problem Solutions Problem 1: Electric Fields and Continuous Charge Distributions Challenge Problem Solutions Two thin, semi-infinite rods lie in the same plane They make an angle of 45º with each other and they are joined

More information

Physics 11b Lecture #3. Electric Flux Gauss s Law

Physics 11b Lecture #3. Electric Flux Gauss s Law Physics 11b Lecture #3 lectric Flux Gauss s Law What We Did Last Time Introduced electric field by Field lines and the rules From a positive charge to a negative charge No splitting, merging, or crossing

More information

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents)

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Higher'Physics'1B Electricity) Electrostatics)) Introduction) Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Properties)of)Electric)Charges)

More information

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is:

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is: Conceptual Questions. Circle the best answer. (2 points each) 1. If more electric field lines point into a balloon than come out of it, you can conclude that this balloon must contain more positive charge

More information

Physics 121 Common Exam 1, Sample Exam 4 (Fall 2011)

Physics 121 Common Exam 1, Sample Exam 4 (Fall 2011) Physics 11 Common Exam 1, Sample Exam 4 (Fall 011) Name (Print): 4 Digit ID: Section: Honors Code Pledge: For ethical and fairness reasons we are all pledged to comply with the provisions of the NJIT Academic

More information

Uniform Electric Fields

Uniform Electric Fields Uniform Electric Fields The figure shows an electric field that is the same in strength and direction at every point in a region of space. This is called a uniform electric field. The easiest way to produce

More information

EX. Potential for uniformly charged thin ring

EX. Potential for uniformly charged thin ring EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

Ch 5 Electric Charges, Fields

Ch 5 Electric Charges, Fields Ch 5 Electric Charges, Fields Electrostatic Forces Forces between electric charges are responsible for binding atoms and molecules together to create solids and liquids--without electric forces, atoms

More information

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Forces and Fields What creates a magnetic field? Answer: MOVING CHARGES What is affected by a magnetic field? Answer: MOVING CHARGES We have a formula for magnetic force on a moving

More information

1. Four equal and positive charges +q are arranged as shown on figure 1.

1. Four equal and positive charges +q are arranged as shown on figure 1. AP Physics C Coulomb s Law Free Response Problems 1. Four equal and positive charges +q are arranged as shown on figure 1. a. Calculate the net electric field at the center of square. b. Calculate the

More information

Physics Lecture 02: FRI 16 JAN

Physics Lecture 02: FRI 16 JAN Physics 2113 Jonathan Dowling Isaac Newton (1642 1727) Physics 2113 Lecture 02: FRI 16 JAN CH13: Gravitation II Version: 1/9/15 Michael Faraday (1791 1867) 13.5: Gravitation Inside Earth: Shell Game II

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

2 4πε ( ) ( r θ. , symmetric about the x-axis, as shown in Figure What is the electric field E at the origin O?

2 4πε ( ) ( r θ. , symmetric about the x-axis, as shown in Figure What is the electric field E at the origin O? p E( r, θ) = cosθ 3 ( sinθ ˆi + cosθ ˆj ) + sinθ cosθ ˆi + ( cos θ 1) ˆj r ( ) ( p = cosθ sinθ ˆi + cosθ ˆj + sinθ cosθ ˆi sinθ ˆj 3 r where the trigonometric identit ( θ ) vectors ˆr and cos 1 = sin θ

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED) SEMESTER, 014 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Individual ASSIGNMENT Assignment 4: Moving charges, magnetic fields, Forces and Torques. Solution

Individual ASSIGNMENT Assignment 4: Moving charges, magnetic fields, Forces and Torques. Solution Individual ASSIGNMENT Assignment 4: Moving charges, magnetic fields, Forces and Torques This homework must be solved individually. Solution 1. A sphere of mass M and radius R is suspended from a pivot

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name:

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name: Phy207 Exam I (Form1) Professor Zuo Fall Semester 2015 On my honor, I have neither received nor given aid on this examination Signature: Name: ID number: Enter your name and Form 1 (FM1) in the scantron

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C 1. The figure below shows 4 point charges located on a circle centered about the origin. The exact locations of the charges on the circle are not given. What can you say about the electric potential created

More information

Phys 102 Lecture 3 The Electric field

Phys 102 Lecture 3 The Electric field Phys 102 Lecture 3 The Electric field 1 Today we will... Learn about the electric field Apply the superposition principle Ex: Dipole, line of charges, plane of charges Represent the E field using electric

More information

Physics 8.02 Exam Two Equation Sheet Spring 2004

Physics 8.02 Exam Two Equation Sheet Spring 2004 Physics 8.0 Exam Two Equation Sheet Spring 004 closed surface EdA Q inside da points from inside o to outside I dsrˆ db 4o r rˆ points from source to observer V moving from a to b E ds 0 V b V a b E ds

More information

Chapter 23 The Electric Potential

Chapter 23 The Electric Potential 23.1 Potential nergy lthough the electric field is defined as a force on a unit test charge, it is extremely difficult to measure fields in this way. Let us return to the energy concepts studied in the

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Electric fields are responsible for the electric currents that flow through your computer and the nerves in your body. Electric fields also line up polymer molecules to form the images in a liquid crystal

More information

PHYS 2426 Brooks INTRODUCTION. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

PHYS 2426 Brooks INTRODUCTION.  Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli PHYS 2426 Brooks INTRODUCTION http://iws.ccccd.edu/mbrooks Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Chapter 21 Electric Charge and Electric Field Static Electricity;

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file Lecture 5 Charge Density & Differential Charge Sections: 2.3, 2.4, 2.5 Homework: See homework file Point Charge as an Approximation charge occupies a finite olume and may hae arying density a charged body

More information

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce Physics 142 Electrostatics 1 Page 1 Electrostatics 1 The covers of this book are too far apart. Ambrose Bierce Overview: the mechanical model yields to the field model In the previous course the description

More information

2 Chapter Coulomb s Law

2 Chapter Coulomb s Law Chapter Coulomb s Law.1 Electric Charge... -3. Coulomb's Law... -3.3 Principle of Superposition... -4 Example.1: Three Charges... -5.4 Electric Field... -6.4.1 Electric Field of Point Charges... -7.5 Electric

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con3nuous Charge Distribu3ons Electricity & Magne3sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Gauss's Law 2017-07-08 www.njctl.org Electric Flux Gauss's Law Sphere Table of Contents: Gauss's Law Click on the topic to go to that section. Infinite Rod of Charge Infinite Plane

More information