Z-ordering. Reduce n-dim to 1-dim points snake-curve z-ordering bit-shuffling Linear quad trees queries Hilbert curve

Size: px
Start display at page:

Download "Z-ordering. Reduce n-dim to 1-dim points snake-curve z-ordering bit-shuffling Linear quad trees queries Hilbert curve"

Transcription

1 Z-ordering Reduce n-dim to 1-dim points snake-curve z-ordering bit-shuffling Linear quad trees queries Hilbert curve Space filling curve L-Systems Fractals Hausdorff dimension 1

2 Motivation How would you represent n-dim points by a tree? 1. Use R-trees? 2. Reduce the problem to 1-dim points?...use B-trees! Ideas Reduce the problem to 1-dim points How? (PCA?) Other Ideas? Assume finite granularity (e.g., 2 32 x2 32 ; 4x4 here) How to map n-d cells to 1-d cells? 2

3 Mapping... How to map n-d cells to 1-d cells? Idea: Row-wise Is it good? Row-wise ordering Is row-wise ordering a good idea? Great for x axis; bad for y axis 3

4 Snake-curve How about the snake curve? Snake-curve Problem: Bad distance preservation! 4

5 z-ordering looks better: few long jumps; scoops out the whole quadrant before leaving it it is a space filling curve Space filling curve Example In the nature: Kidney arterial system 5

6 z-ordering How to generate this curve (z = f(x,y))? z (or N ) shapes, RECURSIVELY order-1 order-2... order (n+1) z-ordering Notice: self similar (we ll see about fractals, soon) method is hard to use: z =? f(x,y) order-1 order-2... order (n+1) 6

7 7

8 Y X

9 bit-shuffing y x x 0 0 y 1 1 z =( ) 2 = 5 bit-shuffing y x x 1 1 y 1 0 z =( ) 2 = 14 9

10 Y z =( ) 2 = X Linear quad trees A quad tree is a tree whose nodes either are leaves or have 4 children The children are ordered 0, 1, 2, 3 (00, 01, 10, 11) W E 1 0 W,E,N,S: West,East,North,South N S

11 Quad-trees... and repeat recursively z gray-cell = WN;WN = (0101) 2 = 5 1 W E N S 0 1 z-ordering z-value of magenta cell, with the three methods W E Method 1: 14 (count) N S Method 2: shuffle(11;10)= (1110) 2 = 14 Method 3: EN;ES =... = 14 11

12 z-ordering... ask a range query Queries Find the z-values that contained in the query and then the ranges Q A Q B Q A range [4, 7] Q B ranges [3,4] and [9,10] 12

13 z-ordering - variations Is z-ordering the best we can do? Probably not - occasional long jumps Gray codes? z-ordering - variations Hilbert curve! 13

14 z-ordering - variations Looks better (never long jumps). How to derive it? Hilbert Curve Hilbert Space filling curve in 2 dimensions 1 st order 2 nd order 3 rd order 14

15 z-ordering - variations Looks better (never long jumps). How to derive it? order-1 order-2... order (n+1) 15

16 16

17 17

18 18

19 z-ordering - variations How about Hilbert curve in 3-d? n-d? Exists (and is not unique!). Eg., 3-d, order-1 Hilbert curves (Hamiltonian paths on cube) #1 #2 Background Information 3-dimensional Hilbert Curve Unit 19

20 Background Information 20

21 z-ordering - analysis How to measure the goodness of a curve? z-ordering - analysis How to measure the goodness of a curve? E.g., avg. # of runs, for range queries 4 runs 3 runs (#runs ~ #accesses on B-tree) 21

22 z-ordering - analysis So, is Hilbert really better? 27% fewer runs, for 2-d (similar for 3-d) Are there formulas for #runs, #of quadtree blocks etc? Yes ([Jagadish; Moon+ etc] see textbook) z-ordering - fun observations Hilbert and z-ordering curves: space filling curves : eventually, they visit every point in n-d space - therefore: order-1 order-2... order (n+1) 22

23 z-ordering - fun observations... they show that the plane has as many points as a line (-> headaches for 1900 s mathematics/topology) (fractals, again!) order-1 order-2... order (n+1) z-ordering - fun observations In general, Hilbert curve is great for preserving distances, clustering, vector quantization etc... For more: H.V. Jagdish. Linear clustering of objects with multi- ple attributes. Proceedings of ACM SIGMOD, pages , May

24 Definition of Space-Filling Curves We can construct a mapping from a 1-D interval to a n-d interval where n is finite, i.e. we can construct mappings as follow: 2 Ι = [0,1] Ω = [0,1] 3 Ι = [0,1] Ω = [0,1] n Ι = [0,1] Ω = [0,1], n = 4,5,... If the curve of this mapping passes through every point of the target space we call this a Space- Filling Curve. Geometric Interpretation First we partition the interval I into n subintervals and the square Ω into n sub squares. Now one can easily establish a continuous mapping between these areas. This idea holds for any finite-dimensional target space / 9 2 / 9 1,1 0,0 1 / 3,0 1,0 24

25 Hilbert s Space-Filling Curve The German mathematician David Hilbert ( ) was the first one to give the so far only algebraically described space-filling curves a geometric interpretation In the 2 dimensional case he splat I into four subintervals and Ω into four sub squares. This splitting is recursively repeated for the emerging subspaces, leading to the below shown curve 0 1 / 4 2 / 4 3 / 4 4 / / 2 / 3 / / 16 1,1 16 1,1 / ,0 0, L-Systems Introduced 1968 by the biologist Aristid Lindenmayer as a Frame work fo studyingthe Development of simple multicellularorganisms 25

26 Deterministic, Context Free L-Systems (DOL) Grammar: a ab b a axiom: b Derivation: b a ab aba abaab abaababa Interpretation of a String String: FFF-FF-F-F+F+FF-F-FFF δ =

27 Hilbert Curve ω : L p 1 : L +RF LFL FR + p 2 : R LF + RFR + FL Replacement: Using additional symbols L, R to controll derivation Three Dimensional Hilbert Curve 27

28 Fractals A fractal is a shape that is recursively constructed or self-similar, that is, a shape that appears similar at all scales of magnification and is therefore often referred to as "infinitely complex Hillbert curve is a fractal We can define a fractal dimension Imagine a line whose length is 9 cm If we try to cover this line with smaller lines whose length is s=3 cm, we will need N=3 copies of our measuring line In this case N=s 28

29 Imagine a square whose every side is 9 cm If we try to cover this square with smaller squares whose side is s=3 cm, we will need N=9 copies of our measuring square N=s 2 N=s D, s=scale factor, N=Number of objects Hausdorff dimension D=log(N)/log(s) Note that for the Hilbert curve that consists of 4(=N) copies of itself Each twice (s=2) as short as the whole, D=log(4)/log(2)=2...surprising as the curve covers the whole of the square whose dimension is 2 29

30 Suprisingly the dimension may be not integer =log(n)/log(s) = log(3)/log(2) = 1.58 Felix Hausdorff (November 8, 1868 January 26, 1942) Felix Hausdorff (November 8, 1868 January 26, 1942) was a German mathematician who is considered to be one of the founders of modern topology When the Nazis came to power, Hausdorff, who was Jewish, felt that as a respected university professor he would be spared from persecution However, his abstract mathematics was denounced as "Jewish", useless, and "un-german" He could no longer publish in Germany, Hausdorff continued to be an active research mathematician, publishing in Polish journals Finally, in 1942 when he could no longer avoid being sent to a concentration camp, Hausdorff committed suicide together with his wife and sister-in-law on the 26th of January 30

31 Reduce n-dim to 1-dim points snake-curve z-ordering bit-shuffling Linear quad trees queries Hilbert curve Space filling curve L-Systems Fractals Hausdorff dimension 31

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications Lecture #26: Spatial Databases (R&G ch. 28) SAMs - Detailed outline spatial access methods problem dfn R-trees Faloutsos 2

More information

CMSC 425: Lecture 11 Procedural Generation: Fractals and L-Systems

CMSC 425: Lecture 11 Procedural Generation: Fractals and L-Systems CMSC 425: Lecture 11 Procedural Generation: ractals and L-Systems Reading: The material on fractals comes from classic computer-graphics books. The material on L-Systems comes from Chapter 1 of The Algorithmic

More information

biologically-inspired computing lecture 6 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing

biologically-inspired computing lecture 6 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing lecture 6 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0 :

More information

Chapter 8. Fractals. 8.1 Introduction

Chapter 8. Fractals. 8.1 Introduction Chapter 8 Fractals 8.1 Introduction Nested patterns with some degree of self-similarity are not only found in decorative arts, but in many natural patterns as well (see Figure 8.1). In mathematics, nested

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

Homework Gots to be Typeset. We Are Here to help! Dominoes. Inductive Reasoning Lecture 2 (January 19, 2006)

Homework Gots to be Typeset. We Are Here to help! Dominoes. Inductive Reasoning Lecture 2 (January 19, 2006) Homework Gots to be Typeset You may use any typesetting program you wish, but we strongly encourage you to use LaTeX We Are Here to help! There are many office hours throughout the week If you have problems

More information

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky What follows is Vladimir Voevodsky s snapshot of his Fields Medal work on motivic homotopy, plus a little philosophy and from my point of view the main fun of doing mathematics Voevodsky (2002). Voevodsky

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science 15-251 Proof Techniques for Computer Scientists Induction Inductive Reasoning Lecture 2 (August 28, 2008) This is the primary way we ll 1. prove theorems

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Nir Ailon May 22, 2007 This writeup includes very basic background material for the talk on the Fast Johnson Lindenstrauss Transform

More information

NP-Complete and Non-Computable Problems. COMP385 Dr. Ken Williams

NP-Complete and Non-Computable Problems. COMP385 Dr. Ken Williams NP-Complete and Non-Computable Problems COMP385 Dr. Ken Williams Start by doing what s necessary; then do what s possible; and suddenly you are doing the impossible. Francis of Assisi Our Goal Define classes

More information

INTRODUCTION TO FRACTAL GEOMETRY

INTRODUCTION TO FRACTAL GEOMETRY Every mathematical theory, however abstract, is inspired by some idea coming in our mind from the observation of nature, and has some application to our world, even if very unexpected ones and lying centuries

More information

17.1 The Halting Problem

17.1 The Halting Problem CS125 Lecture 17 Fall 2016 17.1 The Halting Problem Consider the HALTING PROBLEM (HALT TM ): Given a TM M and w, does M halt on input w? Theorem 17.1 HALT TM is undecidable. Suppose HALT TM = { M,w : M

More information

1 Reductions from Maximum Matchings to Perfect Matchings

1 Reductions from Maximum Matchings to Perfect Matchings 15-451/651: Design & Analysis of Algorithms November 21, 2013 Lecture #26 last changed: December 3, 2013 When we first studied network flows, we saw how to find maximum cardinality matchings in bipartite

More information

Recursion and Induction

Recursion and Induction Recursion and Induction Themes Recursion Recurrence Definitions Recursive Relations Induction (prove properties of recursive programs and objects defined recursively) Examples Tower of Hanoi Gray Codes

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Image Compression 2 Image Compression Goal: Reduce amount

More information

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE 1. Fractional Dimension Fractal = fractional dimension. Intuition suggests dimension is an integer, e.g., A line is 1-dimensional, a plane (or square)

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

FRACTALS LINDENMAYER SYSTEMS. November 22, 2013 Rolf Pfeifer Rudolf M. Füchslin

FRACTALS LINDENMAYER SYSTEMS. November 22, 2013 Rolf Pfeifer Rudolf M. Füchslin FRACTALS LINDENMAYER SYSTEMS November 22, 2013 Rolf Pfeifer Rudolf M. Füchslin RECAP HIDDEN MARKOV MODELS What Letter Is Written Here? What Letter Is Written Here? What Letter Is Written Here? The Idea

More information

My Favorite Problems HAROLD B. REITER. Mu Alpha Theta Annual Convention Denver, Colorado. Visit my website:

My Favorite Problems HAROLD B. REITER. Mu Alpha Theta Annual Convention Denver, Colorado. Visit my website: My HAROLD B REITER UNIVERSITY OF NORTH CAROLINA CHARLOTTE Mu Alpha Theta Annual Convention Denver, Colorado July 29, 200 Visit my website: http://wwwmathunccedu/~hbreiter Dinner Bill Splitting Problem

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Parallelization using Space-Filling Curves Michael Bader Technical University of Munich Summer 2016 Parallelisation using Space-filling Curves Problem setting: mesh

More information

Analysis of the n-dimensional quadtree. H.V. Jagadish. AT&T Bell Laboratories. Murray Hill, NJ Abstract

Analysis of the n-dimensional quadtree. H.V. Jagadish. AT&T Bell Laboratories. Murray Hill, NJ Abstract Analysis of the n-dimensional quadtree decomposition for arbitrary hyper-rectangles Christos Faloutsos Dept. of Computer Science and Inst. for Systems Research (ISR) University of Maryland, College Park,

More information

Well-Founded Iterations of Infinite Time Turing Machines

Well-Founded Iterations of Infinite Time Turing Machines Well-Founded of Infinite Time Turing Machines Robert S. Lubarsky Florida Atlantic University August 11, 2009 Useful for ordinal analysis Useful for ordinal analysis Iteration and hyper-iteration/feedback

More information

Notes on induction proofs and recursive definitions

Notes on induction proofs and recursive definitions Notes on induction proofs and recursive definitions James Aspnes December 13, 2010 1 Simple induction Most of the proof techniques we ve talked about so far are only really useful for proving a property

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1 CHAPTER. SEQUENCES AND SERIES.2 Series Example. Let a n = n p. (a) Find the first 5 terms of the sequence. Find a formula for a n+. (c) Find a formula for a 2n. (a) a = 2 a 2 = 2 p 3 a 3 = 3 p a = p 5

More information

Notes on Rauzy Fractals

Notes on Rauzy Fractals Notes on Rauzy Fractals It is a tradition to associate symbolic codings to dynamical systems arising from geometry or mechanics. Here we introduce a classical result to give geometric representations to

More information

CIS 2033 Lecture 5, Fall

CIS 2033 Lecture 5, Fall CIS 2033 Lecture 5, Fall 2016 1 Instructor: David Dobor September 13, 2016 1 Supplemental reading from Dekking s textbook: Chapter2, 3. We mentioned at the beginning of this class that calculus was a prerequisite

More information

Patterns in Nature 8 Fractals. Stephan Matthiesen

Patterns in Nature 8 Fractals. Stephan Matthiesen Patterns in Nature 8 Fractals Stephan Matthiesen How long is the Coast of Britain? CIA Factbook (2005): 12,429 km http://en.wikipedia.org/wiki/lewis_fry_richardson How long is the Coast of Britain? 12*200

More information

Space Complexity. then the space required by M on input x is. w i u i. F ) on. September 27, i=1

Space Complexity. then the space required by M on input x is. w i u i. F ) on. September 27, i=1 Space Complexity Consider a k-string TM M with input x. Assume non- is never written over by. a The purpose is not to artificially reduce the space needs (see below). If M halts in configuration (H, w

More information

We introduce one more operation on sets, perhaps the most important

We introduce one more operation on sets, perhaps the most important 11. The power set Please accept my resignation. I don t want to belong to any club that will accept me as a member. Groucho Marx We introduce one more operation on sets, perhaps the most important one:

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

Lecture 8: A Crash Course in Linear Algebra

Lecture 8: A Crash Course in Linear Algebra Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 8: A Crash Course in Linear Algebra Week 9 UCSB 2014 Qué sed de saber cuánto! Pablo Neruda, Oda a los Números 1 Linear Algebra In the past

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

Repeat tentative ideas from earlier - expand to better understand the term fractal.

Repeat tentative ideas from earlier - expand to better understand the term fractal. Fractals Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. (Mandelbrot, 1983) Repeat tentative ideas from

More information

1. A Little Set Theory

1. A Little Set Theory . A Little Set Theory I see it, but I don t believe it. Cantor to Dedekind 29 June 877 Functions are the single most important idea pervading modern mathematics. We will assume the informal definition

More information

Practical Polar Code Construction Using Generalised Generator Matrices

Practical Polar Code Construction Using Generalised Generator Matrices Practical Polar Code Construction Using Generalised Generator Matrices Berksan Serbetci and Ali E. Pusane Department of Electrical and Electronics Engineering Bogazici University Istanbul, Turkey E-mail:

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

MITOCW watch?v=y6ma-zn4olk

MITOCW watch?v=y6ma-zn4olk MITOCW watch?v=y6ma-zn4olk PROFESSOR: We have to ask what happens here? This series for h of u doesn't seem to stop. You go a 0, a 2, a 4. Well, it could go on forever. And what would happen if it goes

More information

CSCI3390-Lecture 6: An Undecidable Problem

CSCI3390-Lecture 6: An Undecidable Problem CSCI3390-Lecture 6: An Undecidable Problem September 21, 2018 1 Summary The language L T M recognized by the universal Turing machine is not decidable. Thus there is no algorithm that determines, yes or

More information

TSP Water Project Report Snowflakes and Fractals

TSP Water Project Report Snowflakes and Fractals TSP Water Project Report Snowflakes and Fractals Group Leader: Group Members: David Curtin Thomas Clement Julian Gibbons Jeff Gordon Enoch Lau Ozan Onay John Sun Due Date: Thursday, 20 May 2004 Word Count:

More information

cse541 LOGIC FOR COMPUTER SCIENCE

cse541 LOGIC FOR COMPUTER SCIENCE cse541 LOGIC FOR COMPUTER SCIENCE Professor Anita Wasilewska Spring 2015 LECTURE 2 Chapter 2 Introduction to Classical Propositional Logic PART 1: Classical Propositional Model Assumptions PART 2: Syntax

More information

Mathematics for Computer Scientists

Mathematics for Computer Scientists Mathematics for Computer Scientists Lecture notes for the module G51MCS Venanzio Capretta University of Nottingham School of Computer Science Chapter 6 Modular Arithmetic 6.1 Pascal s Triangle One easy

More information

Monday, April 29, 13. Tandem repeats

Monday, April 29, 13. Tandem repeats Tandem repeats Tandem repeats A string w is a tandem repeat (or square) if: A tandem repeat αα is primitive if and only if α is primitive A string w = α k for k = 3,4,... is (by some) called a tandem array

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

Every Linear Order Isomorphic to Its Cube is Isomorphic to Its Square

Every Linear Order Isomorphic to Its Cube is Isomorphic to Its Square Every Linear Order Isomorphic to Its Cube is Isomorphic to Its Square Garrett Ervin University of California, Irvine May 21, 2016 We do not know so far any type α such that α = α 3 = α 2. W. Sierpiński,

More information

The semantics of propositional logic

The semantics of propositional logic The semantics of propositional logic Readings: Sections 1.3 and 1.4 of Huth and Ryan. In this module, we will nail down the formal definition of a logical formula, and describe the semantics of propositional

More information

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2 BEGINNING ALGEBRAIC NUMBER THEORY Fermat s Last Theorem is one of the most famous problems in mathematics. Its origin can be traced back to the work of the Greek mathematician Diophantus (third century

More information

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016)

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) The final exam will be on Thursday, May 12, from 8:00 10:00 am, at our regular class location (CSI 2117). It will be closed-book and closed-notes, except

More information

Alphabet Friendly FM Index

Alphabet Friendly FM Index Alphabet Friendly FM Index Author: Rodrigo González Santiago, November 8 th, 2005 Departamento de Ciencias de la Computación Universidad de Chile Outline Motivations Basics Burrows Wheeler Transform FM

More information

Complex Numbers. Rich Schwartz. September 25, 2014

Complex Numbers. Rich Schwartz. September 25, 2014 Complex Numbers Rich Schwartz September 25, 2014 1 From Natural Numbers to Reals You can think of each successive number system as arising so as to fill some deficits associated with the previous one.

More information

Chapter 9 - Number Systems

Chapter 9 - Number Systems Chapter 9 - Number Systems Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 9 - Number Systems 1 / 50 1 Motivation 2 Positional Number Systems 3 Binary System L. Tarrataca Chapter

More information

Linear transformations

Linear transformations Linear transformations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Linear transformations

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

Fractals and Fractal Dimensions

Fractals and Fractal Dimensions Fractals and Fractal Dimensions John A. Rock July 13th, 2009 begin with [0,1] remove 1 of length 1/3 remove 2 of length 1/9 remove 4 of length 1/27 remove 8 of length 1/81...................................

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

Constant Space and Non-Constant Time in Distributed Computing

Constant Space and Non-Constant Time in Distributed Computing Constant Space and Non-Constant Time in Distributed Computing Tuomo Lempiäinen and Jukka Suomela Aalto University, Finland OPODIS 20th December 2017 Lisbon, Portugal 1 / 19 Time complexity versus space

More information

1 Approximate Quantiles and Summaries

1 Approximate Quantiles and Summaries CS 598CSC: Algorithms for Big Data Lecture date: Sept 25, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri Suppose we have a stream a 1, a 2,..., a n of objects from an ordered universe. For simplicity

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

By allowing randomization in the verification process, we obtain a class known as MA.

By allowing randomization in the verification process, we obtain a class known as MA. Lecture 2 Tel Aviv University, Spring 2006 Quantum Computation Witness-preserving Amplification of QMA Lecturer: Oded Regev Scribe: N. Aharon In the previous class, we have defined the class QMA, which

More information

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3 6.841/18.405J: Advanced Complexity Wednesday, February 12, 2003 Lecture Lecture 3 Instructor: Madhu Sudan Scribe: Bobby Kleinberg 1 The language MinDNF At the end of the last lecture, we introduced the

More information

A description of a math circle set of activities around polynomials, especially interpolation.

A description of a math circle set of activities around polynomials, especially interpolation. A description of a math circle set of activities around polynomials, especially interpolation. Bob Sachs Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030 rsachs@gmu.edu

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 5 2017 Part 3 out of 5 Last week, we learned about closure and equivalence of regular

More information

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 3 out of 5 ETH Zürich (D-ITET) October, 5 2017 Last week, we learned about closure and equivalence of regular

More information

Lecture 13. More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees.

Lecture 13. More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees. Lecture 13 More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees. Announcements HW5 due Friday! HW6 released Friday! Last time Not coding in an action

More information

(Riemann) Integration Sucks!!!

(Riemann) Integration Sucks!!! (Riemann) Integration Sucks!!! Peyam Ryan Tabrizian Friday, November 8th, 2 Are all functions integrable? Unfortunately not! Look at the handout Solutions to 5.2.67, 5.2.68, we get two examples of functions

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Diary of Mathematical Musings. Patrick Stein

Diary of Mathematical Musings. Patrick Stein Diary of Mathematical Musings Patrick Stein Contents Chapter 1. 2002-08 5 2002-08-15 08:48:06 P = NP 5 2002-08-15 10:05:38 Well-ordering the reals with the surreals 6 2002-08-16 01:36:40 Prime Certification

More information

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 This third problem set explores graphs, relations, functions, cardinalities, and the pigeonhole principle. This should be a great way to get a

More information

Calculus: What is a Limit? (understanding epislon-delta proofs)

Calculus: What is a Limit? (understanding epislon-delta proofs) Calculus: What is a Limit? (understanding epislon-delta proofs) Here is the definition of a limit: Suppose f is a function. We say that Lim aa ff() = LL if for every εε > 0 there is a δδ > 0 so that if

More information

Ramsey theory. Andrés Eduardo Caicedo. Undergraduate Math Seminar, March 22, Department of Mathematics Boise State University

Ramsey theory. Andrés Eduardo Caicedo. Undergraduate Math Seminar, March 22, Department of Mathematics Boise State University Andrés Eduardo Department of Mathematics Boise State University Undergraduate Math Seminar, March 22, 2012 Thanks to the NSF for partial support through grant DMS-0801189. My work is mostly in set theory,

More information

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from http://www.mmds.org Distance Measures For finding similar documents, we consider the Jaccard

More information

Lecture 1: September 25, A quick reminder about random variables and convexity

Lecture 1: September 25, A quick reminder about random variables and convexity Information and Coding Theory Autumn 207 Lecturer: Madhur Tulsiani Lecture : September 25, 207 Administrivia This course will cover some basic concepts in information and coding theory, and their applications

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 2. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 2 Dr. Hyunyoung Lee 1 Strategy for Exam Preparation - Start studying now (unless have already started) - Study class notes (lecture slides and

More information

Fractals: How long is a piece of string?

Fractals: How long is a piece of string? Parabola Volume 33, Issue 2 1997) Fractals: How long is a piece of string? Bruce Henry and Clio Cresswell And though the holes were rather small, they had to count them all. Now they know how many holes

More information

1. Problem I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way.

1. Problem I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way. . Problem 5.2-. I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way. 2 655 95 45 243 77 33 33 93 86 5 36 8 3 5 2 4 2 2 2 4 2 2 4 4 2

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 September 2, 2004 These supplementary notes review the notion of an inductive definition and

More information

Turing machines and linear bounded automata

Turing machines and linear bounded automata and linear bounded automata Informatics 2A: Lecture 29 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 25 November, 2011 1 / 13 1 The Chomsky hierarchy: summary 2 3 4 2 / 13

More information

MI 4 Mathematical Induction Name. Mathematical Induction

MI 4 Mathematical Induction Name. Mathematical Induction Mathematical Induction It turns out that the most efficient solution to the Towers of Hanoi problem with n disks takes n 1 moves. If this isn t the formula you determined, make sure to check your data

More information

5-DESIGNS IN AFFINE SPACES

5-DESIGNS IN AFFINE SPACES PACIFIC JOURNAL OF MATHEMATICS Vol. 39, No. 3, 1971 5-DESIGNS IN AFFINE SPACES W 0. ALLTOP The ^-dimensional affine group over GF{2) is triply transitive on 2 n symbols. For n ^ 4, 4 ^ k ^ 2 n ~\ any orbit

More information

Introduction to Techniques for Counting

Introduction to Techniques for Counting Introduction to Techniques for Counting A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in

More information

Fibonacci Numbers. November 7, Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules.

Fibonacci Numbers. November 7, Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules. Fibonacci Numbers November 7, 2010 Fibonacci's Task: Figure out how many pairs of rabbits there will be at the end of one year, following rules. Rules: 1. Start with a pair of new rabbits, born in December.

More information

Please give details of your answer. A direct answer without explanation is not counted.

Please give details of your answer. A direct answer without explanation is not counted. Please give details of your answer. A direct answer without explanation is not counted. Your answers must be in English. Please carefully read problem statements. During the exam you are not allowed to

More information

Pr[X = s Y = t] = Pr[X = s] Pr[Y = t]

Pr[X = s Y = t] = Pr[X = s] Pr[Y = t] Homework 4 By: John Steinberger Problem 1. Recall that a real n n matrix A is positive semidefinite if A is symmetric and x T Ax 0 for all x R n. Assume A is a real n n matrix. Show TFAE 1 : (a) A is positive

More information

The Three Possibilities Summary No solution Infinitely many solutions Unique solution Existence of Infinitely Many Solutions More unknowns than

The Three Possibilities Summary No solution Infinitely many solutions Unique solution Existence of Infinitely Many Solutions More unknowns than The Three Possibilities Summary No solution Infinitely many solutions Unique solution Existence of Infinitely Many Solutions More unknowns than equations Missing variable Zero equations Example: Three

More information

Algorithms: Lecture 2

Algorithms: Lecture 2 1 Algorithms: Lecture 2 Basic Structures: Sets, Functions, Sequences, and Sums Jinwoo Kim jwkim@jjay.cuny.edu 2.1 Sets 2 1 2.1 Sets 3 2.1 Sets 4 2 2.1 Sets 5 2.1 Sets 6 3 2.1 Sets 7 2.2 Set Operations

More information

Embedded Zerotree Wavelet (EZW)

Embedded Zerotree Wavelet (EZW) Embedded Zerotree Wavelet (EZW) These Notes are Based on (or use material from): 1. J. M. Shapiro, Embedded Image Coding Using Zerotrees of Wavelet Coefficients, IEEE Trans. on Signal Processing, Vol.

More information

Proof Theory and Subsystems of Second-Order Arithmetic

Proof Theory and Subsystems of Second-Order Arithmetic Proof Theory and Subsystems of Second-Order Arithmetic 1. Background and Motivation Why use proof theory to study theories of arithmetic? 2. Conservation Results Showing that if a theory T 1 proves ϕ,

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

Grade 7/8 Math Circles October 28/29, Series

Grade 7/8 Math Circles October 28/29, Series Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Sequence Recap Grade 7/8 Math Circles October 8/9, 014 Series Before starting series lets recap last weeks

More information

Alexander Gratherdieck: Math s Great Mind. expected from mathematical scholars around the world. He seemed to be successful in every

Alexander Gratherdieck: Math s Great Mind. expected from mathematical scholars around the world. He seemed to be successful in every Castellano 1 Alec X. Castellano Professor Petersen Math 101 March 31 2016 Alexander Gratherdieck: Math s Great Mind Gratherdieck s contributions to the mathematical society help set the bar for what is

More information

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative

More information

6.896 Quantum Complexity Theory November 4th, Lecture 18

6.896 Quantum Complexity Theory November 4th, Lecture 18 6.896 Quantum Complexity Theory November 4th, 2008 Lecturer: Scott Aaronson Lecture 18 1 Last Time: Quantum Interactive Proofs 1.1 IP = PSPACE QIP = QIP(3) EXP The first result is interesting, because

More information

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta CSE 2001: Introduction to Theory of Computation Fall 2012 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/2001 11/13/2012 CSE

More information

What is the correct framework for Quantum Field Theories?

What is the correct framework for Quantum Field Theories? What is the correct framework for Quantum Field Theories? Yuji Tachikawa 1 / 29 My research area theoretical high energy physics / string theory / mathematics My obsession these days what is the correct

More information

Tight Bounds on the Diameter of Gaussian Cubes

Tight Bounds on the Diameter of Gaussian Cubes Tight Bounds on the Diameter of Gaussian Cubes DING-MING KWAI AND BEHROOZ PARHAMI Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 9560, USA Email: parhami@ece.ucsb.edu

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Outline for Today Recap from Last Time Reviewing Verifiers Nondeterministic Turing Machines What does nondeterminism mean in the context of TMs? And just how powerful are NTMs?

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information