5.1 Angles and Their Measurements

Size: px
Start display at page:

Download "5.1 Angles and Their Measurements"

Transcription

1 Graduate T.A. Department of Mathematics Dnamical Sstems and Chaos San Diego State Universit November 8, 2011

2 A ra is the set of points which are part of a line which is finite in one direction, but infinite in the other. A B

3 A ra is the set of points which are part of a line which is finite in one direction, but infinite in the other. A B An angle is defined as the union of two ras with a common endpoint, the verte. C Verte A B

4 An angle can be thought of as being formed b rotating one ra awa from a fied ra. The fied ra is the initial side and the rotated ra is the terminal side. verte terminal side α initial side

5 An angle whose verte is the center of a circle is a central angle, and the arc of the circle through which the terminal side moves is the intercepted arc. Intercepted arc Figure: Central Angle

6 An angle in standard position is located in a rectangular coordinate sstem with the verte at the origin and the initial side on the positive -ais. verte terminal side α initial side

7 The measure of an angle α is denoted b m(α), and indicates the amount of rotation of the terminal side from the initial position. It is found using an circle centered at the verte. verte terminal side α initial side The circle is divided into 360 equal arcs and each arc is one degree (1 o ).

8 The degree measure of an angle is the number of degrees in the intercepted arc of a circle centered at the verte. verte terminal side α initial side

9 HUGE NOTE: The degree measure is positive if the rotation is counterclockwise and negative if the rotation is clockwise

10 Quadrantal angles are angles whose terminal side falls along an ais

11 Coterminal angles are angles in standard position that have the same initial side and same terminal side Definition Angles α and β in standard position are coterminal if and onl if there is an integer k such that m(α) = m(β)+k 360

12

13 To define an angle with radian measure 1, consider a circle of an radius, r, centered at the origin of the plane. P r θ r A Definition (Radian Measure) If the length of the intercepted arc between points A and P is equal to the radius of the circle then the angle θ has a measure of one radian.

14 How man radial lengths fit into a half circle? About 3.14 of them. θ r P r A P r α r A m(θ) = 1 radian m(α) = 2 radians r P r β r A P 180 o A m(β) = 3 radians π 3.14 radians

15 A radian is a unitless quantit (0,1) (-1,0) (1,0) (0,-1) Figure: The unit circle is defined b the relation = 1 For radian measure of angles we use a unit circle centered at the origin. Since the radius of the unit circle is the real number 1 without an dimension (such as feet or inches), the length of an intercepted arc is a real number without an dimension.

16 A radian is a unitless quantit (-1,0) (0,1) 57.3 o 1 rad (1,0) (0,-1) Figure: The unit circle is defined b the relation = 1 Hence radian measure of an angle is also a real number without an dimension. One radian (abbreviated 1 rad) is the real number 1. as a result of this construction, converting degrees to radians is a wa to non dimensionalize the units of an angle.

17 Radian Measure (0,1) (0,1) α t (-1,0) (1,0) (-1,0) (1,0) (0,-1) (0,-1) m(α) = π 2 rads m(t) = 3π 4 rads Definition (RADIAN MEASURE) The radian measure of an angle in standard position is simpl the length of the intercepted arc on the unit circle.

18 150, 5π 6 135, 3π 4 120, 2π 3 90, π 2 60, π 3 45, π 4 30, π 6 180, π 360, 2π 210, 7π 6 225, 5π 4 315, 7π 4 330, 11π 6 240, 4π 3 270, 3π 2 300, 5π 3

19 Converting degrees to radians using 180 o = π To change Multipl b Eamples degrees to radians radians to degrees ( ) π π 180 o 150 o = 150 o 180 o = 5π o π ( ) π 225 o = 225 o 180 o = 5π 4 7π 4 = 7π 4 ( ) 180 o = 315 o π π 3 = π ( ) 180 o = 60 o 3 π

20 Common Angles Multiples of are called Eamples (assuming angles are in reduced form) π 2 90 o tpes quadrantal angles 3π 2, 11π 2 7π 2, π π 3 π 4 π 6 60 o tpes 45 o tpes 30 o tpes 2π 3, 5π 3 3π 4, 5π 4 5π 6, 7π 6 4π 3, 217π 3 7π 4, 217π 4 11π 6, 217π 6

21 Theorem (arc length) The length s of an arc intercepted b a central angle of θ radians on a circle of radius r is given b s = r θ θ r s A mnemonic device for remembering s = rθ is SRO (Standing Room Onl) [ s Proof : 2πr = θ ] [ ] [ ] 2πs = 2πrθ s = rθ 2π

22 Eample: A circular arc of length 18 feet subtends a central angle of 75 degrees. Find the radius of the circle in feet. Soln: We are given s = 18 and θ = 75 o. First convert 75 o to radians. θ = 75 o ( ) π 180 o = 5π 12 then use s = rθ and the given values of s and θ to solve for the unknown, r. [ ] [ s = rθ = 18 = 5π ] 12 r Multipling both sides b 12 5π gets the result: ( ) ( )( ) π 18 = 5π 5π 12 r ( ) 12 r = feet 5π

23 Linear and Angular Velocit Suppose that a point is in motion on a circle. (eg. a piece of gum stuck on the tire of a moving car): The distance traveled b the tire in some unit of time is the length of an arc on the circle. The linear velocit of the tire is the rate at which that distance is changing. An angle is formed b the initial and terminal positions of the ra over some unit of time. The angular velocit of the tire is the rate at which that angle is changing. We let the letter v represent linear velocit for a point in circular motion and the Greek letter ω (omega) represent angular velocit.

24 Definition ( Linear Velocit and Angular Velocit) Suppose a point is in constant motion on a circle of radius r (e.g., a piece of gum on a tire moving at 55 mph). Then its linear velocit (constant speed) is v = s t = arclength time where s is the arc length determined b s = rθ (standing room onl). An angle, denoted θ, is formed b the initial and terminal positions of the ra over some unit of time. The angular velocit of the point is ω = θ t = radians time

25 Using the previous definitions v = s t, ω = θ, and the arc length t formula s = rθ (standing room onl) it is eas for one to see that v = s t = rθ ( ) θ t = r = rω t Theorem (Linear Velocit in Terms of Angular Velocit ) If v is the linear velocit of a point on a circle of radius r, and ω (omega) is its angular velocit, then v = rω

26 Eample 11 What are the angular velocit in radians per second and the linear velocit in miles per hour of the tip of a 22-inch lawnmower blade that is rotating at 2500 revolutions per minute?

27 Eample 11 What are the angular velocit in radians per second and the linear velocit in miles per hour of the tip of a 22-inch lawnmower blade that is rotating at 2500 revolutions per minute? Use the fact that 2π radians = 1 revolution and 60 seconds = 1 minute to find the angular velocit, ω. ω = 2500 rev min = 2500 rev min 2π rad 1 rev 1 min rad/sec 60 sec

28 Eample 11 What are the angular velocit in radians per second and the linear velocit in miles per hour of the tip of a 22-inch lawnmower blade that is rotating at 2500 revolutions per minute? Use the fact that 2π radians = 1 revolution and 60 seconds = 1 minute to find the angular velocit, ω. ω = 2500 rev min = 2500 rev min 2π rad 1 rev 1 min rad/sec 60 sec To find linear velocit, use v = rω with r = 11 inches: v = 11 in rad sec in./sec

29 Eample 11 What are the angular velocit in radians per second and the linear velocit in miles per hour of the tip of a 22-inch lawnmower blade that is rotating at 2500 revolutions per minute? Use the fact that 2π radians = 1 revolution and 60 seconds = 1 minute to find the angular velocit, ω. ω = 2500 rev min = 2500 rev min 2π rad 1 rev 1 min rad/sec 60 sec To find linear velocit, use v = rω with r = 11 inches: v = 11 in rad sec Then convert this result to miles per hour: v = in. sec in./sec 1 ft 12 in. 1 mi 3600 sec mi/hr 5280 ft 1 hr

1.1 Angles and Degree Measure

1.1 Angles and Degree Measure J. Jenkins - Math 060 Notes. Angles and Degree Measure An angle is often thought of as being formed b rotating one ra awa from a fied ra indicated b an arrow. The fied ra is the initial side and the rotated

More information

150 Lecture Notes - Section 6.1 Angle Measure

150 Lecture Notes - Section 6.1 Angle Measure c Marcia Drost, February, 008 Definition of Terms 50 Lecture Notes - Section 6. Angle Measure ray a line angle vertex two rays with a common endpoint the common endpoint initial side terminal side Standard

More information

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis.

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis. Name: Topic: Main Ideas/Questions Notes/Eamples Date: Class: Angles in Standard Form y θ An angle on the coordinate plane is in standard form when the verte is on the origin and one ray lies on the positive

More information

Example 1 Give the degree measure of the angle shown on the circle.

Example 1 Give the degree measure of the angle shown on the circle. Section 5. Angles 307 Section 5. Angles Because many applications involving circles also involve q rotation of the circle, it is natural to introduce a measure for the rotation, or angle, between two rays

More information

Central Angles and Arcs

Central Angles and Arcs Advance Algebra & Trigonometry Angles & Circular Functions Central Angles and Arcs Arc Length 1. A central angle an angle whose vertex lies at the center of the circle: A B ABC is a central angle C 2.

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

Unit 6 Introduction to Trigonometry Degrees and Radians (Unit 6.2)

Unit 6 Introduction to Trigonometry Degrees and Radians (Unit 6.2) Unit 6 Introduction to Trigonometr Degrees and Radians (Unit 6.2) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When ou have completed this lesson ou will: Understand an angle

More information

An can be formed by rotating one ray away from a fixed ray indicated by an arrow. The fixed. ray is the and the rotated ray is the.

An can be formed by rotating one ray away from a fixed ray indicated by an arrow. The fixed. ray is the and the rotated ray is the. Date: 1/29/19 61 Section: Objective: angle angles t their measures An can be formed by rotating one ray away from a fixed ray indicated by an arrow The fixed initial side terminal side ray is the and the

More information

CHAPTER 4 Trigonometry

CHAPTER 4 Trigonometry CHAPTER Trigonometr Section. Radian and Degree Measure You should know the following basic facts about angles, their measurement, and their applications. Tpes of Angles: (a) Acute: Measure between 0 and

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. What You Should Learn Describe angles. Use radian

More information

DMS, LINEAR AND ANGULAR SPEED

DMS, LINEAR AND ANGULAR SPEED DMS, LINEAR AND ANGULAR SPEED Section 4.1A Precalculus PreAP/Dual, Revised 2017 viet.dang@humbleisd.net 8/1/2018 12:13 AM 4.1B: DMS, Linear and Angular Speed 1 DEGREES MINUTES SECONDS (DMS) A. Written

More information

Chapter 5 Introduction to Trigonometric Functions

Chapter 5 Introduction to Trigonometric Functions Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are

More information

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Lesson 6.2 Before we look at the unit circle with respect to the trigonometric functions, we need to get some

More information

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3.

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3. 0//0 I. Degrees and Radians A. A degree is a unit of angular measure equal to /80 th of a straight angle. B. A degree is broken up into minutes and seconds (in the DMS degree minute second sstem) as follows:.

More information

Chapter 3. Radian Measure and Circular Functions. Copyright 2005 Pearson Education, Inc.

Chapter 3. Radian Measure and Circular Functions. Copyright 2005 Pearson Education, Inc. Chapter 3 Radian Measure and Circular Functions Copyright 2005 Pearson Education, Inc. 3.1 Radian Measure Copyright 2005 Pearson Education, Inc. Measuring Angles Thus far we have measured angles in degrees

More information

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that:

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that: Arclength Consider a circle of radius r and an angle of x degrees as shown in the figure below. The segment of the circle opposite the angle x is called the arc subtended by x. We need a formula for its

More information

Angles and Applications

Angles and Applications CHAPTER 1 Angles and Applications 1.1 Introduction Trigonometry is the branch of mathematics concerned with the measurement of the parts, sides, and angles of a triangle. Plane trigonometry, which is the

More information

Chapter 3. Radian Measure and Dynamic Trigonometry

Chapter 3. Radian Measure and Dynamic Trigonometry Chapter 3 Radian Measure and Dynamic Trigonometry 1 Chapter 3 Topics Angle Measure in Radians Length, Velocity and Area of a Circular sector Unit Circle Trig and Real Numbers 2 Chapter 3.1 Angle Measure

More information

Chapter 3. Radian Measure and Circular Functions. Section 3.1: Radian Measure. π 1.57, 1 is the only integer value in the

Chapter 3. Radian Measure and Circular Functions. Section 3.1: Radian Measure. π 1.57, 1 is the only integer value in the Chapter Radian Measure and Circular Functions Section.: Radian Measure. Since θ is in quadrant I, 0 < θ

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians = 180º Therefore, o 180 π 1 rad =, or π 1º = 180 rad Angle Measure Conversions π 1. To convert degrees to radians,

More information

A Short Course in Basic Trigonometry. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A Short Course in Basic Trigonometry. Marcel B. Finan Arkansas Tech University c All Rights Reserved A Short Course in Basic Trigonometry Marcel B. Finan Arkansas Tech University c All Rights Reserved PREFACE Trigonometry in modern time is an indispensable tool in Physics, engineering, computer science,

More information

2018 Midterm Review Trigonometry: Midterm Review A Missive from the Math Department Trigonometry Work Problems Study For Understanding Read Actively

2018 Midterm Review Trigonometry: Midterm Review A Missive from the Math Department Trigonometry Work Problems Study For Understanding Read Actively Summer . Fill in the blank to correctl complete the sentence..4 written in degrees and minutes is..4 written in degrees and minutes is.. Find the complement and the supplement of the given angle. The complement

More information

Important variables for problems in which an object is moving along a circular arc

Important variables for problems in which an object is moving along a circular arc Unit - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the vertex,

More information

Math 1303 Part II. The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree

Math 1303 Part II. The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree Math 1303 Part II We have discussed two ways of measuring angles; degrees and radians The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree We defined a radian

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows:

Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows: Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows: 4. Example 1 (A): Convert each degree measure to radians: A:

More information

MTH 133: Plane Trigonometry

MTH 133: Plane Trigonometry MTH 133: Plane Trigonometry Radian Measure, Arc Length, and Area Angular and Linear Velocity Thomas W. Judson Department of Mathematics & Statistics Stephen F. Austin State University Fall 2017 Plane Trigonometry

More information

1. Use a calculator to find to the nearest tenth of a degree, if 0 < < 360 and

1. Use a calculator to find to the nearest tenth of a degree, if 0 < < 360 and Practice Test 2 Numeric Response 1. Use a calculator to find to the nearest tenth of a degree, if 0 < < 360 and with in QIII 2. Use a calculator to find to the nearest tenth of a degree, if 0 < < 360 and

More information

4-2 Degrees and Radians

4-2 Degrees and Radians Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth. 1. 11.773 First, convert 0. 773 into minutes and seconds. Next, convert 0.38' into seconds.

More information

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis.

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis. 1 Section 6.1 I. Definitions Angle Formed by rotating a ray about its endpoint. Initial side Starting point of the ray. Terminal side- Position of the ray after rotation. Vertex of the angle- endpoint

More information

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017 Describing Circular and Rotational Motion Rotational motion is the motion of objects that spin about an axis. Section 7.1 Describing Circular and Rotational Motion We use the angle θ from the positive

More information

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation 1 Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation Sometimes the equation that relates two or more variables can be described in words by the idea of variation. There are three

More information

Sect 10.1 Angles and Triangles

Sect 10.1 Angles and Triangles 175 Sect 10.1 Angles and Triangles Objective 1: Converting Angle Units Each degree can be divided into 60 minutes, denoted 60', and each minute can be divided into 60 seconds, denoted 60". Hence, 1 = 60'

More information

1.1 Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. 1) 162

1.1 Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. 1) 162 Math 00 Midterm Review Dugopolski Trigonometr Edition, Chapter and. Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. ) ) - ) For the given angle,

More information

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) TRIGONOMETRY: the study of the relationship between the angles and sides of a triangle from the Greek word for triangle ( trigonon) (trigonon ) and measure ( metria)

More information

Chapter 3.5. Uniform Circular Motion

Chapter 3.5. Uniform Circular Motion Chapter 3.5 Uniform Circular Motion 3.5 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 11 George Voutsadakis (LSSU) Trigonometry January 015 1 / 8 Outline 1 Trigonometric

More information

( ) ( ) ( ) Odd-Numbered Answers to Exercise Set 4.1: Special Right Triangles and Trigonometric Ratios ( ) MATH 1330 Precalculus

( ) ( ) ( ) Odd-Numbered Answers to Exercise Set 4.1: Special Right Triangles and Trigonometric Ratios ( ) MATH 1330 Precalculus Odd-Numbered Answers to Eercise Set.: Special Right Triangles and Trigonometric Ratios. angles. 80. largest, smallest 7. (a) 9. (a). (a) + + 0 0, so + ( ) 8 8 8, so + 8. (a) 8, so ( 8 ) ( 8 ) + + 8 + 8

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians 180º Therefore, o 180 π 1 rad, or π 1º 180 rad Angle Measure Conversions π 1. To convert degrees to radians, multiply

More information

Define General Angles and Use Radian Measure

Define General Angles and Use Radian Measure 1.2 a.1, a.4, a.5; P..E TEKS Define General Angles and Use Radian Measure Before You used acute angles measured in degrees. Now You will use general angles that ma be measured in radians. Wh? So ou can

More information

c arc length radius a r radians degrees The proportion can be used to

c arc length radius a r radians degrees The proportion can be used to Advanced Functions Page of Radian Measures Angles can be measured using degrees or radians. Radian is the measure of an angle. It is defined as the angle subtended at the centre of the circle in the ratio

More information

Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean.

Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean. AP Physics Rotational kinematics Rotational Kinematics Complete the table by filling in the symbols and equations. Include any notes that will help you remember and understand what these terms mean. Translational

More information

MAC 1114: Trigonometry Notes

MAC 1114: Trigonometry Notes MAC 1114: Trigonometry Notes Instructor: Brooke Quinlan Hillsborough Community College Section 7.1 Angles and Their Measure Greek Letters Commonly Used in Trigonometry Quadrant II Quadrant III Quadrant

More information

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb-a Block.notebook April 03, 2014

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb-a Block.notebook April 03, 2014 Objectives: Generate vocabulary flashcards for new terms. Derive formulas for arc length and area of a circular sector. Solve application problems using the arc length and area of circular sector formulas.

More information

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor In Trigonometry we will be working with angles from We will also work with degrees that are smaller than Check out Shaun White s YouTube

More information

1.1 Angles, Degrees, and Arcs

1.1 Angles, Degrees, and Arcs MA140 Trig 2015 Homework p. 1 Name: 1.1 Angles, Degrees, and Arcs Find the fraction of a counterclockwise revolution that will form an angle with the indicated number of degrees. 3(a). 45 3(b). 150 3(c).

More information

4.1 Angles and Angle Measure.notebook. Chapter 4: Trigonometry and the Unit Circle

4.1 Angles and Angle Measure.notebook. Chapter 4: Trigonometry and the Unit Circle Chapter 4: Trigonometry and the Unit Circle 1 Chapter 4 4.1 Angles and Angle Measure Pages 166 179 How many radii are there around any circle??? 2 There are radii around the circumference of any circle.

More information

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb A Block.notebook May 14, 2014

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb A Block.notebook May 14, 2014 Objectives: Generate vocabulary flashcards for new terms. Derive formulas for arc length and area of a circular sector. Solve application problems using the arc length and area of circular sector formulas.

More information

Section 4.2: Radians, Arc Length, and the Area of a Sector

Section 4.2: Radians, Arc Length, and the Area of a Sector CHAPTER 4 Trigonometric Functions Section 4.: Radians, Arc Length, and the Area of a Sector Measure of an Angle Formulas for Arc Length and Sector Area Measure of an Angle Degree Measure: 368 SECTION 4.

More information

CHAPTER 1. ANGLES AND BASIC TRIG

CHAPTER 1. ANGLES AND BASIC TRIG DR. YOU: 017 FALL 1 CHAPTER 1. ANGLES AND BASIC TRIG LECTURE 1-0 REVIEW EXAMPLE 1 YOUR TURN 1 Simplify the radical expression. Simplify the radical expression. (A) 108 (A) 50 First, find the biggest perfect

More information

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer.

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer. Trig Exam Review F07 O Brien Trigonometry Exam Review: Chapters,, To adequately prepare for the exam, try to work these review problems using only the trigonometry knowledge which you have internalized

More information

(A) (12, 5) (B) ( 8, 15) (C) (3,6) (D) (4,4)

(A) (12, 5) (B) ( 8, 15) (C) (3,6) (D) (4,4) DR. YOU: 018 FALL 1 CHAPTER 1. ANGLES AND BASIC TRIG LECTURE 1-0 REVIEW EXAMPLE 1 YOUR TURN 1 Simplify the radical expression. Simplify the radical expression. (A) 108 (A) 50 First, find the biggest perfect

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

Quick review of Ch. 6 & 7. Quiz to follow

Quick review of Ch. 6 & 7. Quiz to follow Quick review of Ch. 6 & 7 Quiz to follow Energy and energy conservation Work:W = Fscosθ Work changes kinetic energy: Kinetic Energy: KE = 1 2 mv2 W = KE f KE 0 = 1 mv 2 1 mv 2 2 f 2 0 Conservative forces

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions 015 College Board. All rights reserved. Unit Overview In this unit ou will build on our understanding of right triangle trigonometr as ou stud angles in radian measure, trigonometric

More information

Precalculus: An Investigation of Functions. Student Solutions Manual for Chapter Solutions to Exercises

Precalculus: An Investigation of Functions. Student Solutions Manual for Chapter Solutions to Exercises Precalculus: An Investigation of Functions Student Solutions Manual for Chapter 5 5. Solutions to Exercises. D (5 ( )) + (3 ( 5)) (5 + ) + (3 + 5) 6 + 8 00 0 3. Use the general equation for a circle: (x

More information

We can use the Pythagorean Theorem to find the distance between two points on a graph.

We can use the Pythagorean Theorem to find the distance between two points on a graph. Chapter 5: Trigonometric Functions of Angles In the previous chapters, we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape

More information

Trigonometry Final Exam Review

Trigonometry Final Exam Review Name Period Trigonometry Final Exam Review 2014-2015 CHAPTER 2 RIGHT TRIANGLES 8 1. Given sin θ = and θ terminates in quadrant III, find the following: 17 a) cos θ b) tan θ c) sec θ d) csc θ 2. Use a calculator

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

Given one trigonometric ratio and quadrant, determining the remaining function values

Given one trigonometric ratio and quadrant, determining the remaining function values MATH 2412 Precalculus Sections 4.1-4.5 Trigonometry (quick review) Below is a list of topics you should be familiar with if you have completed a course recently in Trigonometry. I am going to assume knowledge

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics 8.1 Rotational Motion and Angular Displacement In the simplest kind of rotation, points on a rigid object move on circular paths around an axis of rotation. 8.1 Rotational

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The figures below show two axes in the plane of the paper and located so that the points B and C move in circular paths having

More information

5.1: Angles and Radian Measure Date: Pre-Calculus

5.1: Angles and Radian Measure Date: Pre-Calculus 5.1: Angles and Radian Measure Date: Pre-Calculus *Use Section 5.1 (beginning on pg. 482) to complete the following Trigonometry: measurement of triangles An angle is formed by two rays that have a common

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator 4-1 Skills Objective A In 1 and, the measure of a rotation is given. a. Convert the measure to revolutions. b. On the circle draw a central angle showing the given rotation. 1. 5. radians - a. a. b. b.

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y. BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH06 Review Sheet. Perform the indicated operations and simplif: n n 0 n + n ( 9 )( ) + + 6 + 9ab

More information

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians SECTION 6-5 CHAPTER 6 Section 6. Two angles are complementary if the sum of their measures is 90 radians. Two angles are supplementary if the sum of their measures is 80 ( radians).. A central angle of

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Arc Length, Area of Sector of a Circle, Angular and Linear Velocity Worksheet Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem.

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS TRIGNMETRIC FUNCTINS INTRDUCTIN In general, there are two approaches to trigonometry ne approach centres around the study of triangles to which you have already been introduced in high school ther one

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y. BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH06 Review Sheet. Perform the indicated operations and simplif: n n 0 n + n ( 9 ) ( ) + + 6 + 9ab

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 1 Chapter 1 Practice Test Bro. Daris Howard MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When going more than 38 miles per hour, the gas

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

1. Evaluate the function at each specified value of the independent variable and simplify. f 2a.)

1. Evaluate the function at each specified value of the independent variable and simplify. f 2a.) Honors Pre-Calculus Midterm Eam Review Name: January 04 Chapter : Functions and Their Graphs. Evaluate the function at each specified value of the independent variable and simplify. f ( ) f () b. f ( )

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

1 st Semester Final Review Date No

1 st Semester Final Review Date No CHAPTER 1 REVIEW 1. Simplify the epression and eliminate any negative eponents. Assume that all letters denote positive numbers. r s 6r s. Perform the division and simplify. 6 8 9 1 10. Simplify the epression.

More information

Chapter 13: Trigonometry Unit 1

Chapter 13: Trigonometry Unit 1 Chapter 13: Trigonometry Unit 1 Lesson 1: Radian Measure Lesson 2: Coterminal Angles Lesson 3: Reference Angles Lesson 4: The Unit Circle Lesson 5: Trig Exact Values Lesson 6: Trig Exact Values, Radian

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y. BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH06 Review Sheet. Perform the indicated operations and simplif: n n 0 n +n ( 9 )( ) + + 6 + 9ab a+b

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University Abstract This handout defines the trigonometric function of angles and discusses the relationship between trigonometric

More information

Transition to College Math

Transition to College Math Transition to College Math Date: Unit 3: Trigonometr Lesson 2: Angles of Rotation Name Period Essential Question: What is the reference angle for an angle of 15? Standard: F-TF.2 Learning Target: Eplain

More information

Section 5.1 Exercises

Section 5.1 Exercises Section 5.1 Circles 79 Section 5.1 Exercises 1. Find the distance between the points (5,) and (-1,-5). Find the distance between the points (,) and (-,-). Write the equation of the circle centered at (8,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the appropriate identity to find the indicated function value. Rationalize the denominator,

More information

n power Name: NOTES 2.5, Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION

n power Name: NOTES 2.5, Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION NOTES 2.5, 6.1 6.3 Name: Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION Direct Variation y mx b when b 0 or y mx or y kx y kx and k 0 - y varies directly as x - y is directly proportional

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapter 8 Accelerated Circular Motion 8.1 Rotational Motion and Angular Displacement A new unit, radians, is really useful for angles. Radian measure θ(radians) = s = rθ s (arc length) r (radius) (s in

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure?

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? In relationship to a circle, if I go half way around the edge

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use Name Outcomes Date Interpret graphical evidence of angular motion (uniform speed & uniform acceleration). Apply

More information

5 TRIGONOMETRIC FUNCTIONS

5 TRIGONOMETRIC FUNCTIONS Chapter 5 Trigonometric Functions 705 5 TRIGONOMETRIC FUNCTIONS Figure 5.1 The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr) 5.1 Angles 5.2 Unit Circle: Sine

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

4 Trigonometric Functions. Chapter Contents. Trigonometric Equations. Angles and Their Measurement. The Sine and Cosine Functions

4 Trigonometric Functions. Chapter Contents. Trigonometric Equations. Angles and Their Measurement. The Sine and Cosine Functions 9788405637_CH04_st.qd 0/5/4 5:33 PM Page 06 Jones & Bartlett Learning.. gualtiero boffi/shutterstock, Inc. 4 Trigonometric Functions Chapter Contents 4. Angles and Their Measurement 4.8 Trigonometric Equations

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Overview: 4.1 Radian and Degree Measure 4.2 Trigonometric Functions: The Unit Circle 4.3 Right Triangle Trigonometry 4.4 Trigonometric Functions of Any Angle 4.5 Graphs

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 5 5.. Determine the value of each trigonometric ratio. Use eact values where possible; otherwise write the value to the nearest thousandth. a) tan (5 ) b) cos c) sec ( ) cos º cos ( ) cos

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) Using Equation 8. (θ = Arc length / Radius) to calculate the angle (in radians) that each object subtends at your eye shows that

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information