Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts. Mah moud Youssef UCLA

Size: px
Start display at page:

Download "Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts. Mah moud Youssef UCLA"

Transcription

1 Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts Mah moud Youssef UCLA Presented at the 5th APEX Group Meeting, UCLA, November 2-4, 998

2 Outlines Evaluate dam age param eters at key locations in Inboard and Outboard of the GMD thick liquid concept under different shield thickness for neutron w a l load of 0 MW/m2: Configuration: - Brad s layout for the I/B and O/B - 2 cm liquid FW fo low ed by 40 cm liquid pocket - 4 cm pocket back wa l - shield (varying thickness) behind pocket - max thickness 50 cm, O/B - max thickness 49 cm I/B Structure/Breeder: - Ferritic steel/flibe (naturalli6) - Ferritic Steel/Li-Sn (90% Li6) Dam age param eters: - AnnualDPA rate - H e and H production rates (appm /year) - H eating rate in the winding pack of the SCM

3 Outlines (Cont d) Selected Locations: - Front wa lof the Vacuum Vessel - TF Coil - Copper Stabilizer Evaluate nuclear h eating rate through out the system. Com pare nuclear perform ance of Flibe and Li-Sn for various Li-6 Enrichment: - TBR - Pow er Multiplication, PM - Totalpow er deposited in the system/breeder/structure

4 Total Nuclear Heating in the GMD Thick Liquid Conceptual Design 00 Flibe/FS-natLi6 Total Nuclear Heating in the GMD Thick Liquid Conceptual Design Power Deposited (w/cc) WL=0MW/m2 Power Deposited (w/cc) L FW/Blanket Shield Outboard Total (Flibe/FS-nat Li6) WL=0MW/m2 Gap Gap TF coil TF coil V.V Winding Pack Distance from Tokamak Center, cm Distance from Tokamak Center, cm Maximum Nuclear H eat Deposition rate, w/cc (W L= 0 MW/m2) (42 cm Flibe naturalli6, 50 cm shield) L.FW Pocket back Plate Sh ield V.V.W a l TF Coil W inding Pack I/B O/B

5 Annual Displacement Per Atom in Various Parts of the System 0 dpa (VV)-I/B-Flibe dpa (VV)-O/B-Flibe dpa (TF Coil)-I/B-Flibe dpa (TF Coil)-O/B-Flibe dpa (Cu)-I/B-Flibe dpa (Cu)-O/B-Flibe 0. DPA/year Thick Liquid Layer: Flibe-Natural Li6 Wall Load: 0 MW/m Shield Thickness, cm DPA rates in the V.V.of the I/B and O/B are similar. DPA rates in the TF coiland Cu stabilizer on the I/B are ~ 5 and ~0 times larger in the I/B than in the O/B, respectively. The attenuation length of the shield (40% Flibe, 60% FS) is ~ 20 cm i.e. an order of magnitude reduction in V.V. DPA rate for ever 20 cm of the shield DPA rate in the V.V.at 50 cm-thick shield is 0.0 DPA/year. This is below the 200 dpa limit for the V.V. to be a lifetime component

6 Helium Production Rate (appm/yr) in Various Parts of the System appm/year Thick Liquid Layer: Flibe-Natural Li6 Wall Load: 0 MW/m2 He4 (VV)-I/B-Flibe He4 (VV)-O/B-Flibe He4 (TF Coil)-I/B-Flibe He4 (TF Coil)-O/B-Flibe Shield Thickness, cm Hydrogen Production Rate (appm/yr) in Various Parts of the System appm/year Thick Liquid Layer: Flibe-Natural Li6 Wall Load: 0 MW/m2 H (VV)-I/B-Flibe H (VV)-O/B-Flibe H (TF Coil)-I/B-Flibe H (TF Coil)-O/B-Flibe Shield Thickness, cm He and H production rates in the V.V.of the I/B and O/B are similar. He and H production rates in the TF coiland Cu stabilizer on the I/B are ~ 5 and ~6 times larger in the I/B than in the O/B, respectively. Helium production rate in the V.V.at 50 cm-thick shield is ~0.02 appm /year. i.e. 0.6 appm after 30 years. This is below the He appm limit for the V.V. to Reweldable.

7 0 Comparison Between Flibe and Li-Sn for Annual DPA Rate dpa (VV)-I/B-Flibe-nat dpa (VV)-I/B-LiSn 90%Li6 dpa (TF Coil)-I/B-Flibe nat dpa (TF Coil)-I/B-LiSn 90%Li6 dpa (Cu)-I/B-Flibe nat dpa (Cu)-I/B-LiSn 90%Li6 DPA/Year Wall Load: 0 MW/m Shield Thickness, cm DPA rates in V.V., TF Coil, and Copper stabilizer are larger in the Li-Sn case than in the Flibe case.if no shield is present the values in the Li-Sn case are a factor of 2-3 larger.at 50 cm-thick shield this factor is ~ an order of magnitude. The attenuation length of Li-Sn shield for DPA rate in the V.V.is ~ 30 cm i.e. an order of magnitude reduction in DPA rate for every 30 cm shield

8 0 Comparison Between Flibe and Li-Sn for Helium Production Rate 00 Comparison Between Flibe and Li-Sn for Hydrogen Production Rate appm/year 0. He4 (VV)-I/B-Flibe nat He4 (VV)-I/B-LiSn 90%Li6 He4 (TF Coil)-I/B-Flibe nat He4 (TF Coil)-I/B-LiSn 90%Li6 He4 (VV)-I/B-LiSn-nat He4 (TF Coil)-I/B-LiSn-nat appm/year 0 0. H (VV)-I/B-Flibe H (VV)-I/B-LiSn H (TF Coil)-I/B-Flibe H (TF Coil)-I/B-LiSn Wall Load: 0 MW/m Shield Thickness, cm Wall Load: 0 MW/m Shield Thickness, cm The He and H production rates in the VV.and TF coilare similar in the Flibe and Li-Sn cases.the attenuation length is ~ 20 cm.he and He production occurs at high energies.this show s that the attenuation characteristics of Flibe and Li-Sn for 4 MeVneutrons are similar.this is not the case for neutrons in the epitherm alenergy ranges 0 kev- 2 MeVwhere more of such neutrons reach the V.V.and TF Coilin the Li-Sn case, causing larger DPA rates at these locations.

9 Comparison of Neutron Spectrum at the Back wall of GMD Liquid Pocket of the Outboard 0 2 Flibe-neutron-nat Li-Sn-neutron-90%Li6 Neutron Spectrum, (n/cm2.sec.en) Wall Load = 0 MW/m Neutron Energy En, ev

10 Comparison Between Flibe and Li-Sn for Heating Rate in the Winding Pack 0. Heating Rate (WP)-I/B-Flibe Heating Rate (WP)-O/B-Flibe Heating Rate (WP)-I/B-LiSn Heating Rate (WP)-O/B-LiSn Heating Rate (WP)-I/B-LiSn-nat Heating Rate (WP)-O/B-LiSn-nat 0.0 w/cc Wall Load: 0 MW/m Shield Thickness, cm Heating rate in the winding pack has similar features to the DPA rates curves, particularity on the I/B side. Attenuation length of the 50 cm-thick Li-Sn shield of ~ 30 cm (to reduce heating rate by an order of magnitude)

11 Tritium Breeding Ratio and Power Multiplication V.S. Li-6 Enrichment in the GMD Thick Liquid Blanket Design TBR Structure: Ferritic Steel TBR (Flibe) TBR (Li-Sn) PM (Flibe) PM(Li-Sn) PM Power Deposited, (w/cm) Total Power Deposited per Unit Length (w/cm) and Contribution From Neutron and Gamma Heating (GMD Blanket Concept) Blanket/Shield System 0 MW/m2 Total (Flibe/FS) Neutron (Flibe/FS) Gamma (Flibe/FS) Tot (Li-Sn/FS) Neutron (Li-Sn/FS) Gamma (Li-Sn/FS) Li-6 Enrichment Li-6 Enrichment NaturalLi6 25% Li-6 90% Li-6 Flibe Li-Sn Flibe Li-Sn Flibe Li-Sn TBR PM TBR is low (0.43) for Li-Sn with natural Li6. It increases rapidly with increasing Li6 enrichment. It reaches a values as high as.35 at 90% Li-6 enrichment TBR in Flibe decreases with Li-6 enrichment. It decreases by ~0% at 90% Li-6 enrichment. Power Multiplication decreases with Li-6 enrichment for both breeders.

12 Neutron Spectrum, (n/cm2.sec.en) Comparison of Neutron Spectrum at the Back wall of GMD Liquid Pocket of the Outboard (Natural Li6) Flibe-neutron-nat Li-Sn-neutron-nat Wall Load = 0 MW/m Neutron Energy En, ev Neutron Spectrum, (n/cm2.sec.en) Comparison of Neutron Spectrum at the Back wall of GMD Liquid Pocket of the Outboard (90%Li6) Flibe-neutron-90%Li6 Li-Sn-neutron-90%Li6 Wall Load = 0 MW/m Neutron Energy En, ev At natural Li-6 enrichment, the neutron spectrum in the Flibe case is generally larger in the low energy range (where Li6(n,a) xs is large) than in the Li-Sn case. This leads to a larger TBR. At 90% Li6 enrichment, the neutron flux in the low energy range falls below the corresponding flux in the Li-Sn case. This leads to a lower TBR.

13 Total Power Deposited per Unit Length (w/cm) and Contribution From Neutron and Gamma Heating (GMD Blanket Concept) Total Power Deposited per Unit Length (w/cm) and Contribution From Neutron and Gamma Heating (GMD Blanket Concept) Power Deposited, (w/cm) Breeder 0 MW/m2 Flibe (tot) (Flibe/FS) Flibe (n) (Flibe/FS) Flibe (G) (Flibe/FS) Li-Sn (tot) (Li-Sn/FS) Li-Sn (n) (Li-Sn/FS) Li-Sn (G) (Li-Sn/FS) Power Deposited, (w/cm) FS (tot) (Flibe/FS) FS (n) (Flibe/FS) FS (G) (Flibe/FS) FS (tot) (Li-Sn/FS) FS (n) (Li-Sn/FS) FS (G) (Li-Sn/FS) Structure: Ferritic Steel 0 MW/m Li-6 Enrichment Li-6 Enrichment Power multiplication for Li-Sn breeder at 90% Li6 (.32) is noticeably larger than PM for Flibe (.2). Total heat deposited is larger by ~8% which should be handled by the heat extraction system. Heat deposition due to gamma heating is large in the Li-Sn breeder, particularly heat deposited in the structural material (FS). This is due to the large Sn(n,gamma) XS. The total Sn(n,gamma) reaction decreases as Li-6 enrichment increases (competing processes).

14 GeneralConclusions: With 50 cm-thick shield, the DPA rate in the V.V.(w ith Flibe, naturalli-6) is ~ 0.0 DPA/yr.This is below the 200 dpa limit for the V.V.to be a lifetime component Helium production rate in the V.V.at 50 cm-thick shield is ~0.02 appm /year (Flibe with naturalli6). i.e. 0.6 appm after 30 years. This is below the He appm limit for the V.V. to Reweldable. TBR with Flibe is larger at naturalli-6 enrichment as compared to 90% enrichment.this is true in the case of GMD concept where thick liquid layer is facing the plasma.the TBR with Flibe (.2) is how ever low and raises a concern of achieving tritium self-sufficiency unless a separate neutron multiplier is used. TBR with Li-Sn breeder increases rapidly w ith Li-6 enrichment.at 90% Li6, TBR is ~.35 (better than Flibe).It appears that this breeder could offer sufficient breeding if cleverly used with structure that has less neutron absorption. Li-Sn breeder also offer larger pow er m ultiplication factor (~.33) w hich could improve the therm al cycle.

Nuclear H eating Profiles and Tritium Breeding in the Refractory Metals He- Cooled Blanket Concept. Mah moud Youssef UCLA

Nuclear H eating Profiles and Tritium Breeding in the Refractory Metals He- Cooled Blanket Concept. Mah moud Youssef UCLA Nuclear H eating Profiles and Tritium Breeding in the Refractory Metals He- Cooled Blanket Concept Mah moud Youssef UCLA Presented at the 5th APEX Group Meeting, UCLA, November 2-4, 998 Outlines Assess

More information

Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts. Mahmoud Youssef UCLA. Presented at APEX Group Meeting, SNL, July 27-29, 1998

Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts. Mahmoud Youssef UCLA. Presented at APEX Group Meeting, SNL, July 27-29, 1998 Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts Mahmoud Youssef UCLA Presented at APEX Group Meeting, SNL, July 27-29, 1998 Objective Assess the impact of Li-6 enrichment on: -

More information

5. Thick Liquid Blanket Concept 5.1 Introduction Ralph Moir 5.2 Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.2.

5. Thick Liquid Blanket Concept 5.1 Introduction Ralph Moir 5.2 Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.2. 5. Thick Liquid Blanket Concept 5. Introduction Ralph Moir 5. Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.. General Perspective 5.. Applications to Tokamaks 5..3 Applications

More information

Transmutation of Minor Actinides in a Spherical

Transmutation of Minor Actinides in a Spherical 1 Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor Feng Kaiming Zhang Guoshu Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research

More information

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

More information

Issues for Neutron Calculations for ITER Fusion Reactor

Issues for Neutron Calculations for ITER Fusion Reactor Introduction Issues for Neutron Calculations for ITER Fusion Reactor Erik Nonbøl and Bent Lauritzen Risø DTU, National Laboratory for Sustainable Energy Roskilde, Denmark Outline 1. Fusion development

More information

Design concept of near term DEMO reactor with high temperature blanket

Design concept of near term DEMO reactor with high temperature blanket Design concept of near term DEMO reactor with high temperature blanket Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies March 16-18, 2009 Tokyo Univ. Mai Ichinose, Yasushi Yamamoto

More information

Neutronics analysis of inboard shielding capability for a DEMO fusion reactor

Neutronics analysis of inboard shielding capability for a DEMO fusion reactor *Manuscript Click here to view linked References Neutronics analysis of inboard shielding capability for a DEMO fusion reactor Songlin Liu a, Jiangang Li a, Shanliang Zheng b, Neil Mitchell c a Institute

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

EU PPCS Models C & D Conceptual Design

EU PPCS Models C & D Conceptual Design Institut für Materialforschung III EU PPCS Models C & D Conceptual Design Presented by P. Norajitra, FZK 1 PPCS Design Studies Strategy definition [D. Maisonnier] 2 models with limited extrapolations Model

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

1 FT/P5-15. Assessment of the Shielding Efficiency of the HCLL Blanket for a DEMOtype Fusion Reactor

1 FT/P5-15. Assessment of the Shielding Efficiency of the HCLL Blanket for a DEMOtype Fusion Reactor 1 FT/P5-15 Assessment of the Shielding Efficiency of the HCLL Blanket for a DEMOtype Fusion Reactor J. Jordanova 1), U. Fischer 2), P. Pereslavtsev 2), Y. Poitevin 3), J. F. Salavy 4), A. Li Puma 4), N.

More information

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Conceptual design of liquid metal cooled power core components for a fusion power reactor Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Japan-US workshop on Fusion Power

More information

Fusion/transmutation reactor studies based on the spherical torus concept

Fusion/transmutation reactor studies based on the spherical torus concept FT/P1-7, FEC 2004 Fusion/transmutation reactor studies based on the spherical torus concept K.M. Feng, J.H. Huang, B.Q. Deng, G.S. Zhang, G. Hu, Z.X. Li, X.Y. Wang, T. Yuan, Z. Chen Southwestern Institute

More information

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells L. El-Guebaly Fusion Technology Institute University of Wisconsin-Madison With input from: C. Kessel (PPPL)

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor FIP/3-4Rb FIP/3-4Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Basics of breeding blanket technology

Basics of breeding blanket technology Basics of breeding blanket technology Dr Fabio CISMONDI Karlsruher Institut für Technologie (KIT) Institut für Neutronenphysik und Reaktortechnik e-mail: fabio.cismondi@kit.edu www.kit.edu Development

More information

THERMAL ANALYSIS OF A SOLID BREEDER TBM UNDER ITER OPERATIONAL CONDITIONS. A. Abou-Sena, A. Ying, M. Youssef, M. Abdou

THERMAL ANALYSIS OF A SOLID BREEDER TBM UNDER ITER OPERATIONAL CONDITIONS. A. Abou-Sena, A. Ying, M. Youssef, M. Abdou THERMAL AALYSIS OF A SOLID BREEDER TBM UDER ITER OPERATIOAL CODITIOS A. Abou-Sena, A. Ying, M. Youssef, M. Abdou Mechanical and Aerospace Engineering Dep., UCLA, Los Angeles, CA 90095 aliabousena@engineering.ucla.edu

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Neutron Testing: What are the Options for MFE?

Neutron Testing: What are the Options for MFE? Neutron Testing: What are the Options for MFE? L. El-Guebaly Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/uwneutronicscenterofexcellence Contributors: M. Sawan

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices The replacement of the first wall with a flowing thick liquid offers the advantages of high power density, high reliability and

More information

Surface Wall Load due to Bremsstrahlung & Line Radiation

Surface Wall Load due to Bremsstrahlung & Line Radiation Surface Wall Load due to Bremsstrahlung & Line Radiation Tetsuya Uchimoto APEX Study Meeting University of California Los Angeles November 2-4, 1998 Background & Objectives The operation of the liquid

More information

SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT

SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT MIT Plasma Science & Fusion Center SMALLER & SOONER: EXPLOITING NEW TECHNOLOGIES FOR FUSION S DEVELOPMENT Dennis Whyte MIT Plasma Science and Fusion Center MIT Nuclear Science and Engineering With grateful

More information

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics 17 th Meeting on Reactor Physics in the Nordic Countries Göteborg, Sweden May 11-12, 2015 E. Nonbøl 1, E. Klinkby 1, B. Lauritzen

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Fusion Nuclear Science and Technology (FNST) Strategic Issues, Challenges, and Facilities on the Pathway to Fusion DEMO

Fusion Nuclear Science and Technology (FNST) Strategic Issues, Challenges, and Facilities on the Pathway to Fusion DEMO Fusion Nuclear Science and Technology (FNST) Strategic Issues, Challenges, and Facilities on the Pathway to Fusion DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director,

More information

Fusion Nuclear Science and Technology Challenges and Required R&D

Fusion Nuclear Science and Technology Challenges and Required R&D Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Abdou Distinguished Professor of Engineering and Applied Science, UCLA Director, Fusion Science and Technology Center, UCLA Founding

More information

Nuclear Analysis of the HCLL Blanket Concept for the European DEMO Using the TRIPOLI-4 Monte Carlo Code

Nuclear Analysis of the HCLL Blanket Concept for the European DEMO Using the TRIPOLI-4 Monte Carlo Code EUROFUSION CP(15)06/17 J.-C. Jaboulay et al. Nuclear Analysis of the HCLL Blanket Concept for the European DEMO Using the TRIPOLI-4 Monte Carlo Code 12th International Symposium on Fusion Nuclear Technology

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

Aiming at Fusion Power Tokamak

Aiming at Fusion Power Tokamak Aiming at Fusion Power Tokamak Design Limits of a Helium-cooled Large Area First Wall Module Clement Wong General Atomics International Workshop on MFE Roadmapping in the ITER Era Princeton University,

More information

The Development and Application of One Thermal Hydraulic Program Based on ANSYS for Design of Ceramic Breeder Blanket of CFETR

The Development and Application of One Thermal Hydraulic Program Based on ANSYS for Design of Ceramic Breeder Blanket of CFETR J Fusion Energ (2015) 34:1088 1093 DOI 10.1007/s10894-015-9923-6 ORIGINAL RESEARCH The Development and Application of One Thermal Hydraulic Program Based on ANSYS for Design of Ceramic Breeder Blanket

More information

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems Elements of Strategy on Modelling Activities in the area of Test Blanket Systems I. Ricapito, TBM & MD Project Team, ITER Department, F4E, Barcelona (Spain) Barcelona, Sept 17 th 2014 Information Day FPA-611

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC

RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC R. Pampin 1, M.J. Loughlin, M.J. Walsh 1 (1) EURATOM/UKAEA Fusion Association, Culham Laboratory, Abingdon OX14 3DB,

More information

Core Design. Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte

Core Design. Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte Core Design Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte 22.63 - May 17, 2012 Primary Design Goals Qp ~ 25 and Qe > 3, with thermal output of ~ 500 MW. Develop a robust,

More information

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants C. E. Kessel 1, M. S. Tillack 2, and J. P. Blanchard 3 1 Princeton Plasma Physics Laboratory 2 University of California, San Diego

More information

ARIES-AT Blanket and Divertor Design (The Final Stretch)

ARIES-AT Blanket and Divertor Design (The Final Stretch) ARIES-AT Blanket and Divertor Design (The Final Stretch) The ARIES Team Presented by A. René Raffray and Xueren Wang ARIES Project Meeting University of Wisconsin, Madison June 19-21, 2000 Presentation

More information

Conceptual Design of CFETR Tokamak Machine

Conceptual Design of CFETR Tokamak Machine Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies February 26-28, 2013 at Kyoto University in Uji, JAPAN Conceptual Design of CFETR Tokamak Machine Yuntao Song for CFETR Design

More information

Conceptual Design of Advanced Blanket Using Liquid Li-Pb

Conceptual Design of Advanced Blanket Using Liquid Li-Pb Japan- US workshop on Fusion Power Plants and related advanced technologies with participation of EU February 5-7, 2007 at Kyoto, Japan Conceptual Design of Advanced Blanket Using Liquid Li-Pb Y. Yamamoto,

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER P. Satyamurthy Bhabha Atomic Research Centre, India P. Satyamurthy,

More information

Nuclear Fusion and ITER

Nuclear Fusion and ITER Nuclear Fusion and ITER C. Alejaldre ITER Deputy Director-General Cursos de Verano UPM Julio 2, 2007 1 ITER the way to fusion power ITER ( the way in Latin) is the essential next step in the development

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

CHAPTER 5: THICK LIQUID BLANKET CONCEPT. Contributors

CHAPTER 5: THICK LIQUID BLANKET CONCEPT. Contributors CHAPTER 5: THICK LIQUID BLANKET CONCEPT Contributors Lead Author: Alice Ying UCLA: Karani Gulec, Neil Morley, Sergy Smolentsev, Mahmoud Youssef, Tom Sketchley, Mohamed Abdou ORNL: Brad Nelson, Paul Fogarty,

More information

Shielding for Fusion Reactors

Shielding for Fusion Reactors Radiation Shielding for Fusion Reactors R. T. Santoro Oak Ridge National Laboratory Oak Ridge, TN 37831-6363 USA Radiation shielding requirements for fusion reactors present different problems than those

More information

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy Nuclear Energy in the Future The ITER Project Brad Nelson Chief Engineer, US ITER Presentation for NE-50 Symposium on the Future of Nuclear Energy November 1, 2012 Fusion research is ready for the next

More information

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Downloaded from orbit.dtu.dk on: Sep 04, 2018 Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Nonbøl, Erik; Klinkby, Esben Bryndt; Lauritzen, Bent; Santos, R. Publication

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

A Project for High Fluence 14 MeV Neutron Source

A Project for High Fluence 14 MeV Neutron Source A Project for High Fluence 14 MeV Neutron Source Mario Pillon 1, Maurizio Angelone 1, Aldo Pizzuto 1, Antonino Pietropaolo 1 1 Associazione ENEA-EURATOM Sulla Fusione, ENEA C.R. Frascati, via E. Fermi,

More information

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics Critical Gaps between Tokamak Physics and Nuclear Science (Step 1: Identifying critical gaps) (Step 2: Options to fill the critical gaps initiated) (Step 3: Success not yet) Clement P.C. Wong General Atomics

More information

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Dennis Whyte MIT Nuclear Science & Engineering Plasma Science Fusion Center June 2012 American Security Project

More information

Mohamed Abdou. Keynote Presentation at ISFNT-9, Dalian, China, October 12, Binhai Road (Beach Road), Dalian

Mohamed Abdou. Keynote Presentation at ISFNT-9, Dalian, China, October 12, Binhai Road (Beach Road), Dalian Mohamed Abdou Keynote Presentation at ISFNT-9, Dalian, China, October 12, 2009 Binhai Road (Beach Road), Dalian Perspective on Fusion Nuclear Science and Technology (FNST) Issues and Development OUTLINE

More information

Assessment on safety and security for fusion plant

Assessment on safety and security for fusion plant Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN Assessment on safety and security

More information

Status of the Concept Design of CFETR Tokamak Machine

Status of the Concept Design of CFETR Tokamak Machine Status of the Concept Design of CFETR Tokamak Machine Tokamak Machine Design Team Presented by Songtao WU Slide 1 Outline Guideline of the Tokamak Design Magnet Configuration and Preliminary Analysis VV

More information

Perspective on Fusion Energy

Perspective on Fusion Energy Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

Fusion Reactor Research Activities at SWIP (1)

Fusion Reactor Research Activities at SWIP (1) Fusion Reactor Research Activities at SWIP (1) Design Studies of DEMO Reactor 1. Introduction Considering that there is still a long way to go towards an economically competitive commercial fusion power

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

Provisional scenario of radioactive waste management for DEMO

Provisional scenario of radioactive waste management for DEMO US-Japan Workshop on Fusion power plants and Related advanced technologies 13-14 March 2014 UCSD, USA Provisional scenario of radioactive waste management for DEMO Youji Someya Japan Atomic Energy Agency,

More information

FLIBE ASSESSMENTS ABSTRACT

FLIBE ASSESSMENTS ABSTRACT FLIBE ASSESSMENTS Dai-Kai Sze, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (630) 252-4838 USA Kathryn McCarthy, Idaho National Engineer & Environmental Laboratory, P.O. Box 1625,

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

MELCOR model development for ARIES Safety Analysis

MELCOR model development for ARIES Safety Analysis MELCOR model development for ARIES Safety Analysis Paul Humrickhouse Brad Merrill INL ARIES Meeting UCSD San Diego, CA January 23 rd -24 th, 2012 Presentation Outline Status of MELCOR modeling for ARIES-ACT

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

Study of Impacts on Tritium Breeding Ratio of a Fusion DEMO Reactor

Study of Impacts on Tritium Breeding Ratio of a Fusion DEMO Reactor CCFE-PR(17)32 S. Zhen and T.N. Todd Study of Impacts on Tritium Breeding Ratio of a Fusion DEMO Reactor Enquiries about copyright and reproduction should in the first instance be addressed to the Culham

More information

Nuclear Analysis and Shielding Optimisation in Support of the ITER In-Vessel Viewing System Design

Nuclear Analysis and Shielding Optimisation in Support of the ITER In-Vessel Viewing System Design Nuclear Analysis and Shielding Optimisation in Support of the ITER In-Vessel Viewing System Design Andrew Turner a, Raul Pampin b, M.J. Loughlin c, Zamir Ghani a, Gemma Hurst a, Alessandro Lo Bue b, Samuel

More information

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA BY BOB WOOLLEY 15-19 FEBRUARY 1999 APEX-6 MEETING LIQUID WALLS A sufficiently thick, flowing, liquid first wall and tritium breeding blanket which almost completely

More information

Technological and Engineering Challenges of Fusion

Technological and Engineering Challenges of Fusion Technological and Engineering Challenges of Fusion David Maisonnier and Jim Hayward EFDA CSU Garching (david.maisonnier@tech.efda.org) 2nd IAEA TM on First Generation of FPP PPCS-KN1 1 Outline The European

More information

Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules

Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules EUROFUSION WPBB-CP(16) 15736 J Aubert et al. Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules Preprint of Paper to be submitted for publication

More information

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Diagnostics for Burning Plasma Physics Studies: A Status Report. Diagnostics for Burning Plasma Physics Studies: A Status Report. Kenneth M. Young Princeton Plasma Physics Laboratory UFA Workshop on Burning Plasma Science December 11-13 Austin, TX Aspects of Plasma

More information

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor 3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor M. Matsunaka, S. Shido, K. Kondo, H. Miyamaru, I. Murata Division of Electrical, Electronic and Information Engineering,

More information

DISCLAIMER. and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER. and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DSCLAMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes

More information

Three-Dimensional Nuclear Analysis for the Final Optics System with GIMMs

Three-Dimensional Nuclear Analysis for the Final Optics System with GIMMs Three-Dimensional Nuclear Analysis for the Final Optics System with s Mohamed Sawan Ahmad Ibrahim Tim Bohm Paul Wilson Fusion Technology Institute University of Wisconsin, Madison, WI 1 HAPL Meeting PPPL

More information

Preliminary Safety Analysis of CH HCSB TBM

Preliminary Safety Analysis of CH HCSB TBM Preliminary Safety Analysis of CH HCSB TBM Presented by: Chen Zhi SWIP ITER TBM Workshop, China Vienna, Austria, IAEA, July 10-14, 2006 1 Introduction Calculation model Outline Review of CH HCSB TBM preliminary

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E)

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Xue-Ming Shi Xian-Jue Peng Institute of Applied Physics and Computational Mathematics(IAPCM), BeiJing, China December

More information

The New Sorgentina Fusion Source Project

The New Sorgentina Fusion Source Project The New Sorgentina Fusion Source Project P. Agostini, P. Console Camprini, D. Bernardi, M. Pillon, M. Frisoni, M. Angelone, A. Pietropaolo, P. Batistoni, A. Pizzuto ENEA Agenzia Nazionale per le Nuove

More information

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor 1 FIP/3-4Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno

More information

STATUS OF DEMO-FNS DEVELOPMENT

STATUS OF DEMO-FNS DEVELOPMENT FNS/1-1 NATIONAL RESEARCH CENTER KURCHATOV INSTITUTE НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ» STATUS OF DEMO-FNS DEVELOPMENT B.V. Kuteev, Yu.S. Shpanskiy and DEMO-FNS Team Shpanskiy_YS@nrcki.ru

More information

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets)

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) International School of Fusion reactor Technology Erice, July 26 August 1, 2004 The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) Presented by L. Giancarli Commissariat à l Energie Atomique,

More information

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS J. F. Lyon, L.P. Ku 2, P. Garabedian, L. El-Guebaly 4, L. Bromberg 5, and the ARIES Team Oak Ridge National Laboratory, Oak Ridge, TN, lyonjf@ornl.gov 2 Princeton

More information

FUSION NEUTRONICS EXPERIMENTS AT FNG: ACHIEVEMENTS IN THE PAST 10 YEARS AND FUTURE PERSPECTIVES

FUSION NEUTRONICS EXPERIMENTS AT FNG: ACHIEVEMENTS IN THE PAST 10 YEARS AND FUTURE PERSPECTIVES FUSION NEUTRONICS EXPERIMENTS AT FNG: ACHIEVEMENTS IN THE PAST 10 YEARS AND FUTURE PERSPECTIVES presented by Paola Batistoni ENEA Fusion Division Fast Neutron Physics International Workshop & IEA International

More information

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA)

More information

Conceptual design study for heat exhaust management in the ARC fusion pilot plant

Conceptual design study for heat exhaust management in the ARC fusion pilot plant Conceptual design study for heat exhaust management in the ARC fusion pilot plant A.Q. Kuang 1, N.M. Cao 1, A.J. Creely 1, C.A. Dennett 2, J. Hecla 2, B. LaBombard 1, R.A. Tinguely 1, E.A. Tolman 1, H.

More information

19 th IAEA- Fusion Energy Conference FT/1-6

19 th IAEA- Fusion Energy Conference FT/1-6 1 19 th IAEA- Fusion Energy Conference FT/1-6 RECENT DEVELOPMENTS IN HELIAS REACTOR STUDIES H. Wobig 1), T. Andreeva 1), C.D. Beidler 1), E. Harmeyer 1), F. Herrnegger 1), Y. Igitkhanov 1), J. Kisslinger

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

Seminar Chengdu, China Southwestern Institute of Physics (SWIP)

Seminar Chengdu, China Southwestern Institute of Physics (SWIP) Blanket/First Wall Challenges and Required R&D on the pathway to DEMO for the near term in laboratory experiments and medium term in FNSF/CFETR Mohamed Abdou Distinguished Professor of Engineering and

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

Demountable Superconducting Magnet Coils

Demountable Superconducting Magnet Coils FESAC TEC Report 1 Demountable Superconducting Magnet Coils A strategic technology to address key nuclear materials, construction, and maintenance issues Brandon Sorbom, Bob Mumgaard, Joseph Minervini,

More information

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco Thermal Field in a NMR Cryostat Annunziata D Orazio Agostini Chiara Simone Fiacco Overall Objective of Research Program The main objective of the present work was to study the thermal field inside the

More information

Concept of Multi-function Fusion Reactor

Concept of Multi-function Fusion Reactor Concept of Multi-function Fusion Reactor Presented by Songtao Wu Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui, 230031, P.R. China 1. Motivation 2. MFFR Concept

More information

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Robert D. Woolley Princeton University Princeton Plasma Physics Laboratory* P.O. Box 451 Princeton, New Jersey 08543 (609)

More information

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU January 11-13, 2005 at Tokyo, JAPAN In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Hirofumi

More information

NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT.

NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT. NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT. A. Abánades, A. Blanco, A. Burgos, S. Cuesta, P.T. León, J. M. Martínez-Val, M. Perlado Universidad Politecnica

More information

Neutronic Evaluation of a Power Plant Conceptual Study considering Different Modelings

Neutronic Evaluation of a Power Plant Conceptual Study considering Different Modelings 1 FTP/P7-25 Neutronic Evaluation of a Power Plant Conceptual Study considering Different Modelings C.E. Velasquez 1,2), C. Pereira 1,2), M.A. Veloso 1,2), A.L.Costa 1,2) 1) Nuclear Engineering Department

More information