Toda s theorem in bounded arithmetic with parity quantifiers and bounded depth proof systems with parity gates

Size: px
Start display at page:

Download "Toda s theorem in bounded arithmetic with parity quantifiers and bounded depth proof systems with parity gates"

Transcription

1 1 / 17 Toda s theorem in bounded arithmetic with parity quantifiers and bounded depth proof systems with parity gates Leszek Kołodziejczyk University of Warsaw/UCSD (joint work with Sam Buss and Konrad Zdanowski) Logical Approaches to Barriers in Complexity II Cambridge, March 01

2 / 17 Introduction Major problem in propositional proof complexity: lower bounds (ideally, exponential) on bounded depth proofs with mod gates: (φ 1,..., φ n ) = an odd number of φ i have value 1. Bounded depth Frege with mod gates = AC 0 []-Frege. Related problem in bounded arithmetic: interesting independence result for T ( )(α), bounded arithmetic with a parity quantifier.

3 / 17 Introduction Major problem in propositional proof complexity: lower bounds (ideally, exponential) on bounded depth proofs with mod gates: (φ 1,..., φ n ) = an odd number of φ i have value 1. Bounded depth Frege with mod gates = AC 0 []-Frege. Related problem in bounded arithmetic: interesting independence result for T ( )(α), bounded arithmetic with a parity quantifier. More modest aim: better understanding of AC 0 []-Frege and T ( )(α) (and analogues for prime p ).

4 3 / 17 Toda s Theorem (A version of) Toda s Theorem: PH( ), the polynomial hierarchy with a parity quantifier, collapses to BP P. Observation: the relativized version of this can be seen as a collapse of AC 0 [] circuits to a very simple form, with quasipolynomial increase in size.

5 3 / 17 Toda s Theorem (A version of) Toda s Theorem: PH( ), the polynomial hierarchy with a parity quantifier, collapses to BP P. Observation: the relativized version of this can be seen as a collapse of AC 0 [] circuits to a very simple form, with quasipolynomial increase in size. Can something similar be done for AC 0 []-Frege proofs?

6 4 / 17 Collapsing AC 0 []-Frege? Maciel-Pitassi 1998: simulation of AC 0 []-Frege by proofs of simple form, but the simulating system has exact counting (threshold) gates. New development since then (Jeřábek 004-9): bounded arithmetic has reasonable notions of approximate cardinality and probabilistic complexity classes. So: why not try to prove Toda in bounded arithmetic with parity quantifiers, and see what that says about AC 0 []-Frege proofs?

7 5 / 17 Plan for rest of talk There won t be any really interesting proofs in this talk. There won t even be too many pictures/diagrams. So, the above is offered as a form of compensation.

8 6 / 17 Bounded arithmetic: a very quick review Σ b i class of arithmetic formulas corresponding to Σ p i. T i induction for Σb i formulas. T = i Ti. PV induction for polytime properties ( right notion of T 0 ). For new predicate α (oracle), Σ b i (α) and Ti (α) can be defined. Paris-Wilkie translation: translates arithmetic formulas (with α) into families of propositional formulas, and proofs in T i (α) into uniform families of fixed-depth quasipolynomial size proofs. (atoms in α variables, quantifiers /, etc.)

9 7 / 17 Approximate counting in bounded arithmetic swphp(γ) surjective WPHP for function class Γ: no function f Γ is surjection a a(1 + 1/(log a)). (in many contexts, ruling out a a suffices.) APC 1 = PV + swphp(fp). APC = T 1 + swphp(fpnp ). APC 1 is contained in T. It can approximate the size of polytime set X n up to 1/poly(n) fraction of n. APC can do the same for X P NP, while for X NP it finds surjections witnessing m X m + m/polylog(m). It is contained in T 3.

10 8 / 17 Bounded arithmetic with a parity quantifier Two ways of adding the new quantifier: T ( ): add x < y to the usual language, induction available for all bounded formulas. T i, P : allow x < y only in front of polytime formulas. T i, P has i induction.

11 9 / 17 Toda s Theorem in APC P L BP P if for some polytime functions u(x), f (x, r), x L Pr r<u(x) [f (x, r) / SAT] < 1/4, x / L Pr r<u(x) [f (x, r) SAT] < 1/4, where probabilities stated using approximate counting. Theorem Every formula can be assigned a BP P representation which is provably correct in APC P. As a consequence, T ( ) is conservative over APC P. The theorem smoothly relativizes to a new oracle α.

12 10 / 17 Toda in APC P : comments on proof Essentially a formalization of the textbook proof. Induction on formula complexity, some technicalities involved. The base case uses a version of the Valiant-Vazirani Theorem: SAT is probabilistically reducible to Unique-SAT. One point in the proof of V-V: given propositional formula φ, if S is the set of satisfying assignments for φ, then for some k, This seems to need APC P. k S k+1.

13 11 / 17 Back to propositional proofs The proof system PCK i : lines are cedents of / formulas of depth i with literals replaced by low-degree polynomials over F ( low = logarithmic in the proof size). Intended meaning of the PCK 1 line f 1, f f 3 f 4 is: f 1 is 0 or f, f 3, f 4 all are. So, constant 1 plays the role of. (Btw, low-degree polynomials s of small conjunctions, it s just that algebraic rules are sometimes less clumsy than boolean. So PCK i is a subsystem of AC 0 []-Frege.)

14 1 / 17 Propositional proofs: rules ψ, ψ Axiom Γ, ψ i, where i I Γ, i I ψ i ( ) Γ, ψ i, all i I Γ, i I ψ i ( ) Γ Γ, (weakening) Γ, ψ Γ, ψ (cut) Γ Γ, f Γ, fg ( ) Γ, f Γ, g (+) Γ, f + g ( is DeMorgan negation, and f is 1 + f.)

15 Propositional proofs: correspondence An arithmetic formula A(x, α) has propositional translations A n, with variables for bits of α, meaning A(n, α) holds. Theorem A provable in A have qpoly size refutations in i (α) T i, P (α) i+1 (α) Ti, P (α) 1 (α) T 1, P (α) 1 (α) PV P (α) 13 / 17

16 Propositional proofs: correspondence An arithmetic formula A(x, α) has propositional translations A n, with variables for bits of α, meaning A(n, α) holds. Theorem A provable in A have qpoly size refutations in i (α) T i, P (α) PCK i, treelike PCK i 1 i+1 (α) Ti, P (α) treelike PCK i 1 1 (α) T 1, P (α) 1 (α) PV P (α) 13 / 17

17 Propositional proofs: correspondence An arithmetic formula A(x, α) has propositional translations A n, with variables for bits of α, meaning A(n, α) holds. Theorem A provable in A have qpoly size refutations in i (α) T i, P (α) PCK i, treelike PCK i 1 i+1 (α) Ti, P (α) treelike PCK i 1 1 (α) T 1, P (α) polylog degree Polynomial Calculus 1 (α) PV P (α) 13 / 17

18 Propositional proofs: correspondence An arithmetic formula A(x, α) has propositional translations A n, with variables for bits of α, meaning A(n, α) holds. Theorem A provable in A have qpoly size refutations in i (α) T i, P (α) PCK i, treelike PCK i 1 i+1 (α) Ti, P (α) treelike PCK i 1 1 (α) T 1, P (α) polylog degree Polynomial Calculus 1 (α) PV P (α) polylog degree Nullstellensatz 13 / 17

19 14 / 17 Propositional proofs: collapse Corollary For proofs of simple enough formulas ( small ), AC 0 []-Frege is quasipolynomially simulated by PCK 1. Proof. by conservativity, T 3 (α) proves reflection for AC0 []-Frege: every provable formula is true. so PCK 1 refutes Reflection. by substituting bits of an actual AC 0 []-Frege proof of φ, we get a PCK 1 refutation of φ is false. modulo cosmetic changes, that is a refutation of φ.

20 15 / 17 Propositional proofs: collapse (cont d) Corollary For proofs of simple enough formulas ( small ), AC 0 []-Frege is quasipolynomially simulated by PCK 1.

21 15 / 17 Propositional proofs: collapse (cont d) Corollary For proofs of simple enough formulas ( small ), AC 0 []-Frege is quasipolynomially simulated by PCK 1. Using conservativity over APC P instead of T 3, P, we get: Corollary For proofs of simple enough formulas ( small ), AC 0 []-Frege is quasipolynomially simulated by treelike PCK 0 extended by axioms corresponding to swphp(fp NP ( P)). (Using partial conservativity of swphp over so-called retraction WPHP, one could even replace treelike PCK 0 by polylog degree Polynomial Calculus, but the extra axioms become less natural.)

22 16 / 17 The picture right now T 1, P (α) polylog degree PC, treelike PCK 1 APC P (α) treelike PCK 1 + swphp PV P (α) polylog degree NS APC P 1 (α) polylog degree NS + swphp

23 The picture right now T 1, P (α) polylog degree PC, treelike PCK 1 APC P (α) treelike PCK 1 + swphp PV P (α) polylog degree NS APC P 1 (α) polylog degree NS + swphp The pigeonhole PHP n+1 n (α) is independent from: T 1, P (α), by known Polynomial Calculus lower bounds, PV P (α) + swphp(fp(α)), by combining Nullstellensatz lower bounds with switching lemma techniques. Seems within reach to extend this to T 1, P (α) + swphp(fp NP (α)), but swphp for functions involving P seems very difficult to deal with. 16 / 17

24 17 / 17 Problems with an approach to lower bounds Let φ be a small formula. Want to show: φ has no refutations in low degree Nullstellensatz + swphp(fp( P)) axioms. The swphp axiom says c < t not in F([0, t)) ; has polylog many new variables for bits of c. For any assignment to the φ variables, almost all assignments to the new variables make the axiom true. So maybe...

25 17 / 17 Problems with an approach to lower bounds Let φ be a small formula. Want to show: φ has no refutations in low degree Nullstellensatz + swphp(fp( P)) axioms. The swphp axiom says c < t not in F([0, t)) ; has polylog many new variables for bits of c. For any assignment to the φ variables, almost all assignments to the new variables make the axiom true. So maybe... However: take a suitably constructed low degree approximation φ to φ. This has polylog many new variables, and for any assignment to the old variables, almost all assignments to the new variables make φ true. But φ joined with φ is refutable in low degree Nullstellensatz!

Collapsing modular counting in bounded arithmetic and constant depth propositional proofs

Collapsing modular counting in bounded arithmetic and constant depth propositional proofs Collapsing modular counting in bounded arithmetic and constant depth propositional proofs Samuel R. Buss Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112, USA sbuss@math.ucsd.edu

More information

Formalizing Randomized Matching Algorithms

Formalizing Randomized Matching Algorithms Formalizing Randomized Matching Algorithms Stephen Cook Joint work with Dai Tri Man Lê Department of Computer Science University of Toronto Canada The Banff Workshop on Proof Complexity 2011 1 / 15 Feasible

More information

On Transformations of Constant Depth Propositional Proofs

On Transformations of Constant Depth Propositional Proofs On Transformations of Constant Depth Propositional Proofs Submitted for publication. Feedback appreciated. Arnold Beckmann Department of Computer Science College of Science Swansea University Swansea SA2

More information

Bounded Arithmetic, Constant Depth Proofs, and st-connectivity. Sam Buss Department of Mathematics U.C. San Diego

Bounded Arithmetic, Constant Depth Proofs, and st-connectivity. Sam Buss Department of Mathematics U.C. San Diego Bounded Arithmetic, Constant Depth Proofs, and st-connectivity Sam Buss Department of Mathematics U.C. San Diego VIG Los Angeles February 2005 Bounded Arithmetic Theories S i 2 and T i 2 have very close

More information

Unprovability of circuit upper bounds in Cook s theory PV

Unprovability of circuit upper bounds in Cook s theory PV Unprovability of circuit upper bounds in Cook s theory PV Igor Carboni Oliveira Faculty of Mathematics and Physics, Charles University in Prague. Based on joint work with Jan Krajíček (Prague). [Dagstuhl

More information

A polytime proof of correctness of the Rabin-Miller algorithm from Fermat s Little Theorem

A polytime proof of correctness of the Rabin-Miller algorithm from Fermat s Little Theorem A polytime proof of correctness of the Rabin-Miller algorithm from Fermat s Little Theorem Grzegorz Herman and Michael Soltys November 24, 2008 Abstract Although a deterministic polytime algorithm for

More information

Provability of weak circuit lower bounds

Provability of weak circuit lower bounds Provability of weak circuit lower bounds Moritz Müller Ján Pich Kurt Gödel Research Center for Mathematical Logic University of Vienna {moritz.mueller,jan.pich}@univie.ac.at September 2017 Abstract We

More information

Proofs with monotone cuts

Proofs with monotone cuts Proofs with monotone cuts Emil Jeřábek jerabek@math.cas.cz http://math.cas.cz/ jerabek/ Institute of Mathematics of the Academy of Sciences, Prague Logic Colloquium 2010, Paris Propositional proof complexity

More information

Bounded Arithmetic, Expanders, and Monotone Propositional Proofs

Bounded Arithmetic, Expanders, and Monotone Propositional Proofs Bounded Arithmetic, Expanders, and Monotone Propositional Proofs joint work with Valentine Kabanets, Antonina Kolokolova & Michal Koucký Takeuti Symposium on Advances in Logic Kobe, Japan September 20,

More information

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Toniann Pitassi Department of Computer Science University of Toronto toni@cs.toronto.edu Ran Raz Department of Computer Science Weizmann

More information

Expander Construction in VNC 1

Expander Construction in VNC 1 Expander Construction in VNC 1 Sam Buss joint work with Valentine Kabanets, Antonina Kolokolova & Michal Koucký Prague Workshop on Bounded Arithmetic November 2-3, 2017 Talk outline I. Combinatorial construction

More information

I. Introduction to NP Functions and Local Search

I. Introduction to NP Functions and Local Search I. Introduction to NP Functions and Local Search (UCSD) sbuss@math.ucsd.edu Prague, September 2009 NP Functions TFNP [JPY 88, Papadimitriou 94]. Definition TFNP, the class of Total NP Functions is the

More information

Random Resolution Refutations

Random Resolution Refutations [1] Random Resolution Refutations Pavel Pudlák and Neil Thapen 1 Mathematical Institute, Academy of Sciences, Prague Riga, 6.7.17 1 the authors are supported by the ERC grant FEALORA [2] History and Motivation

More information

Model theory of bounded arithmetic with applications to independence results. Morteza Moniri

Model theory of bounded arithmetic with applications to independence results. Morteza Moniri Model theory of bounded arithmetic with applications to independence results Morteza Moniri Abstract In this paper we apply some new and some old methods in order to construct classical and intuitionistic

More information

On extracting computations from propositional proofs (a survey)

On extracting computations from propositional proofs (a survey) On extracting computations from propositional proofs (a survey) Pavel Pudlák September 16, 2010 Abstract This paper describes a project that aims at showing that propositional proofs of certain tautologies

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Random resolution refutations. Pavel Pudlák Neil Thapen

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Random resolution refutations. Pavel Pudlák Neil Thapen INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Random resolution refutations Pavel Pudlák Neil Thapen Preprint No. 40-2016 PRAHA 2016 Random resolution refutations Pavel Pudlák and Neil Thapen

More information

Lecture 11: Measuring the Complexity of Proofs

Lecture 11: Measuring the Complexity of Proofs IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 11: Measuring the Complexity of Proofs David Mix Barrington and Alexis Maciel July

More information

Algorithms for Satisfiability beyond Resolution.

Algorithms for Satisfiability beyond Resolution. Algorithms for Satisfiability beyond Resolution. Maria Luisa Bonet UPC, Barcelona, Spain Oaxaca, August, 2018 Co-Authors: Sam Buss, Alexey Ignatiev, Joao Marques-Silva, Antonio Morgado. Motivation. Satisfiability

More information

Foundations of Proof Complexity: Bounded Arithmetic and Propositional Translations. Stephen Cook and Phuong Nguyen c Copyright 2004, 2005, 2006

Foundations of Proof Complexity: Bounded Arithmetic and Propositional Translations. Stephen Cook and Phuong Nguyen c Copyright 2004, 2005, 2006 Foundations of Proof Complexity: Bounded Arithmetic and Propositional Translations Stephen Cook and Phuong Nguyen c Copyright 2004, 2005, 2006 October 9, 2006 Preface (Preliminary Version) This book studies

More information

Proof Complexity and Computational Complexity

Proof Complexity and Computational Complexity Proof Complexity and Computational Complexity Stephen Cook Eastern Great Lakes Theory Workshop September 6, 2008 1 advertisement advertisement advertisement Logical Foundations of Proof Complexity Stephen

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

LIFTING LOWER BOUNDS FOR TREE-LIKE PROOFS

LIFTING LOWER BOUNDS FOR TREE-LIKE PROOFS comput. complex. c Springer Basel 2013 DOI 10.1007/s00037-013 0064-x computational complexity LIFTING LOWER BOUNDS FOR TREE-LIKE PROOFS Alexis Maciel, Phuong Nguyen, and Toniann Pitassi Abstract. It is

More information

NP search problems in low fragments of bounded arithmetic

NP search problems in low fragments of bounded arithmetic NP search problems in low fragments of bounded arithmetic Jan Krajíček 1,2 Alan Skelley 1 Neil Thapen 1 1 Mathematical Institute Academy of Sciences, Prague and 2 Faculty of Mathematics and Physics Charles

More information

Uniform Proofs of ACC Representations

Uniform Proofs of ACC Representations Noname manuscript No. (will be inserted by the editor) Uniform Proofs of ACC Representations Sam Buss the date of receipt and acceptance should be inserted later Abstract We give a uniform proof of the

More information

RESOLUTION OVER LINEAR EQUATIONS AND MULTILINEAR PROOFS

RESOLUTION OVER LINEAR EQUATIONS AND MULTILINEAR PROOFS RESOLUTION OVER LINEAR EQUATIONS AND MULTILINEAR PROOFS RAN RAZ AND IDDO TZAMERET Abstract. We develop and study the complexity of propositional proof systems of varying strength extending resolution by

More information

Lecture 13: Polynomial-Size Frege Proofs of the Pigeonhole Principle

Lecture 13: Polynomial-Size Frege Proofs of the Pigeonhole Principle IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 13: Polynomial-Size Frege Proofs of the Pigeonhole Principle David Mix Barrington

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Upper and Lower Bounds for Tree-like. Cutting Planes Proofs. Abstract. In this paper we study the complexity of Cutting Planes (CP) refutations, and

Upper and Lower Bounds for Tree-like. Cutting Planes Proofs. Abstract. In this paper we study the complexity of Cutting Planes (CP) refutations, and Upper and Lower Bounds for Tree-like Cutting Planes Proofs Russell Impagliazzo Toniann Pitassi y Alasdair Urquhart z UCSD UCSD and U. of Pittsburgh University of Toronto Abstract In this paper we study

More information

On the Automatizability of Resolution and Related Propositional Proof Systems

On the Automatizability of Resolution and Related Propositional Proof Systems On the Automatizability of Resolution and Related Propositional Proof Systems Albert Atserias and María Luisa Bonet Departament de Llenguatges i Sistemes Informàtics Universitat Politècnica de Catalunya

More information

Complexity of propositional proofs: Some theory and examples

Complexity of propositional proofs: Some theory and examples Complexity of propositional proofs: Some theory and examples Univ. of California, San Diego Barcelona April 27, 2015 Frege proofs Introduction Frege proofs Pigeonhole principle Frege proofs are the usual

More information

The Strength of Multilinear Proofs

The Strength of Multilinear Proofs The Strength of Multilinear Proofs Ran Raz Iddo Tzameret December 19, 2006 Abstract We introduce an algebraic proof system that manipulates multilinear arithmetic formulas. We show that this proof system

More information

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity 15-16/08/2009 Nicola Galesi 1 Organization Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity First Steps in Proof Complexity

More information

Resolution and the Weak Pigeonhole Principle

Resolution and the Weak Pigeonhole Principle Resolution and the Weak Pigeonhole Principle Sam Buss 1 and Toniann Pitassi 2 1 Departments of Mathematics and Computer Science University of California, San Diego, La Jolla, CA 92093-0112. 2 Department

More information

LOGICAL STRENGTH OF COMPLEXITY THEORY AND A FORMALIZATION OF THE PCP THEOREM IN BOUNDED ARITHMETIC

LOGICAL STRENGTH OF COMPLEXITY THEORY AND A FORMALIZATION OF THE PCP THEOREM IN BOUNDED ARITHMETIC LOGICAL STRENGTH OF COMPLEXITY THEORY AND A FORMALIZATION OF THE PCP THEOREM IN BOUNDED ARITHMETIC Department of Algebra, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83,

More information

Proof Complexity of Quantified Boolean Formulas

Proof Complexity of Quantified Boolean Formulas Proof Complexity of Quantified Boolean Formulas Olaf Beyersdorff School of Computing, University of Leeds Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 1 / 39 Proof complexity (in one

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

Some open problems in bounded arithmetic and propositional proof complexity (research proposal paper)

Some open problems in bounded arithmetic and propositional proof complexity (research proposal paper) Some open problems in bounded arithmetic and propositional proof complexity (research proposal paper) $Id: alanorp.tex,v 1.5 2002/12/10 04:57:36 alan Exp $ LATEX d on January 3, 2005 Alan Skelley January

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Circuit principles and weak pigeonhole variants

Circuit principles and weak pigeonhole variants Theoretical Computer Science 383 (007 115 131 www.elsevier.com/locate/tcs Circuit principles and weak pigeonhole variants Chris Pollett a,, Norman Danner b a Department of Computer Science, San Jose State

More information

The provably total NP search problems of weak second order bounded arithmetic

The provably total NP search problems of weak second order bounded arithmetic The provably total NP search problems of weak second order bounded arithmetic Leszek Aleksander Ko lodziejczyk Phuong Nguyen Neil Thapen October 21, 2010 Abstract We define a new NP search problem, the

More information

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions CS 6743 Lecture 15 1 Fall 2007 1 Circuit Complexity 1.1 Definitions A Boolean circuit C on n inputs x 1,..., x n is a directed acyclic graph (DAG) with n nodes of in-degree 0 (the inputs x 1,..., x n ),

More information

Total NP Functions I: Complexity and Reducibility

Total NP Functions I: Complexity and Reducibility Total NP Functions I: Complexity and Reducibility (UCSD) sbuss@math.ucsd.edu Newton Institute, March 2012 Total NP Functions [Meggido-Papadimitriou 91, Papadimitriou 94]. Definition, the class of Total

More information

A The NP Search Problems of Frege and Extended Frege Proofs

A The NP Search Problems of Frege and Extended Frege Proofs A The NP Search Problems of Frege and Extended Frege Proofs ARNOLD BECKMANN, Swansea University SAM BUSS, University of California, San Diego We study consistency search problems for Frege and extended

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Incompleteness in the finite domain. Pavel Pudlák

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Incompleteness in the finite domain. Pavel Pudlák INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Incompleteness in the finite domain Pavel Pudlák Preprint No. 5-2016 PRAHA 2016 Incompleteness in the finite domain Pavel Pudlák January 7, 2016

More information

arxiv: v1 [cs.cc] 10 Aug 2007

arxiv: v1 [cs.cc] 10 Aug 2007 RESOLUTION OVER LINEAR EQUATIONS AND MULTILINEAR PROOFS RAN RAZ AND IDDO TZAMERET arxiv:0708.1529v1 [cs.cc] 10 Aug 2007 Abstract. We develop and study the complexity of propositional proof systems of varying

More information

An Introduction to Proof Complexity, Part II.

An Introduction to Proof Complexity, Part II. An Introduction to Proof Complexity, Part II. Pavel Pudlák Mathematical Institute, Academy of Sciences, Prague and Charles University, Prague Computability in Europe 2009, Heidelberg 2 Overview Part I.

More information

PROOF COMPLEXITY IN ALGEBRAIC SYSTEMS AND BOUNDED DEPTH FREGE SYSTEMS WITH MODULAR COUNTING

PROOF COMPLEXITY IN ALGEBRAIC SYSTEMS AND BOUNDED DEPTH FREGE SYSTEMS WITH MODULAR COUNTING PROOF COMPLEXITY IN ALGEBRAIC SYSTEMS AND BOUNDED DEPTH FREGE SYSTEMS WITH MODULAR COUNTING S. Buss, R. Impagliazzo, J. Krajíček, P. Pudlák, A. A. Razborov and J. Sgall Abstract. We prove a lower bound

More information

15-855: Intensive Intro to Complexity Theory Spring Lecture 7: The Permanent, Toda s Theorem, XXX

15-855: Intensive Intro to Complexity Theory Spring Lecture 7: The Permanent, Toda s Theorem, XXX 15-855: Intensive Intro to Complexity Theory Spring 2009 Lecture 7: The Permanent, Toda s Theorem, XXX 1 #P and Permanent Recall the class of counting problems, #P, introduced last lecture. It was introduced

More information

On the computational content of intuitionistic propositional proofs

On the computational content of intuitionistic propositional proofs On the computational content of intuitionistic propositional proofs Samuel R. Buss 1,3 Pavel Pudlák 2,3 1 Introduction The intuitionistic calculus was introduced to capture reasoning in constructive mathematics.

More information

On Proofs About Threshold Circuits and Counting Hierarchies (Extended Abstract)

On Proofs About Threshold Circuits and Counting Hierarchies (Extended Abstract) On Proofs About Threshold Circuits and Counting Hierarchies (Extended Abstract) Jan Johannsen Chris Pollett Department of Mathematics Department of Computer Science University of California, San Diego

More information

Logic: The Big Picture

Logic: The Big Picture Logic: The Big Picture A typical logic is described in terms of syntax: what are the legitimate formulas semantics: under what circumstances is a formula true proof theory/ axiomatization: rules for proving

More information

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic A Tight Karp-Lipton Collapse Result in Bounded Arithmetic Olaf Beyersdorff 1 Sebastian Müller 2 1 Institut für Theoretische Informatik, Leibniz-Universität Hannover 2 Institut für Informatik, Humboldt-Universität

More information

Definition: Alternating time and space Game Semantics: State of machine determines who

Definition: Alternating time and space Game Semantics: State of machine determines who CMPSCI 601: Recall From Last Time Lecture 3 Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A trade-off between length and width in resolution. Neil Thapen

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A trade-off between length and width in resolution. Neil Thapen INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A trade-off between length and width in resolution Neil Thapen Preprint No. 59-2015 PRAHA 2015 A trade-off between length and width in resolution

More information

Characterizing Propositional Proofs as Non-Commutative Formulas

Characterizing Propositional Proofs as Non-Commutative Formulas Characterizing Propositional Proofs as Non-Commutative Formulas Fu Li Iddo Tzameret Zhengyu Wang Abstract Does every Boolean tautology have a short propositional-calculus proof? Here, a propositionalcalculus

More information

Quantified Propositional Calculus and a Second-Order Theory for NC 1

Quantified Propositional Calculus and a Second-Order Theory for NC 1 Quantified Propositional Calculus and a Second-Order Theory for NC 1 Stephen Cook Tsuyoshi Morioka April 14, 2004 Abstract Let H be a proof system for the quantified propositional calculus (QPC). We define

More information

Lecture 7: Recursive saturation

Lecture 7: Recursive saturation MODEL THEORY OF ARITHMETIC Lecture 7: Recursive saturation Tin Lok Wong 19 November, 2014 One of the most significant by-products of the study of admissible sets with urelements is the emphasis it has

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

Partial Collapses of the Σ 1 Complexity Hierarchy in Models for Fragments of Bounded Arithmetic

Partial Collapses of the Σ 1 Complexity Hierarchy in Models for Fragments of Bounded Arithmetic Partial Collapses of the Σ 1 Complexity Hierarchy in Models for Fragments of Bounded Arithmetic Zofia Adamowicz Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, 00-950 Warszawa, Poland

More information

Gödel s Incompleteness Theorems

Gödel s Incompleteness Theorems Seminar Report Gödel s Incompleteness Theorems Ahmet Aspir Mark Nardi 28.02.2018 Supervisor: Dr. Georg Moser Abstract Gödel s incompleteness theorems are very fundamental for mathematics and computational

More information

Effectively Polynomial Simulations

Effectively Polynomial Simulations Effectively Polynomial Simulations Toniann Pitassi 1 Rahul Santhanam 2 1 University of Toronto, Toronto, Canada 2 University of Edinburgh, Edinburgh, UK toni@cs.toronto.edu rsanthan@inf.ed.ac.uk Abstract:

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

Definition: Alternating time and space Game Semantics: State of machine determines who

Definition: Alternating time and space Game Semantics: State of machine determines who CMPSCI 601: Recall From Last Time Lecture Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins

More information

This is logically equivalent to the conjunction of the positive assertion Minimal Arithmetic and Representability

This is logically equivalent to the conjunction of the positive assertion Minimal Arithmetic and Representability 16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 207 If T is a consistent theory in the language of arithmetic, we say a set S is defined in T by D(x) if for all n, if n is in S, then D(n) is a theorem of

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy 1 The Turing Jump Klaus Sutner Carnegie Mellon University Arithmetical Hierarchy 60-arith-hier 2017/12/15 23:18 Definability Formal Systems Recall: Oracles 3 The Use Principle 4

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy Klaus Sutner Carnegie Mellon University 60-arith-hier 2017/12/15 23:18 1 The Turing Jump Arithmetical Hierarchy Definability Formal Systems Recall: Oracles 3 We can attach an orcale

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

ALGEBRAIC PROOFS OVER NONCOMMUTATIVE FORMULAS

ALGEBRAIC PROOFS OVER NONCOMMUTATIVE FORMULAS Electronic Colloquium on Computational Complexity, Report No. 97 (2010) ALGEBRAIC PROOFS OVER NONCOMMUTATIVE FORMULAS IDDO TZAMERET Abstract. We study possible formulations of algebraic propositional proof

More information

Logical Closure Properties of Propositional Proof Systems

Logical Closure Properties of Propositional Proof Systems Logical Closure Properties of Propositional Proof Systems (Extended Abstract) Olaf Beyersdorff Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany beyersdorff@thi.uni-hannover.de

More information

DRAFT. Complexity of counting. Chapter 8

DRAFT. Complexity of counting. Chapter 8 Chapter 8 Complexity of counting It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 18, 2012 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome!

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome! i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University complexitybook@gmail.com Not to be reproduced or distributed

More information

Logical Closure Properties of Propositional Proof Systems

Logical Closure Properties of Propositional Proof Systems of Logical of Propositional Institute of Theoretical Computer Science Leibniz University Hannover Germany Theory and Applications of Models of Computation 2008 Outline of Propositional of Definition (Cook,

More information

STUDIES IN ALGEBRAIC AND PROPOSITIONAL PROOF COMPLEXITY. Iddo Tzameret

STUDIES IN ALGEBRAIC AND PROPOSITIONAL PROOF COMPLEXITY. Iddo Tzameret TEL AVIV UNIVERSITY THE RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES SCHOOL OF COMPUTER SCIENCE STUDIES IN ALGEBRAIC AND PROPOSITIONAL PROOF COMPLEXITY Thesis Submitted for the Degree of Doctor

More information

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY Gödel s Proof Victoria Gitman and Thomas Johnstone New York City College of Technology, CUNY vgitman@nylogic.org http://websupport1.citytech.cuny.edu/faculty/vgitman tjohnstone@citytech.cuny.edu March

More information

CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal?

CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal? CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal? The conjecture that P is different from NP made its way on to several lists of the most important unsolved problems in Mathematics (never

More information

The quantifier complexity of polynomial-size iterated definitions in first-order logic

The quantifier complexity of polynomial-size iterated definitions in first-order logic Mathematical Logic Quarterly, 10 February 2010 The quantifier complexity of polynomial-size iterated definitions in first-order logic Samuel R. Buss and Alan S. Johnson Department of Mathematics University

More information

Notes on Complexity Theory Last updated: October, Lecture 6

Notes on Complexity Theory Last updated: October, Lecture 6 Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACE-Completeness As in our previous study of N P, it is useful to identify

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Please evaluate this course on Axess. Your comments really do make a difference. Announcements Problem Set 8 due tomorrow at 12:50PM sharp with one late day. Problem Set 9 out,

More information

Algebraic Proof Complexity: Progress, Frontiers and Challenges

Algebraic Proof Complexity: Progress, Frontiers and Challenges Algebraic Proof Complexity: Progress, Frontiers and Challenges Toniann Pitassi Iddo Tzameret July 1, 2016 Abstract We survey recent progress in the proof complexity of strong proof systems and its connection

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

Krivine s Intuitionistic Proof of Classical Completeness (for countable languages)

Krivine s Intuitionistic Proof of Classical Completeness (for countable languages) Krivine s Intuitionistic Proof of Classical Completeness (for countable languages) Berardi Stefano Valentini Silvio Dip. Informatica Dip. Mat. Pura ed Applicata Univ. Torino Univ. Padova c.so Svizzera

More information

2 BEAME AND PITASSI systems of increasing complexity. This program has several important side eects. First, standard proof systems are interesting in

2 BEAME AND PITASSI systems of increasing complexity. This program has several important side eects. First, standard proof systems are interesting in Propositional Proof Complexity: Past, Present, and Future Paul Beame and Toniann Pitassi Abstract. Proof complexity, the study of the lengths of proofs in propositional logic, is an area of study that

More information

Non-automatizability of bounded-depth Frege proofs

Non-automatizability of bounded-depth Frege proofs Non-aomatizability of bounded-depth Frege proofs Maria Luisa Bonet Department of Software (LSI) Universitat Politècnica de Catalunya Barcelona, Spain bonet@lsi.upc.es Ricard Gavaldà y Department of Software

More information

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement CS 710: Complexity Theory 9/29/2011 Lecture 7: The Polynomial-Time Hierarchy Instructor: Dieter van Melkebeek Scribe: Xi Wu In this lecture we first finish the discussion of space-bounded nondeterminism

More information

Bounded Arithmetic vs. Propositional Proof Systems vs. Complexity Classes (depth oral survey)

Bounded Arithmetic vs. Propositional Proof Systems vs. Complexity Classes (depth oral survey) Bounded Arithmetic vs. Propositional Proof Systems vs. Complexity Classes (depth oral survey) $Id: alanodepth.tex,v 1.18 2002/04/01 04:54:38 alan Exp $ LATEX d on January 3, 2005 Alan Skelley January 3,

More information

Between proof theory and model theory Three traditions in logic: Syntactic (formal deduction)

Between proof theory and model theory Three traditions in logic: Syntactic (formal deduction) Overview Between proof theory and model theory Three traditions in logic: Syntactic (formal deduction) Jeremy Avigad Department of Philosophy Carnegie Mellon University avigad@cmu.edu http://andrew.cmu.edu/

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

Proof Theory and Subsystems of Second-Order Arithmetic

Proof Theory and Subsystems of Second-Order Arithmetic Proof Theory and Subsystems of Second-Order Arithmetic 1. Background and Motivation Why use proof theory to study theories of arithmetic? 2. Conservation Results Showing that if a theory T 1 proves ϕ,

More information

Parallel Time and Proof Complexity. Klaus Aehlig

Parallel Time and Proof Complexity. Klaus Aehlig Parallel Time and Proof Complexity Klaus Aehlig ii Abstract Consider the following variant of quantified propositional logic. A new, parallel extension rule is introduced. This rule is aware of independence

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Propositional and Predicate Logic. jean/gbooks/logic.html

Propositional and Predicate Logic.   jean/gbooks/logic.html CMSC 630 February 10, 2009 1 Propositional and Predicate Logic Sources J. Gallier. Logic for Computer Science, John Wiley and Sons, Hoboken NJ, 1986. 2003 revised edition available on line at http://www.cis.upenn.edu/

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Math 267a - Propositional Proof Complexity. Lecture #1: 14 January 2002

Math 267a - Propositional Proof Complexity. Lecture #1: 14 January 2002 Math 267a - Propositional Proof Complexity Lecture #1: 14 January 2002 Lecturer: Sam Buss Scribe Notes by: Robert Ellis 1 Introduction to Propositional Logic 1.1 Symbols and Definitions The language of

More information