Correlation Clustering with Noisy Input

Size: px
Start display at page:

Download "Correlation Clustering with Noisy Input"

Transcription

1 Correlaton Clsterng wth Nosy Inpt Clare Mathe Warren Schdy Brown Unversty SODA 2010

2 Nosy Correlaton Clsterng Model Unknown base clsterng B of n obects Nose: each edge s controlled by an adversary wth probablty p and tells the trth otherwse Problem: reconstrct B from the edge labels I n p t B = = = =

3 One of or reslts Theorem: assme p 1/3. If all clsters have sze at least 1 then the natral sem-defnte program (SDP) recovers B exactly wth hgh probablty. Prevos best: 2 n log n [Bansal, Blm, Chawla 04, Shamr and Tsr 07], combnatoral. See paper for other reslts (ncldng approxmaton algorthms) n

4 Plan The sem-defnte program Its dal Usng the dal

5 Clsterngs Clsterngs are represented by 0/1 matrces: =1: and n same clster In general a clsterng satsfes: E.g. v k k v T k for some 0/1 orthogonal vectors v, v2,..., v one per clster v cat v dog : : 1 m ,

6 Relaxaton Clsterng Relaxaton of clsterngs =1 for all 0 for all, The followng are eqvalent ( symmetrc): T vkvk for some 0/1 vectors v1, v2,..., v k T vkvk for some vectors v1, v2,..., v k s postve sem-defnte (p.s.d.) m m

7 Obectve Maxmze nmber of agreements: max f 1 f Drop the constant = I.e. max E where E 1 f = -1 f

8 Smmary of SDP max p.s.d. E s.t. Ths SDP was prevosly sed by: [Charkar, Grswam, Wrth 05] [Swamy 04] 1 0 E = = = =

9 Dscsson Algorthm: Solve SDP If ntegral, otpt t. Otherwse fal. Thm: assme p 1/3. If all clsters have sze at least 1 n then the SDP recovers B exactly wth hgh probablty. An example matrx from solver n [Elsner and Schdy 09]. That solver scales to a few thosand obects.

10 Plan The sem-defnte program Its dal Usng the dal

11 Translate SDP nto LP The followng are eqvalent ( symmetrc): postve sem-defnte SDP agan: max T 1 0 p.s.d. 0 for all E vectors s.t. max LP form: T Lnear n for fxed E s.t for all vectors

12 SDP Dal Prmal: Dal: 0, a for all ) 1( s.t. mn h E h d a d E T 0 for all, 0 for all 1for all s.t. max a h d

13 Translate dal LP nto SDP The followng are eqvalent ( symmetrc): a wth a 0 T k k k postve sem-defnte Dal agan: mn a d s.t. d 1( ) h a, h E 0 Matrx form: mn Trace ( D) E D H a D H s.t. dagonal 0 0 Arbtrary postve semdefnte matrx a T

14 The Dal SDP mn Trace( D) s.t. E D H postve sem- defnte D dagonal H 0

15 Plan The sem-defnte program Its dal Usng the dal Ths proof s nspred by a smlar reslt for the planted clqe problem [Fege and Krathgamer 00].

16 Usng the dal - overvew Prove optmalty of the base clsterng by presentng dal solton (D,H) whose vale matches vale of base clsterng B (see paper) Dffclt part: provng that E D H s p.s.d. The followng are eqvalent (Y symmetrc): Y postve sem-defnte All egenvales of Y are 0 We present b egenvectors wth egenvale 0 (see paper), where b s the nmber of clsters n B We prove that the b+1 th smallest egenvale, denoted, s postve (sketched next) b1 E D H Hence all egenvales of E D H are 0

17 Egenvale analyss E D H M M M M b 1 (mn clster sze) (see paper) 1 ( n) (next) We apply the followng: Theorem [Weyl]: If M and N are symmetrc matrces then M N) ( M) ( ) b1( 1 b1 N Hence for sffcently large mn clster sze b E D H. 1 0

18 Random matrces Theorem [Füred and Komlós 81]: Let M be a random symmetrc matrx wth ndependent entres of mean zero. Then wth hgh probablty Applcaton: 1 M E Expectaton E n 2 M O n for all. 1 To analyze M 3 we developed a generalzaton of ths theorem that handles lmted dependence between the entres.

19 Recap Theorem: assme p 1/3. If all clsters have sze at least then the SDP recovers B exactly wth hgh probablty. Proof: We wrote a dal solton matrx as a sm of 4 random matrces, sed Füred-Komlós varants to bond ther egenvales, sed Weyl to nfer bond on egenvales of the matrx, hence p.s.d., hence solton s feasble. That solton has vale eqal to the vale of B, hence by dalty B s prmal optmal B s the nqe prmal optmm (see paper), hence SDP wll exactly retrn B Hence algorthm reconstrcts B exactly when all clsters have sze at least n. 1 1 n

20 Sppose some clsters are sze c 3 n and others are sze 1. Can the SDP be sed to reconstrct the large clsters? Open Qeston 1 Software: [Elsner and Schdy 09].

21 Open Qeston 2 Planted clqe problem = correlaton clsterng wth only one non-sngleton and no corrpton of wthn-clster edges Exst polynomal-tme algorthm when clqe sze = c 1 n O(log n) Exsts n -tme algorthm when clqe sze = c1 log n Can polynomal-tme algorthms beat the n barrer? c 1

22 Clsterng References Nr Alon, Moses Charkar, and Alantha Newman. Aggregatng nconsstent nformaton: rankng and clsterng. In STOC 05, pages , Nkhl Bansal, Avrm Blm, and Shch Chawla. Correlaton clsterng. Mach. Learn., 56(1-3):89 113, Moses Charkar, Venkatesan Grswam, and Anthony Wrth. Clsterng wth qaltatve nformaton. J. Compt. Syst. Sc., 71(3): , M. Elsner and W. Schdy. Bondng and Comparng Methods for Correlaton Clsterng Beyond ILP. In ILP-NLP 09: Proc. NAACL/HLT 2009 Workshop on Integer Lnear Programmng for Natral Langage Processng, pages 19 27, Ron Shamr and Dekel Tsr. Improved algorthms for the random clster graph model. Random Strctres and Algorthms, 31(4): , 2007.

23 Other References F. Alzadeh. Interor pont methods n semdefnte programmng wth applcatons to combnatoral optmzaton. SIAM Jornal on Optmzaton, 5(1):13 51, 1995 Urel Fege and Robert Krathgamer. Fndng and certfyng a large hdden clqe n a semrandom graph. Random Strct. Algorthms, 16(2): , 2000 Zoltán Füred and János Komlós. The egenvales of random symmetrc matrces. Combnatorca, 1(3): , 1981

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo CS 3750 Machne Learnng Lectre 6 Monte Carlo methods Mlos Haskrecht mlos@cs.ptt.ed 5329 Sennott Sqare Markov chan Monte Carlo Importance samplng: samples are generated accordng to Q and every sample from

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui.

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui. Convex Optmzaton (EE227BT: UC Berkeley) Lecture 9 (Optmalty; Conc dualty) 9/25/14 Laurent El Ghaou Organsatonal Mdterm: 10/7/14 (1.5 hours, n class, double-sded cheat sheet allowed) Project: Intal proposal

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices

Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices Approxmate D-optmal desgns of experments on the convex hull of a fnte set of nformaton matrces Radoslav Harman, Mára Trnovská Department of Appled Mathematcs and Statstcs Faculty of Mathematcs, Physcs

More information

An introduction to chaining, and applications to sublinear algorithms

An introduction to chaining, and applications to sublinear algorithms An ntroducton to channg, and applcatons to sublnear algorthms Jelan Nelson Harvard August 28, 2015 What s ths talk about? What s ths talk about? Gven a collecton of random varables X 1, X 2,...,, we would

More information

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016 CS 29-128: Algorthms and Uncertanty Lecture 17 Date: October 26, 2016 Instructor: Nkhl Bansal Scrbe: Mchael Denns 1 Introducton In ths lecture we wll be lookng nto the secretary problem, and an nterestng

More information

HOMOGENEOUS LEAST SQUARES PROBLEM

HOMOGENEOUS LEAST SQUARES PROBLEM the Photogrammetrc Jornal of nl, Vol. 9, No., 005 HOMOGENEOU LE QURE PROLEM Kejo Inklä Helsnk Unversty of echnology Laboratory of Photogrammetry Remote ensng P.O.ox 00, IN-005 KK kejo.nkla@tkk.f RC he

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

Nonlinear Programming Formulations for On-line Applications

Nonlinear Programming Formulations for On-line Applications Nonlnear Programmng Formlatons for On-lne Applcatons L. T. Begler Carnege Mellon Unversty Janary 2007 Jont work wth Vctor Zavala and Carl Lard NLP for On-lne Process Control Nonlnear Model Predctve Control

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Assortment Optimization under the Paired Combinatorial Logit Model

Assortment Optimization under the Paired Combinatorial Logit Model Assortment Optmzaton under the Pared Combnatoral Logt Model Heng Zhang, Paat Rusmevchentong Marshall School of Busness, Unversty of Southern Calforna, Los Angeles, CA 90089 hengz@usc.edu, rusmevc@marshall.usc.edu

More information

OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION. Christophe De Luigi and Eric Moreau

OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION. Christophe De Luigi and Eric Moreau OPTIMAL COMBINATION OF FOURTH ORDER STATISTICS FOR NON-CIRCULAR SOURCE SEPARATION Chrstophe De Lug and Erc Moreau Unversty of Toulon LSEET UMR CNRS 607 av. G. Pompdou BP56 F-8362 La Valette du Var Cedex

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Lecture 17. Solving LPs/SDPs using Multiplicative Weights Multiplicative Weights

Lecture 17. Solving LPs/SDPs using Multiplicative Weights Multiplicative Weights Lecture 7 Solvng LPs/SDPs usng Multplcatve Weghts In the last lecture we saw the Multplcatve Weghts (MW) algorthm and how t could be used to effectvely solve the experts problem n whch we have many experts

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Lecture 3 January 31, 2017

Lecture 3 January 31, 2017 CS 224: Advanced Algorthms Sprng 207 Prof. Jelan Nelson Lecture 3 January 3, 207 Scrbe: Saketh Rama Overvew In the last lecture we covered Y-fast tres and Fuson Trees. In ths lecture we start our dscusson

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis Fsher Lnear Dscrmnant Analyss Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan Fsher lnear

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

1 The Mistake Bound Model

1 The Mistake Bound Model 5-850: Advanced Algorthms CMU, Sprng 07 Lecture #: Onlne Learnng and Multplcatve Weghts February 7, 07 Lecturer: Anupam Gupta Scrbe: Bryan Lee,Albert Gu, Eugene Cho he Mstake Bound Model Suppose there

More information

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013 Stanford Unversty Graph Parttonng and Expanders Handout 3 Luca Trevsan May 8, 03 Lecture 3 In whch we analyze the power method to approxmate egenvalues and egenvectors, and we descrbe some more algorthmc

More information

Introduction. - The Second Lyapunov Method. - The First Lyapunov Method

Introduction. - The Second Lyapunov Method. - The First Lyapunov Method Stablty Analyss A. Khak Sedgh Control Systems Group Faculty of Electrcal and Computer Engneerng K. N. Toos Unversty of Technology February 2009 1 Introducton Stablty s the most promnent characterstc of

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University.

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University. A Modelng Sstem to Combne Optmzaton and Constrant Programmng John Hooker Carnege Mellon Unverst INFORMS November 000 Based on ont work wth Ignaco Grossmann Hak-Jn Km Mara Axlo Osoro Greger Ottosson Erlendr

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS Shervn Haamn A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS INTRODUCTION Increasng computatons n applcatons has led to faster processng. o Use more cores n a chp

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Spectral Clustering. Shannon Quinn

Spectral Clustering. Shannon Quinn Spectral Clusterng Shannon Qunn (wth thanks to Wllam Cohen of Carnege Mellon Unverst, and J. Leskovec, A. Raaraman, and J. Ullman of Stanford Unverst) Graph Parttonng Undrected graph B- parttonng task:

More information

Reading Assignment. Panel Data Cross-Sectional Time-Series Data. Chapter 16. Kennedy: Chapter 18. AREC-ECON 535 Lec H 1

Reading Assignment. Panel Data Cross-Sectional Time-Series Data. Chapter 16. Kennedy: Chapter 18. AREC-ECON 535 Lec H 1 Readng Assgnment Panel Data Cross-Sectonal me-seres Data Chapter 6 Kennedy: Chapter 8 AREC-ECO 535 Lec H Generally, a mxtre of cross-sectonal and tme seres data y t = β + β x t + β x t + + β k x kt + e

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Low correlation tensor decomposition via entropy maximization

Low correlation tensor decomposition via entropy maximization CS369H: Herarches of Integer Programmng Relaxatons Sprng 2016-2017 Low correlaton tensor decomposton va entropy maxmzaton Lecture and notes by Sam Hopkns Scrbes: James Hong Overvew CS369H). These notes

More information

Proseminar Optimierung II. Victor A. Kovtunenko SS 2012/2013: LV

Proseminar Optimierung II. Victor A. Kovtunenko SS 2012/2013: LV Prosemnar Optmerung II Vctor A. Kovtunenko Insttute for Mathematcs and Scentfc Computng, Karl-Franzens Unversty of Graz, Henrchstr. 36, 8010 Graz, Austra; Lavrent ev Insttute of Hydrodynamcs, Sberan Dvson

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

MEM Chapter 4b. LMI Lab commands

MEM Chapter 4b. LMI Lab commands 1 MEM8-7 Chapter 4b LMI Lab commands setlms lmvar lmterm getlms lmedt lmnbr matnbr lmnfo feasp dec2mat evallm showlm setmvar mat2dec mncx dellm delmvar gevp 2 Intalzng the LMI System he descrpton of an

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8 U.C. Berkeley CS278: Computatonal Complexty Handout N8 Professor Luca Trevsan 2/21/2008 Notes for Lecture 8 1 Undrected Connectvty In the undrected s t connectvty problem (abbrevated ST-UCONN) we are gven

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI Short runnng ttle: A generatng functon approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI JASON FULMAN Abstract. A recent paper of Church, Ellenberg,

More information

CSCI B609: Foundations of Data Science

CSCI B609: Foundations of Data Science CSCI B609: Foundatons of Data Scence Lecture 13/14: Gradent Descent, Boostng and Learnng from Experts Sldes at http://grgory.us/data-scence-class.html Grgory Yaroslavtsev http://grgory.us Constraned Convex

More information

Communication Complexity 16:198: February Lecture 4. x ij y ij

Communication Complexity 16:198: February Lecture 4. x ij y ij Communcaton Complexty 16:198:671 09 February 2010 Lecture 4 Lecturer: Troy Lee Scrbe: Rajat Mttal 1 Homework problem : Trbes We wll solve the thrd queston n the homework. The goal s to show that the nondetermnstc

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Successive Lagrangian Relaxation Algorithm for Nonconvex Quadratic Optimization

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Successive Lagrangian Relaxation Algorithm for Nonconvex Quadratic Optimization MATHEMATICAL ENGINEERING TECHNICAL REPORTS Successve Lagrangan Relaxaton Algorthm for Nonconvex Quadratc Optmzaton Shnj YAMADA and Akko TAKEDA METR 2017 08 March 2017 DEPARTMENT OF MATHEMATICAL INFORMATICS

More information

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning Journal of Machne Learnng Research 00-9 Submtted /0; Publshed 7/ Erratum: A Generalzed Path Integral Control Approach to Renforcement Learnng Evangelos ATheodorou Jonas Buchl Stefan Schaal Department of

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Decentralized Computation for Robust Stability Analysis of Large State-Space Systems Using Polya s Theorem

Decentralized Computation for Robust Stability Analysis of Large State-Space Systems Using Polya s Theorem Decentralzed Computaton for Robust Stablty Analyss of Large State-Space Systems Usng Polya s Theorem Reza Kamyar Matthew M. Peet Abstract In ths paper, we propose a parallel algorthm to solve large robust

More information

Faster and Simpler Width-Independent Parallel Algorithms for Positive Semidefinite Programming

Faster and Simpler Width-Independent Parallel Algorithms for Positive Semidefinite Programming Faster and Smpler Wdth-Independent Parallel Algorthms for Postve Semdefnte Programmng Rchard Peng Kanat Tangwongsan Carnege Mellon Unversty {yangp, ktangwon}@cs.cmu.edu ASTRACT Ths paper studes the problem

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

Department of Chemical and Biological Engineering LECTURE NOTE II. Chapter 3. Function of Several Variables

Department of Chemical and Biological Engineering LECTURE NOTE II. Chapter 3. Function of Several Variables LECURE NOE II Chapter 3 Functon of Several Varables Unconstraned multvarable mnmzaton problem: mn f ( x), x R x N where x s a vector of desgn varables of dmenson N, and f s a scalar obectve functon - Gradent

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information