Unit 6 Introduction to Trigonometry Degrees and Radians (Unit 6.2)

Size: px
Start display at page:

Download "Unit 6 Introduction to Trigonometry Degrees and Radians (Unit 6.2)"

Transcription

1 Unit 6 Introduction to Trigonometr Degrees and Radians (Unit 6.2) William (Bill) Finch Mathematics Department Denton High School

2 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

3 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

4 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

5 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

6 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

7 Lesson Goals When ou have completed this lesson ou will: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Radian/Degree 2 / 35

8 Angles in Standard Position An angle in standard position: starts on positive -ais (initial side) rotates counter-clockwise for positive angles rotates clockwise for negative angles often named with Greek letters theta... θ alpha... α beta... β Terminal Terminal Negative Positive Initial Initial Radian/Degree 3 / 35

9 Degree Measure (0 ) Radian/Degree 4 / 35

10 Degree-Minutes-Seconds (DMS) A fraction of a degree can be epressed as a decimal fraction, but historicall the degree was divided into minutes ( ) and seconds ( ). 1 = 60 and 1 = 60 For eample, = Read 32 degrees, 7 minutes, and 30 seconds. Radian/Degree 5 / 35

11 Degree-Minutes-Seconds (DMS) A fraction of a degree can be epressed as a decimal fraction, but historicall the degree was divided into minutes ( ) and seconds ( ). 1 = 60 and 1 = 60 For eample, = Read 32 degrees, 7 minutes, and 30 seconds. Radian/Degree 5 / 35

12 Eample 1 Convert to decimal degrees. a) b) Radian/Degree 6 / 35

13 Calculator Instructions TI-84 Radian/Degree 7 / 35

14 Eample 2 Convert to degree-minutes-seconds. a) 48.4 b) Radian/Degree 8 / 35

15 Calculator Instructions TI-84 Radian/Degree 9 / 35

16 Radian Measure One radian is the measure of a central angle θ that intercepts an arc s equal in length to the radius r of the circle: θ = s r where θ is measured in radians. r θ r s Note that in the diagram above the radius r of the circle is the same length as the arc s intercepted b the two radii, so θ = 1 rad when s = r. Radian/Degree 10 / 35

17 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

18 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

19 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

20 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

21 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

22 Radian Measure The circumference of a circle is one revolution around the circle. C = 2πr s = 2πr s r = 2π θ = 2π θ 6.28 A central angle θ that is one revolution is 2π radians. θ Radian/Degree 11 / 35

23 Radian Measure One revolution around a circle is slightl more than 6 radians. 2 rad 3 rad 4 rad r 1 rad s = r 6 rad 5 rad Radian/Degree 12 / 35

24 Radian Measure π 4 5π 6 2π 3 90 π 2 π 3 60 π 4 π π 2π π 6 5π 4 4π 3 3π 2 5π 3 11π 6 7π Radian/Degree 13 / 35

25 Special Angles Learn Them! π 2 π 2π 3π 2 Radian/Degree 14 / 35

26 Special Angles Learn Them! π 4 3π 4 5π 4 7π 4 Radian/Degree 15 / 35

27 Special Angles Learn Them! π 3 2π 3 4π 3 5π 3 Radian/Degree 16 / 35

28 Special Angles Learn Them! π 6 5π 6 7π 6 11π 6 Radian/Degree 17 / 35

29 Radian Measure Quadrant II π 2 < θ < π (obtuse angles) θ = π 2 Quadrant I 0 < θ < π 2 (acute angles) θ = π θ = 0 Quadrant III π < θ < 3π 2 Quadrant IV 3π 2 < θ < 2π θ = 3π 2 Radian/Degree 18 / 35

30 Radian-Degree Conversion Set up and solve this proportion: radian degree = π rad 180 Hint alwas set up the proportion with the unknown angle measure in the numerator. Radian/Degree 19 / 35

31 Eample 3 Convert to radian measure. a) 120 b) 30 Radian/Degree 20 / 35

32 Eample 4 Convert to degree measure. a) 3π 4 b) 3π 2 Radian/Degree 21 / 35

33 Coterminal Angles Coterminal angles have the same initial and terminal sides. α β β α To find a coterminal angle to some angle θ either add or subtract a multiple of 2π (or 360 ): θ ± n 2π θ ± n 360 Radian/Degree 22 / 35

34 Coterminal Angles Coterminal angles have the same initial and terminal sides. α β β α To find a coterminal angle to some angle θ either add or subtract a multiple of 2π (or 360 ): θ ± n 2π θ ± n 360 Radian/Degree 22 / 35

35 Eample 5 Sketch the angle given (in radians): θ = 2π 3 Then find two coterminal angles: one positive and one negative. Radian/Degree 23 / 35

36 Eample 6 Sketch the angle given (in radians): α = π 4 Then find two coterminal angles: one positive and one negative. Radian/Degree 24 / 35

37 Eample 7 Sketch the angle given (in degrees): β = 25 Then find two coterminal angles: one positive and one negative. Radian/Degree 25 / 35

38 Eample 8 Sketch the angle given (in degrees): θ = 150 Then find two coterminal angles: one positive and one negative. Radian/Degree 26 / 35

39 Arc Length The relationship between a central angle and the length of the intercepted arc is where θ is in radians. s = rθ s θ r Radian/Degree 27 / 35

40 Eample 9 A circle has a radius of 5 inches. Find the length of the arc intercepted b a central angle of 120. Radian/Degree 28 / 35

41 Eample 10 Winnipeg, Manitoba (Canada) is approimatel due north of Dallas. Winnipeg is at a latitude of N, and Dallas is at a latitude of N. Use the given information to find the distance between Winnipeg and Dallas (assume the Earth is a perfect sphere with a radius of 4000 miles). Radian/Degree 29 / 35

42 Area of a Sector A sector of a circle is the region bounded b two radii and their intercepted arc. θ r The area of a sector is A = 1 2 r 2 θ (where θ is in radians). Radian/Degree 30 / 35

43 Eample 11 A sector has a radius of 12 inches and a central angle of 100. Find the area of the sector. Radian/Degree 31 / 35

44 Eample 12 Find the approimate area swept b the wiper blade shown, if the total length of the windshield wiper mechanism is 26 inches. Radian/Degree 32 / 35

45 Linear and Angular Speed An object moving along an arc has a linear speed given b s ν = arc length time = s t θ r An object moving along an arc has an angular speed given b ω = central angle time = θ t Radian/Degree 33 / 35

46 Linear and Angular Speed An object moving along an arc has a linear speed given b s ν = arc length time = s t θ r An object moving along an arc has an angular speed given b ω = central angle time = θ t Radian/Degree 33 / 35

47 Introduction Angles Degrees Angles Radians Coterminal Applications Summar Eample 13 A biccle wheel has a radius of 35 cm. A chalk mark is made on the tire and then the tire is spun completing one full revolution in 0.8 seconds. a) Determine the linear speed of the chalk mark. b) Determine the angular speed. W. Finch Radian/Degree DHS Math Dept 34 / 35

48 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

49 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

50 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

51 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

52 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

53 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

54 What You Learned You can now: Understand an angle as a measure of rotation. Understand radian and degree measures. Be able to convert between radian and degree measure. Be able to calculate arc length and sector area. Be able to find angular and linear speeds. Do problems Chap 4.2 #1, 5, odd, 29, 31, 33, 35, 39, 41, 43, 45, 51, 55, 57, 59 Radian/Degree 35 / 35

150 Lecture Notes - Section 6.1 Angle Measure

150 Lecture Notes - Section 6.1 Angle Measure c Marcia Drost, February, 008 Definition of Terms 50 Lecture Notes - Section 6. Angle Measure ray a line angle vertex two rays with a common endpoint the common endpoint initial side terminal side Standard

More information

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis.

An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis. Name: Topic: Main Ideas/Questions Notes/Eamples Date: Class: Angles in Standard Form y θ An angle on the coordinate plane is in standard form when the verte is on the origin and one ray lies on the positive

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. What You Should Learn Describe angles. Use radian

More information

1.1 Angles and Degree Measure

1.1 Angles and Degree Measure J. Jenkins - Math 060 Notes. Angles and Degree Measure An angle is often thought of as being formed b rotating one ra awa from a fied ra indicated b an arrow. The fied ra is the initial side and the rotated

More information

CHAPTER 4 Trigonometry

CHAPTER 4 Trigonometry CHAPTER Trigonometr Section. Radian and Degree Measure You should know the following basic facts about angles, their measurement, and their applications. Tpes of Angles: (a) Acute: Measure between 0 and

More information

Prof. Israel Nwaguru PLANE TRIGONOMETRY - MATH 1316, CHAPTER REVIEW

Prof. Israel Nwaguru PLANE TRIGONOMETRY - MATH 1316, CHAPTER REVIEW Prof. Israel Nwaguru PLANE TRIGONOMETRY - MATH 1316, CHAPTER 1.1-1.4 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the quadrant in which

More information

5.1 Angles and Their Measurements

5.1 Angles and Their Measurements Graduate T.A. Department of Mathematics Dnamical Sstems and Chaos San Diego State Universit November 8, 2011 A ra is the set of points which are part of a line which is finite in one direction, but infinite

More information

c arc length radius a r radians degrees The proportion can be used to

c arc length radius a r radians degrees The proportion can be used to Advanced Functions Page of Radian Measures Angles can be measured using degrees or radians. Radian is the measure of an angle. It is defined as the angle subtended at the centre of the circle in the ratio

More information

An can be formed by rotating one ray away from a fixed ray indicated by an arrow. The fixed. ray is the and the rotated ray is the.

An can be formed by rotating one ray away from a fixed ray indicated by an arrow. The fixed. ray is the and the rotated ray is the. Date: 1/29/19 61 Section: Objective: angle angles t their measures An can be formed by rotating one ray away from a fixed ray indicated by an arrow The fixed initial side terminal side ray is the and the

More information

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis.

Section 6.1. Standard position- the vertex of the ray is at the origin and the initial side lies along the positive x-axis. 1 Section 6.1 I. Definitions Angle Formed by rotating a ray about its endpoint. Initial side Starting point of the ray. Terminal side- Position of the ray after rotation. Vertex of the angle- endpoint

More information

Example 1 Give the degree measure of the angle shown on the circle.

Example 1 Give the degree measure of the angle shown on the circle. Section 5. Angles 307 Section 5. Angles Because many applications involving circles also involve q rotation of the circle, it is natural to introduce a measure for the rotation, or angle, between two rays

More information

A Short Course in Basic Trigonometry. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A Short Course in Basic Trigonometry. Marcel B. Finan Arkansas Tech University c All Rights Reserved A Short Course in Basic Trigonometry Marcel B. Finan Arkansas Tech University c All Rights Reserved PREFACE Trigonometry in modern time is an indispensable tool in Physics, engineering, computer science,

More information

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb-a Block.notebook April 03, 2014

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb-a Block.notebook April 03, 2014 Objectives: Generate vocabulary flashcards for new terms. Derive formulas for arc length and area of a circular sector. Solve application problems using the arc length and area of circular sector formulas.

More information

2018 Midterm Review Trigonometry: Midterm Review A Missive from the Math Department Trigonometry Work Problems Study For Understanding Read Actively

2018 Midterm Review Trigonometry: Midterm Review A Missive from the Math Department Trigonometry Work Problems Study For Understanding Read Actively Summer . Fill in the blank to correctl complete the sentence..4 written in degrees and minutes is..4 written in degrees and minutes is.. Find the complement and the supplement of the given angle. The complement

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

Chapter 5 Introduction to Trigonometric Functions

Chapter 5 Introduction to Trigonometric Functions Chapter 5 Introduction to Trigonometric Functions 5.1 Angles Section Exercises Verbal 1. Draw an angle in standard position. Label the vertex, initial side, and terminal side. 2. Explain why there are

More information

Geometry The Unit Circle

Geometry The Unit Circle Geometry The Unit Circle Day Date Class Homework F 3/10 N: Area & Circumference M 3/13 Trig Test T 3/14 N: Sketching Angles (Degrees) WKS: Angles (Degrees) W 3/15 N: Arc Length & Converting Measures WKS:

More information

1.1 Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. 1) 162

1.1 Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. 1) 162 Math 00 Midterm Review Dugopolski Trigonometr Edition, Chapter and. Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. ) ) - ) For the given angle,

More information

Sect 10.1 Angles and Triangles

Sect 10.1 Angles and Triangles 175 Sect 10.1 Angles and Triangles Objective 1: Converting Angle Units Each degree can be divided into 60 minutes, denoted 60', and each minute can be divided into 60 seconds, denoted 60". Hence, 1 = 60'

More information

n power Name: NOTES 2.5, Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION

n power Name: NOTES 2.5, Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION NOTES 2.5, 6.1 6.3 Name: Date: Period: Mrs. Nguyen s Initial: LESSON 2.5 MODELING VARIATION Direct Variation y mx b when b 0 or y mx or y kx y kx and k 0 - y varies directly as x - y is directly proportional

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

Math 175: Chapter 6 Review: Trigonometric Functions

Math 175: Chapter 6 Review: Trigonometric Functions Math 175: Chapter 6 Review: Trigonometric Functions In order to prepare for a test on Chapter 6, you need to understand and be able to work problems involving the following topics. A. Can you sketch an

More information

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb A Block.notebook May 14, 2014

5.1 Arc length, area sector, vocab, coterminal, reference angles_jb A Block.notebook May 14, 2014 Objectives: Generate vocabulary flashcards for new terms. Derive formulas for arc length and area of a circular sector. Solve application problems using the arc length and area of circular sector formulas.

More information

Central Angles and Arcs

Central Angles and Arcs Advance Algebra & Trigonometry Angles & Circular Functions Central Angles and Arcs Arc Length 1. A central angle an angle whose vertex lies at the center of the circle: A B ABC is a central angle C 2.

More information

Section 4.2: Radians, Arc Length, and the Area of a Sector

Section 4.2: Radians, Arc Length, and the Area of a Sector CHAPTER 4 Trigonometric Functions Section 4.: Radians, Arc Length, and the Area of a Sector Measure of an Angle Formulas for Arc Length and Sector Area Measure of an Angle Degree Measure: 368 SECTION 4.

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians = 180º Therefore, o 180 π 1 rad =, or π 1º = 180 rad Angle Measure Conversions π 1. To convert degrees to radians,

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

4-2 Degrees and Radians

4-2 Degrees and Radians Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth. 1. 11.773 First, convert 0. 773 into minutes and seconds. Next, convert 0.38' into seconds.

More information

MAC 1114: Trigonometry Notes

MAC 1114: Trigonometry Notes MAC 1114: Trigonometry Notes Instructor: Brooke Quinlan Hillsborough Community College Section 7.1 Angles and Their Measure Greek Letters Commonly Used in Trigonometry Quadrant II Quadrant III Quadrant

More information

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3.

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3. 0//0 I. Degrees and Radians A. A degree is a unit of angular measure equal to /80 th of a straight angle. B. A degree is broken up into minutes and seconds (in the DMS degree minute second sstem) as follows:.

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions 015 College Board. All rights reserved. Unit Overview In this unit ou will build on our understanding of right triangle trigonometr as ou stud angles in radian measure, trigonometric

More information

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER Work the following on notebook paper ecept for the graphs. Do not use our calculator unless the problem tells ou to use it. Give three decimal places

More information

Math 30-1: Trigonometry One PRACTICE EXAM

Math 30-1: Trigonometry One PRACTICE EXAM Math 30-1: Trigonometry One PRACTICE EXAM 1. The angle 210 is equivalent to: degrees radians degrees radians 2. The reference angle of is: radians radians radians radians 3. The principal angle of 9.00

More information

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that:

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that: Arclength Consider a circle of radius r and an angle of x degrees as shown in the figure below. The segment of the circle opposite the angle x is called the arc subtended by x. We need a formula for its

More information

DMS, LINEAR AND ANGULAR SPEED

DMS, LINEAR AND ANGULAR SPEED DMS, LINEAR AND ANGULAR SPEED Section 4.1A Precalculus PreAP/Dual, Revised 2017 viet.dang@humbleisd.net 8/1/2018 12:13 AM 4.1B: DMS, Linear and Angular Speed 1 DEGREES MINUTES SECONDS (DMS) A. Written

More information

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

4.1 Angles and Angle Measure.notebook. Chapter 4: Trigonometry and the Unit Circle

4.1 Angles and Angle Measure.notebook. Chapter 4: Trigonometry and the Unit Circle Chapter 4: Trigonometry and the Unit Circle 1 Chapter 4 4.1 Angles and Angle Measure Pages 166 179 How many radii are there around any circle??? 2 There are radii around the circumference of any circle.

More information

( 3 ) = (r) cos (390 ) =

( 3 ) = (r) cos (390 ) = MATH 7A Test 4 SAMPLE This test is in two parts. On part one, you may not use a calculator; on part two, a (non-graphing) calculator is necessary. When you complete part one, you turn it in and get part

More information

Given one trigonometric ratio and quadrant, determining the remaining function values

Given one trigonometric ratio and quadrant, determining the remaining function values MATH 2412 Precalculus Sections 4.1-4.5 Trigonometry (quick review) Below is a list of topics you should be familiar with if you have completed a course recently in Trigonometry. I am going to assume knowledge

More information

Trigonometry IN CAREERS. There are many careers that use trigonometry. Several are listed below.

Trigonometry IN CAREERS. There are many careers that use trigonometry. Several are listed below. Trigonometr. Radian and Degree Measure. Trigonometric Functions: The Unit Circle. Right Triangle Trigonometr. Trigonometric Functions of An Angle.5 Graphs of Sine and Cosine Functions.6 Graphs of Other

More information

Define General Angles and Use Radian Measure

Define General Angles and Use Radian Measure 1.2 a.1, a.4, a.5; P..E TEKS Define General Angles and Use Radian Measure Before You used acute angles measured in degrees. Now You will use general angles that ma be measured in radians. Wh? So ou can

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

Chapter 3. Radian Measure and Circular Functions. Copyright 2005 Pearson Education, Inc.

Chapter 3. Radian Measure and Circular Functions. Copyright 2005 Pearson Education, Inc. Chapter 3 Radian Measure and Circular Functions Copyright 2005 Pearson Education, Inc. 3.1 Radian Measure Copyright 2005 Pearson Education, Inc. Measuring Angles Thus far we have measured angles in degrees

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers. Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,...

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers. Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,... Fry Texas A&M University!! Math 150! Spring 2015 Unit 1! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,...} Then A B= and

More information

5 TRIGONOMETRIC FUNCTIONS

5 TRIGONOMETRIC FUNCTIONS Chapter 5 Trigonometric Functions 705 5 TRIGONOMETRIC FUNCTIONS Figure 5.1 The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr) 5.1 Angles 5.2 Unit Circle: Sine

More information

Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane. POA

Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane. POA The Unit Circle Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane THE EQUATION OF THE UNIT CIRCLE Consider any point P on the unit circle with coordinates

More information

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor In Trigonometry we will be working with angles from We will also work with degrees that are smaller than Check out Shaun White s YouTube

More information

Chapter 3.5. Uniform Circular Motion

Chapter 3.5. Uniform Circular Motion Chapter 3.5 Uniform Circular Motion 3.5 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

More information

Chapter 13: Trigonometry Unit 1

Chapter 13: Trigonometry Unit 1 Chapter 13: Trigonometry Unit 1 Lesson 1: Radian Measure Lesson 2: Coterminal Angles Lesson 3: Reference Angles Lesson 4: The Unit Circle Lesson 5: Trig Exact Values Lesson 6: Trig Exact Values, Radian

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 5 5.. Determine the value of each trigonometric ratio. Use eact values where possible; otherwise write the value to the nearest thousandth. a) tan (5 ) b) cos c) sec ( ) cos º cos ( ) cos

More information

Unit 3 Trigonometry Note Package. Name:

Unit 3 Trigonometry Note Package. Name: MAT40S Unit 3 Trigonometry Mr. Morris Lesson Unit 3 Trigonometry Note Package Homework 1: Converting and Arc Extra Practice Sheet 1 Length 2: Unit Circle and Angles Extra Practice Sheet 2 3: Determining

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

DISTRIBUTED LEARNING

DISTRIBUTED LEARNING DISTRIBUTED LEARNING RAVEN S WNCP GRADE 12 MATHEMATICS BC Pre Calculus Math 12 Alberta Mathematics 0 1 Saskatchewan Pre Calculus Math 0 Manitoba Pre Calculus Math 40S STUDENT GUIDE AND RESOURCE BOOK The

More information

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Lesson 6.2 Before we look at the unit circle with respect to the trigonometric functions, we need to get some

More information

Since 1 revolution = 1 = = Since 1 revolution = 1 = =

Since 1 revolution = 1 = = Since 1 revolution = 1 = = Fry Texas A&M University Math 150 Chapter 8A Fall 2015! 207 Since 1 revolution = 1 = = Since 1 revolution = 1 = = Convert to revolutions (or back to degrees and/or radians) a) 45! = b) 120! = c) 450! =

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows:

Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows: Pre-Calculus Section 8.1: Angles, Arcs, & Their Measures (including Linear & Angular Speed) 1. The graph of a function is given as follows: 4. Example 1 (A): Convert each degree measure to radians: A:

More information

( ) ( ) ( ) Odd-Numbered Answers to Exercise Set 4.1: Special Right Triangles and Trigonometric Ratios ( ) MATH 1330 Precalculus

( ) ( ) ( ) Odd-Numbered Answers to Exercise Set 4.1: Special Right Triangles and Trigonometric Ratios ( ) MATH 1330 Precalculus Odd-Numbered Answers to Eercise Set.: Special Right Triangles and Trigonometric Ratios. angles. 80. largest, smallest 7. (a) 9. (a). (a) + + 0 0, so + ( ) 8 8 8, so + 8. (a) 8, so ( 8 ) ( 8 ) + + 8 + 8

More information

Math 1303 Part II. The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree

Math 1303 Part II. The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree Math 1303 Part II We have discussed two ways of measuring angles; degrees and radians The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree We defined a radian

More information

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals Unit Functions Analzing Graphs of Functions (Unit.) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When ou have completed this lesson ou will: Find the domain and range of

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Arc Length, Area of Sector of a Circle, Angular and Linear Velocity Worksheet Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem.

More information

EXERCISES Practice and Problem Solving

EXERCISES Practice and Problem Solving EXERCISES Practice and Problem Solving For more ractice, see Extra Practice. A Practice by Examle Examles 1 and (ages 71 and 71) Write each measure in. Exress the answer in terms of π and as a decimal

More information

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x AFM Midterm Review I Fall 06. Determine if the relation is a function.,6,,, 5,. Determine the domain of the function 7 h ( ). 4. Sketch the graph of f 4. Sketch the graph of f 5. Sketch the graph of f

More information

Chapter 3. Radian Measure and Circular Functions. Section 3.1: Radian Measure. π 1.57, 1 is the only integer value in the

Chapter 3. Radian Measure and Circular Functions. Section 3.1: Radian Measure. π 1.57, 1 is the only integer value in the Chapter Radian Measure and Circular Functions Section.: Radian Measure. Since θ is in quadrant I, 0 < θ

More information

(A) (12, 5) (B) ( 8, 15) (C) (3,6) (D) (4,4)

(A) (12, 5) (B) ( 8, 15) (C) (3,6) (D) (4,4) DR. YOU: 018 FALL 1 CHAPTER 1. ANGLES AND BASIC TRIG LECTURE 1-0 REVIEW EXAMPLE 1 YOUR TURN 1 Simplify the radical expression. Simplify the radical expression. (A) 108 (A) 50 First, find the biggest perfect

More information

Mth 133 Trigonometry Review Problems for the Final Examination

Mth 133 Trigonometry Review Problems for the Final Examination Mth 1 Trigonometry Review Problems for the Final Examination Thomas W. Judson Stephen F. Austin State University Fall 017 Final Exam Details The final exam for MTH 1 will is comprehensive and will cover

More information

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS TRIGNMETRIC FUNCTINS INTRDUCTIN In general, there are two approaches to trigonometry ne approach centres around the study of triangles to which you have already been introduced in high school ther one

More information

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315 MATH-330 Pre-Exam Spring 09 Name Rocket Number INSTRUCTIONS: You must show enough work to justify your answer on ALL problems except for Problem 6. Correct answers with no work or inconsistent work shown

More information

Angles and Applications

Angles and Applications CHAPTER 1 Angles and Applications 1.1 Introduction Trigonometry is the branch of mathematics concerned with the measurement of the parts, sides, and angles of a triangle. Plane trigonometry, which is the

More information

Important variables for problems in which an object is moving along a circular arc

Important variables for problems in which an object is moving along a circular arc Unit - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the vertex,

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 11 George Voutsadakis (LSSU) Trigonometry January 015 1 / 8 Outline 1 Trigonometric

More information

Module 2: Trigonometry

Module 2: Trigonometry Principles of Mathematics 1 Contents 1 Module : Trigonometr Section 1 Trigonometric Functions 3 Lesson 1 The Trigonometric Values for θ, 0 θ 360 5 Lesson Solving Trigonometric Equations, 0 θ 360 9 Lesson

More information

Quick review of Ch. 6 & 7. Quiz to follow

Quick review of Ch. 6 & 7. Quiz to follow Quick review of Ch. 6 & 7 Quiz to follow Energy and energy conservation Work:W = Fscosθ Work changes kinetic energy: Kinetic Energy: KE = 1 2 mv2 W = KE f KE 0 = 1 mv 2 1 mv 2 2 f 2 0 Conservative forces

More information

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator 4-1 Skills Objective A In 1 and, the measure of a rotation is given. a. Convert the measure to revolutions. b. On the circle draw a central angle showing the given rotation. 1. 5. radians - a. a. b. b.

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians 180º Therefore, o 180 π 1 rad, or π 1º 180 rad Angle Measure Conversions π 1. To convert degrees to radians, multiply

More information

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer.

Chapter 1: Trigonometric Functions 1. Find (a) the complement and (b) the supplement of 61. Show all work and / or support your answer. Trig Exam Review F07 O Brien Trigonometry Exam Review: Chapters,, To adequately prepare for the exam, try to work these review problems using only the trigonometry knowledge which you have internalized

More information

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180

I IV II III 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) COMPLEMENTARY angles add to90 SUPPLEMENTARY angles add to 180 4.1 RADIAN AND DEGREE MEASURES (DAY ONE) TRIGONOMETRY: the study of the relationship between the angles and sides of a triangle from the Greek word for triangle ( trigonon) (trigonon ) and measure ( metria)

More information

Wheels Radius / Distance Traveled

Wheels Radius / Distance Traveled Mechanics Teacher Note to the teacher On these pages, students will learn about the relationships between wheel radius, diameter, circumference, revolutions and distance. Students will use formulas relating

More information

Understanding Angles

Understanding Angles SKILL BUILDER 5.2 Understanding Angles SKILL BUILDER A triangle has three angles and no angle can e equal to or greater than 18. Consider what happens when an angle is not part of a triangle ut is in the

More information

4 Trigonometric Functions. Chapter Contents. Trigonometric Equations. Angles and Their Measurement. The Sine and Cosine Functions

4 Trigonometric Functions. Chapter Contents. Trigonometric Equations. Angles and Their Measurement. The Sine and Cosine Functions 9788405637_CH04_st.qd 0/5/4 5:33 PM Page 06 Jones & Bartlett Learning.. gualtiero boffi/shutterstock, Inc. 4 Trigonometric Functions Chapter Contents 4. Angles and Their Measurement 4.8 Trigonometric Equations

More information

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians SECTION 6-5 CHAPTER 6 Section 6. Two angles are complementary if the sum of their measures is 90 radians. Two angles are supplementary if the sum of their measures is 80 ( radians).. A central angle of

More information

CHAPTER 1. ANGLES AND BASIC TRIG

CHAPTER 1. ANGLES AND BASIC TRIG DR. YOU: 017 FALL 1 CHAPTER 1. ANGLES AND BASIC TRIG LECTURE 1-0 REVIEW EXAMPLE 1 YOUR TURN 1 Simplify the radical expression. Simplify the radical expression. (A) 108 (A) 50 First, find the biggest perfect

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University Abstract This handout defines the trigonometric function of angles and discusses the relationship between trigonometric

More information

Transition to College Math

Transition to College Math Transition to College Math Date: Unit 3: Trigonometr Lesson 2: Angles of Rotation Name Period Essential Question: What is the reference angle for an angle of 15? Standard: F-TF.2 Learning Target: Eplain

More information

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and 1. Starting at the same spot on a circular track that is 80 meters in diameter, Hayley and Kendall run in opposite directions, at 300 meters per minute and 240 meters per minute, respectively. They run

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

1.1 Angles, Degrees, and Arcs

1.1 Angles, Degrees, and Arcs MA140 Trig 2015 Homework p. 1 Name: 1.1 Angles, Degrees, and Arcs Find the fraction of a counterclockwise revolution that will form an angle with the indicated number of degrees. 3(a). 45 3(b). 150 3(c).

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Overview: 4.1 Radian and Degree Measure 4.2 Trigonometric Functions: The Unit Circle 4.3 Right Triangle Trigonometry 4.4 Trigonometric Functions of Any Angle 4.5 Graphs

More information

Exercise Set 4.3: Unit Circle Trigonometry

Exercise Set 4.3: Unit Circle Trigonometry Eercise Set.: Unit Circle Trigonometr Sketch each of the following angles in standard position. (Do not use a protractor; just draw a quick sketch of each angle. Sketch each of the following angles in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the appropriate identity to find the indicated function value. Rationalize the denominator,

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

Math Review. Name:

Math Review. Name: Math 30-1 Name: Review 1. Given the graph of : Sketch the graph of the given transformation on the same grid Describe how the transformed graph relates to the graph of Write the equation of the image of

More information

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017 Describing Circular and Rotational Motion Rotational motion is the motion of objects that spin about an axis. Section 7.1 Describing Circular and Rotational Motion We use the angle θ from the positive

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

CHAPTER 4: Trigonometry and the Unit Circle Section 4.1: Angles and Angle Measure

CHAPTER 4: Trigonometry and the Unit Circle Section 4.1: Angles and Angle Measure CHAPTER 4: Trigonometry and the Unit Circle Section 4.1: Angles and Angle Measure 1 (A) Standard Position When drawing an angle θ on the x y plane in standard position, the following conditions must apply:

More information

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation

Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation 1 Chapter 5.1 Variation Direct Variation, Inverse Variation and Joint Variation Sometimes the equation that relates two or more variables can be described in words by the idea of variation. There are three

More information