Constructing Approximation Kernels for Non-Harmonic Fourier Data

Size: px
Start display at page:

Download "Constructing Approximation Kernels for Non-Harmonic Fourier Data"

Transcription

1 Constructing Approximation Kernels for Non-Harmonic Fourier Data Aditya Viswanathan California Institute of Technology SIAM Annual Meeting 2013 July / 19

2 Joint work with Anne Gelb Sidi Kaber Research supported in part by National Science Foundation grants CNS , DMS and DMS (FRG). 0 / 19

3 Motivating Application Magnetic Resonance Imaging Physics of MRI dictates that the MR scanner collect samples of the Fourier transform of the specimen being imaged. 1 / 19

4 Motivating Application Magnetic Resonance Imaging Collecting non-uniform measurements has certain advantages; for example, they are easier and faster to collect, and, aliased images retain diagnostic qualities. Reconstructing images from such measurements accurately and efficiently is, however, challenging. 1 / 19

5 Model Problem Let f be defined in R with support in [ π, π). Given ˆf(ω k ) = f, e iω kx, k = N,, N, ω k not necessarily Z, compute an approximation to the underlying (possibly piecewise-smooth) function f, an approximation to the locations and values of jumps in the underlying function; i.e., [f](x) := f(x + ) f(x ). Issues Sparse sampling of the high frequencies, i.e., ω k k > 1 for k large. The DFT is not defined for ω k k; the FFT is not directly applicable. 2 / 19

6 Outline Introduction Motivating Application Simplified Model Problem Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels Designing Convolutional Gridding Kernels Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels 2 / 19

7 Uniform Re-sampling (Rosenfeld) We consider direct methods of recovering f and [f] from ˆf(ω k ). Due to our familiarity with harmonic Fourier reconstructions and the applicability of FFTs, we will consider a two step process: 1. Approximate the Fourier coefficients at equispaced modes 2. Compute a standard (filtered) Fourier partial sum Basic Premise f is compactly supported in physical space. Hence, the Shannon sampling theorem is applicable in Fourier space; i.e., ˆf(ω) = k= sinc(ω k) ˆf k, ω R. 3 / 19

8 Uniform Re-sampling Implementation We truncate the problem as follows ˆf(ω k ) sinc(ω k l) ˆf }{{} l, l M A R 2N+1 2M+1 k = N,, N The equispaced coefficients are approximated using f l = A ˆf(ω k ), where A is the Moore-Penrose pseudo-inverse of A. A and its properties characterize the resulting approximation. Regularization may be used (truncated SVD, Tikhonov regularization) in the presence of noise. A is (unfortunately) a dense matrix in general, with the computation of f requiring O ( N 2) operations. 4 / 19

9 Uniform Re-sampling Sampling Patterns Consider the sampling pattern ω k = k ± U[0, µ], k = N,, N where U[a, b] denotes an iid uniform distribution in [a, b] with equiprobable positive/negative jitter. Jitter µ κ(a) / 19

10 Uniform Re-sampling An Example Reconstruction using jittered samples (µ = 0.5). Error Fourier Modes Recontruction 6 / 19

11 Uniform Re-sampling An Example Reconstruction using jittered samples (µ = 0.5). Error Fourier Modes Reconstruction 6 / 19

12 From Uniform Re-sampling to Convolutional Gridding Recall that for uniform re-sampling, we use the relation ˆf(ω) = k sinc(ω k) ˆf k = ( ˆf sinc)(ω) Since the Fourier transform pair of the sinc function is the box/rect function (of width 2π and centered at zero), we have f Π ˆf sinc Now consider replacing the sinc function by a bandlimited function ˆφ such that ˆφ( ω ) = 0 for ω > q (typically a few modes wide). We now have f φ ˆf ˆφ 7 / 19

13 Convolutional Gridding (Jackson/Meyer/Nishimura and others) Gridding is an inexpensive direct approximation to the uniform re-sampling procedure. Given measurements ˆf(ω k ), we compute an approximation to ˆf ˆφ at the equispaced modes using ( ˆf ˆφ)(l) l ω k q α k ˆf(ωk ) ˆφ(l ω k ), l = M,..., M. Now that we are on equispaced modes, use a (F)DFT to reconstruct an approximation to f φ in physical space. Recover f by dividing out φ. α k are density compensation factors (DCFs) and determine the accuracy of the reconstruction. 8 / 19

14 Analysis of the Convolution Gridding Sum The gridding approximation can be written as α k ˆf(ωk ) ˆφ(l ω k ) e ilx f cg (x) = = l M l ω k q φ(x) k l α ( k f(ξ)e iω k ξ dξ ) ( φ(η)e i(l ωk)η dη ) e ilx φ(x) ( ) ( ) f(ξ)φ(η) α k e iω k(η ξ) e il(x η) dξdη k }{{}}{{} A = α N (η ξ) D N (x η) φ(x) (f A α = N )(η) φ(η) D N (x η)dη φ(x) = ([{f Aα N } φ] D N) (x) φ(x) l 9 / 19

15 The Dirichlet Kernel A Review Given ˆf k := f, e ikx, k = N,, N, a periodic repetition of f may be reconstructed using the Fourier partial sum P N f(x) = ˆf k e ikx = (f D N )(x), where k N D N (x) = k N e ikx is the Dirichlet kernel. D N is the bandlimited (2N + 1 mode) approximation of the Dirac delta distribution. 10 / 19

16 The Dirichlet Kernel A Review D N completely characterizes the Fourier approximation P N f. Filtered and jump approximations are similarly characterized by equivalent filtered and (filtered) conjugate Dirichlet kernels. 10 / 19

17 The Non-Harmonic Kernel Consider the non-harmonic kernel A N (x) = k N e iω kx A N is non-periodic. The non-harmonic kernel is a poor approximation to the Dirac delta distribution. Depending on the mode distribution, A N may be non-decaying. Filtering is of no help under these circumstances. 11 / 19

18 The Non-Harmonic Kernel Jittered Modes ω k = k ± U[0, µ], µ = / 19

19 The Non-Harmonic Kernel Log Modes ω k logarithmically spaced 11 / 19

20 Outline Introduction Motivating Application Simplified Model Problem Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels Designing Convolutional Gridding Kernels Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels 11 / 19

21 Designing Gridding Kernels Recall that the convolutional gridding sum can be written in the form f cg (x) = ([{f Aα N } φ] D N) (x) φ(x) where the (weighted) non-harmonic kernel A α N(x) = k N α k e iω kx. α k are free design parameters which we choose such that A α N is compactly supported and a good reconstruction kernel (such as the Dirichlet kernel) in the interval of interest. 12 / 19

22 Design Problem Formulation Choose α = {α k } N N such that α k e iωkx k N l M e ilx x π 0 else Discretizing on an equispaced grid, we obtain the linear system of equations Dα = b, where D l,j = e iω lx j denotes the (non-harmonic) DFT matrix, and b p = sin(m+1/2)xp sin(x p/2 ) Π are the values of the Dirichlet kernel on the equispaced grid. 13 / 19

23 Design Problem Formulation Choose α = {α k } N N such that α k e iωkx k N l M σ l e ilx x π 0 else Discretizing on an equispaced grid, we obtain the linear system of equations Dα = b, where D l,j = e iω lx j denotes the (non-harmonic) DFT matrix, and b p are the values of the (filtered) Dirichlet kernel on the equispaced grid. 13 / 19

24 Numerical Results Reconstruction ω k logarithmically spaced N = 256 measurements Iterative weights solved using LSQR 14 / 19

25 Numerical Results Reconstruction Error ω k logarithmically spaced N = 256 measurements Iterative weights solved using LSQR 14 / 19

26 Numerical Results DCF weights α ω k logarithmically spaced N = 256 measurements Iterative weights solved using LSQR 14 / 19

27 Outline Introduction Motivating Application Simplified Model Problem Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels Designing Convolutional Gridding Kernels Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels 14 / 19

28 Concentration Method (Gelb, Tadmor) Approximate the singular support of f using the generalized conjugate partial Fourier sum S σ N[f](x) = i N k= N ˆf(k) sgn(k) σ ( ) k e ikx N σ k,n (η) = σ( k N ) are known as concentration factors which are required to satisfy certain admissibility conditions. Under these conditions, S σ N[f](x) = [f](x) + O(ɛ), ɛ = ɛ(n) > 0 being small i.e., SN σ [f] concentrates at the singular support of f. 15 / 19

29 Concentration Factors Factor Expression π sin(α η) Trigonometric σ T (η) = Si(α) α sin(x) Si(α) = dx 0 x Polynomial σ P (η) = p π η p p is the order of [ the factor ] Exponential σ E (η) = Cη exp 1 α η (η 1) C - normalizing constant α - order π C = 1 1 N 1 N [ exp 1 α τ (τ 1) ] dτ Table: Examples of concentration factors Figure: Envelopes of Factors in k-space 16 / 19

30 Some Examples Jump Approximation Trigonometric Factor Jump Approximation Exponential Factor f S N [f] f(x) 0 f(x) f S N [f] x x (a) Trigonometric Factor (b) Exponential Factor Figure: Jump Function Approximation, N = / 19

31 Designing Non-Harmonic Edge Detection Kernels Choose α = {α k } N N such that i sgn(l)σ( l /N)e ilx x π α k e iωkx l M k N 0 else Discretizing on an equispaced grid, we obtain the linear system of equations Dα = b, where D l,j = e iω lx j denotes the (non-harmonic) DFT matrix, and bp are the values of the generalized conjugate Dirichlet kernel on the equispaced grid. 18 / 19

32 Numerical Results Jump Approximation and Corresponding Weights ω k logarithmically spaced N = 256 measurements Iterative weights solved using LSQR 19 / 19

33 Summary and Future Directions 1. Applications such as MR imaging require reconstruction from non-harmonic Fourier measurements. 2. Assuming the function of interest is compactly supported, the underlying relation between non-harmonic and harmonic Fourier data is the Shannon sampling theorem (sinc interpolation). 3. Convolutional gridding is an efficient approximation to sinc-based resampling. 4. A set of free parameters known as the density compensation factors (DCFs) allow us to design gridding kernels with favorable characteristics. 5. To do compare results with frame theoretic approaches, use banded DCFs to obtain better gridding approximations. 19 / 19

34 Selected References 1. D. Rosenfeld, An Optimal and Efficient New Gridding Algorithm Using Singular Value Decomposition, in Magn. Reson. Med., Vol. 40, No. 1 (1998), pp J. Jackson, C. Meyer and D. Nishimura, Selection of a Convolution Function for Fourier Inversion Using Gridding, in IEEE Trans. Med. Img., Vol. 10, No. 3 (1991), pp J. Fessler and B. Sutton, Nonuniform Fast Fourier Transforms Using Min-Max Interpolation, in IEEE Trans. Sig. Proc., Vol. 51, No. 2 (2003), pp J. Pipe and P. Menon, Sampling Density Compensation in MRI: Rationale and an Iterative Numerical Solution, in Magn. Reson. Med., Vol. 41, No. 1 (1999), pp A. Gelb and E. Tadmor, Detection of Edges in Spectral Data, in Appl. Comp. Harmonic Anal., 7 (1999), pp / 19

Numerical Approximation Methods for Non-Uniform Fourier Data

Numerical Approximation Methods for Non-Uniform Fourier Data Numerical Approximation Methods for Non-Uniform Fourier Data Aditya Viswanathan aditya@math.msu.edu 2014 Joint Mathematics Meetings January 18 2014 0 / 16 Joint work with Anne Gelb (Arizona State) Guohui

More information

Direct Methods for Reconstruction of Functions and their Edges from Non-Uniform Fourier Data

Direct Methods for Reconstruction of Functions and their Edges from Non-Uniform Fourier Data Direct Methods for Reconstruction of Functions and their Edges from Non-Uniform Fourier Data Aditya Viswanathan aditya@math.msu.edu ICERM Research Cluster Computational Challenges in Sparse and Redundant

More information

Fourier Reconstruction from Non-Uniform Spectral Data

Fourier Reconstruction from Non-Uniform Spectral Data School of Electrical, Computer and Energy Engineering, Arizona State University aditya.v@asu.edu With Profs. Anne Gelb, Doug Cochran and Rosemary Renaut Research supported in part by National Science Foundation

More information

Compensation. June 29, Arizona State University. Edge Detection from Nonuniform Data via. Convolutional Gridding with Density.

Compensation. June 29, Arizona State University. Edge Detection from Nonuniform Data via. Convolutional Gridding with Density. Arizona State University June 29, 2012 Overview gridding with density compensation is a common method for function reconstruction nonuniform Fourier data. It is computationally inexpensive compared with

More information

Fourier reconstruction of univariate piecewise-smooth functions from non-uniform spectral data with exponential convergence rates

Fourier reconstruction of univariate piecewise-smooth functions from non-uniform spectral data with exponential convergence rates Fourier reconstruction of univariate piecewise-smooth functions from non-uniform spectral data with exponential convergence rates Rodrigo B. Platte a,, Alexander J. Gutierrez b, Anne Gelb a a School of

More information

APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES

APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES GUOHUI SONG AND ANNE GELB Abstract. This investigation seeks to establish the practicality of numerical frame approximations. Specifically,

More information

Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting

Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting Recovery of Compactly Supported Functions from Spectrogram Measurements via Lifting Mark Iwen markiwen@math.msu.edu 2017 Friday, July 7 th, 2017 Joint work with... Sami Merhi (Michigan State University)

More information

Polynomial Approximation: The Fourier System

Polynomial Approximation: The Fourier System Polynomial Approximation: The Fourier System Charles B. I. Chilaka CASA Seminar 17th October, 2007 Outline 1 Introduction and problem formulation 2 The continuous Fourier expansion 3 The discrete Fourier

More information

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM Anne Gelb, Rodrigo B. Platte, Rosie Renaut Development and Analysis of Non-Classical Numerical Approximation

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg MGA Tutorial, September 08, 2004 Construction of Wavelets Jan-Olov Strömberg Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden Department of Numerical Analysis and Computer

More information

Fourier Series. (Com S 477/577 Notes) Yan-Bin Jia. Nov 29, 2016

Fourier Series. (Com S 477/577 Notes) Yan-Bin Jia. Nov 29, 2016 Fourier Series (Com S 477/577 otes) Yan-Bin Jia ov 9, 016 1 Introduction Many functions in nature are periodic, that is, f(x+τ) = f(x), for some fixed τ, which is called the period of f. Though function

More information

Fast and Robust Phase Retrieval

Fast and Robust Phase Retrieval Fast and Robust Phase Retrieval Aditya Viswanathan aditya@math.msu.edu CCAM Lunch Seminar Purdue University April 18 2014 0 / 27 Joint work with Yang Wang Mark Iwen Research supported in part by National

More information

Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter

Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter Journal of Scientific Computing, Vol. 8, os. /3, September 6 ( 6) DOI:.7/s95-988 Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter A. Gelb and E. Tadmor Received April 9, 5;

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Applied and Computational Harmonic Analysis

Applied and Computational Harmonic Analysis Appl. Comput. Harmon. Anal. 27 (2009) 351 366 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha Letter to the Editor Nonlinear inversion

More information

Topics in Fourier analysis - Lecture 2.

Topics in Fourier analysis - Lecture 2. Topics in Fourier analysis - Lecture 2. Akos Magyar 1 Infinite Fourier series. In this section we develop the basic theory of Fourier series of periodic functions of one variable, but only to the extent

More information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information Fast Angular Synchronization for Phase Retrieval via Incomplete Information Aditya Viswanathan a and Mark Iwen b a Department of Mathematics, Michigan State University; b Department of Mathematics & Department

More information

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 27 Introduction Fredholm first kind integral equation of convolution type in one space dimension: g(x) = 1 k(x x )f(x

More information

Chapter 6: Fast Fourier Transform and Applications

Chapter 6: Fast Fourier Transform and Applications Chapter 6: Fast Fourier Transform and Applications Michael Hanke Mathematical Models, Analysis and Simulation, Part I Read: Strang, Ch. 4. Fourier Sine Series In the following, every function f : [,π]

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Nov : Lecture 18: The Fourier Transform and its Interpretations

Nov : Lecture 18: The Fourier Transform and its Interpretations 3 Nov. 04 2005: Lecture 8: The Fourier Transform and its Interpretations Reading: Kreyszig Sections: 0.5 (pp:547 49), 0.8 (pp:557 63), 0.9 (pp:564 68), 0.0 (pp:569 75) Fourier Transforms Expansion of a

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013 Mårten Björkman

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DD2423 Image Processing and Computer Vision DISCRETE FOURIER TRANSFORM Mårten Björkman Computer Vision and Active Perception School of Computer Science and Communication November 1, 2012 1 Terminology:

More information

Recovery of high order accuracy in radial basis function approximation for discontinuous problems

Recovery of high order accuracy in radial basis function approximation for discontinuous problems Recovery of high order accuracy in radial basis function approximation for discontinuous problems Chris L. Bresten, Sigal Gottlieb 1, Daniel Higgs, Jae-Hun Jung* 2 Abstract Radial basis function(rbf) methods

More information

The Resolution of the Gibbs Phenomenon for Fourier Spectral Methods

The Resolution of the Gibbs Phenomenon for Fourier Spectral Methods The Resolution of the Gibbs Phenomenon for Fourier Spectral Methods Anne Gelb Sigal Gottlieb December 5, 6 Introduction Fourier spectral methods have emerged as powerful computational techniques for the

More information

Accelerated MRI Image Reconstruction

Accelerated MRI Image Reconstruction IMAGING DATA EVALUATION AND ANALYTICS LAB (IDEAL) CS5540: Computational Techniques for Analyzing Clinical Data Lecture 15: Accelerated MRI Image Reconstruction Ashish Raj, PhD Image Data Evaluation and

More information

Super-resolution by means of Beurling minimal extrapolation

Super-resolution by means of Beurling minimal extrapolation Super-resolution by means of Beurling minimal extrapolation Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu Acknowledgements ARO W911NF-16-1-0008

More information

Lecture 7 January 26, 2016

Lecture 7 January 26, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 7 January 26, 26 Prof Emmanuel Candes Scribe: Carlos A Sing-Long, Edited by E Bates Outline Agenda:

More information

Poisson Summation, Sampling and Nyquist s Theorem

Poisson Summation, Sampling and Nyquist s Theorem Chapter 8 Poisson Summation, Sampling and Nyquist s Theorem See: A.6.1, A.5.2. In Chapters 4 through 7, we developed the mathematical tools needed to describe functions of continuous variables and methods

More information

Uncertainty principles for far field patterns and applications to inverse source problems

Uncertainty principles for far field patterns and applications to inverse source problems for far field patterns and applications to inverse source problems roland.griesmaier@uni-wuerzburg.de (joint work with J. Sylvester) Paris, September 17 Outline Source problems and far field patterns AregularizedPicardcriterion

More information

Wavelets: Theory and Applications. Somdatt Sharma

Wavelets: Theory and Applications. Somdatt Sharma Wavelets: Theory and Applications Somdatt Sharma Department of Mathematics, Central University of Jammu, Jammu and Kashmir, India Email:somdattjammu@gmail.com Contents I 1 Representation of Functions 2

More information

Recovering Exponential Accuracy From Non-Harmonic Fourier Data Through Spectral Reprojection

Recovering Exponential Accuracy From Non-Harmonic Fourier Data Through Spectral Reprojection Recovering Eponential Accuracy From Non-Harmonic Fourier Data Through Spectral Reprojection Anne Gelb Taylor Hines November 5, 2 Abstract Spectral reprojection techniques make possible the recovery of

More information

The discrete and fast Fourier transforms

The discrete and fast Fourier transforms The discrete and fast Fourier transforms Marcel Oliver Revised April 7, 1 1 Fourier series We begin by recalling the familiar definition of the Fourier series. For a periodic function u: [, π] C, we define

More information

Complex geometrical optics solutions for Lipschitz conductivities

Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 19 (2003), 57 72 Complex geometrical optics solutions for Lipschitz conductivities Lassi Päivärinta, Alexander Panchenko and Gunther Uhlmann Abstract We prove the existence of

More information

CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION c01.fm Page 3 Friday, December 8, 2006 10:08 AM 1 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION In the design and analysis of image processing systems, it is convenient and often necessary mathematically

More information

Non-Uniform Fast Fourier Transformation (NUFFT) and Magnetic Resonace Imaging 2008 년 11 월 27 일. Lee, June-Yub (Ewha Womans University)

Non-Uniform Fast Fourier Transformation (NUFFT) and Magnetic Resonace Imaging 2008 년 11 월 27 일. Lee, June-Yub (Ewha Womans University) Non-Uniform Fast Fourier Transformation (NUFFT) and Magnetic Resonace Imaging 2008 년 11 월 27 일 Lee, June-Yub (Ewha Womans University) 1 NUFFT and MRI Nonuniform Fast Fourier Transformation (NUFFT) Basics

More information

A practical guide to the recovery of wavelet coefficients from Fourier measurements

A practical guide to the recovery of wavelet coefficients from Fourier measurements A practical guide to the recovery of wavelet coefficients from Fourier measurements Milana Gataric Clarice Poon April 05; Revised March 06 Abstract In a series of recent papers Adcock, Hansen and Poon,

More information

Lecture 6 January 21, 2016

Lecture 6 January 21, 2016 MATH 6/CME 37: Applied Fourier Analysis and Winter 06 Elements of Modern Signal Processing Lecture 6 January, 06 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates Outline Agenda: Fourier

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Sparse Sampling: Theory and Applications

Sparse Sampling: Theory and Applications November 24, 29 Outline Problem Statement Signals with Finite Rate of Innovation Sampling Kernels: E-splines and -splines Sparse Sampling: the asic Set-up and Extensions The Noisy Scenario Applications

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

Problem descriptions: Non-uniform fast Fourier transform

Problem descriptions: Non-uniform fast Fourier transform Problem descriptions: Non-uniform fast Fourier transform Lukas Exl 1 1 University of Vienna, Institut für Mathematik, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria December 11, 2015 Contents 0.1 Software

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

Structured Linear Algebra Problems in Adaptive Optics Imaging

Structured Linear Algebra Problems in Adaptive Optics Imaging Structured Linear Algebra Problems in Adaptive Optics Imaging Johnathan M. Bardsley, Sarah Knepper, and James Nagy Abstract A main problem in adaptive optics is to reconstruct the phase spectrum given

More information

Reconstructing conductivities with boundary corrected D-bar method

Reconstructing conductivities with boundary corrected D-bar method Reconstructing conductivities with boundary corrected D-bar method Janne Tamminen June 24, 2011 Short introduction to EIT The Boundary correction procedure The D-bar method Simulation of measurement data,

More information

OPTIMAL FILTER AND MOLLIFIER FOR PIECEWISE SMOOTH SPECTRAL DATA

OPTIMAL FILTER AND MOLLIFIER FOR PIECEWISE SMOOTH SPECTRAL DATA MATHEMATICS OF COMPUTATIO Volume, umber, Pages S 5-578(XX)- OPTIMAL FILTER AD MOLLIFIER FOR PIECEWISE SMOOTH SPECTRAL DATA JARED TAER This paper is dedicated to Eitan Tadmor for his direction. Abstract.

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

A Wavelet-based Method for Overcoming the Gibbs Phenomenon

A Wavelet-based Method for Overcoming the Gibbs Phenomenon AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), Harvard, Massachusetts, USA, March 4-6, 008 A Wavelet-based Method for Overcoming the Gibbs Phenomenon NATANIEL GREENE Department of Mathematics Computer

More information

Phase Retrieval from Local Measurements: Deterministic Measurement Constructions and Efficient Recovery Algorithms

Phase Retrieval from Local Measurements: Deterministic Measurement Constructions and Efficient Recovery Algorithms Phase Retrieval from Local Measurements: Deterministic Measurement Constructions and Efficient Recovery Algorithms Aditya Viswanathan Department of Mathematics and Statistics adityavv@umich.edu www-personal.umich.edu/

More information

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 9, Number 2, pp. 227 237 (2014) http://campus.mst.edu/adsa Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

More information

A Singular Integral Transform for the Gibbs-Wilbraham Effect in Inverse Fourier Transforms

A Singular Integral Transform for the Gibbs-Wilbraham Effect in Inverse Fourier Transforms Universal Journal of Integral Equations 4 (2016), 54-62 www.papersciences.com A Singular Integral Transform for the Gibbs-Wilbraham Effect in Inverse Fourier Transforms N. H. S. Haidar CRAMS: Center for

More information

Fourier Series. ,..., e ixn ). Conversely, each 2π-periodic function φ : R n C induces a unique φ : T n C for which φ(e ix 1

Fourier Series. ,..., e ixn ). Conversely, each 2π-periodic function φ : R n C induces a unique φ : T n C for which φ(e ix 1 Fourier Series Let {e j : 1 j n} be the standard basis in R n. We say f : R n C is π-periodic in each variable if f(x + πe j ) = f(x) x R n, 1 j n. We can identify π-periodic functions with functions on

More information

The Poisson summation formula, the sampling theorem, and Dirac combs

The Poisson summation formula, the sampling theorem, and Dirac combs The Poisson summation ormula, the sampling theorem, and Dirac combs Jordan Bell jordanbell@gmailcom Department o Mathematics, University o Toronto April 3, 24 Poisson summation ormula et S be the set o

More information

APPROXIMATING A BANDLIMITED FUNCTION USING VERY COARSELY QUANTIZED DATA: IMPROVED ERROR ESTIMATES IN SIGMA-DELTA MODULATION

APPROXIMATING A BANDLIMITED FUNCTION USING VERY COARSELY QUANTIZED DATA: IMPROVED ERROR ESTIMATES IN SIGMA-DELTA MODULATION APPROXIMATING A BANDLIMITED FUNCTION USING VERY COARSELY QUANTIZED DATA: IMPROVED ERROR ESTIMATES IN SIGMA-DELTA MODULATION C. SİNAN GÜNTÜRK Abstract. Sigma-delta quantization is a method of representing

More information

Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials

Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials Lutz Kämmerer Chemnitz University of Technology joint work with S. Kunis and D. Potts supported by DFG-SPP 1324 1 / 16

More information

Two-parameter regularization method for determining the heat source

Two-parameter regularization method for determining the heat source Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 8 (017), pp. 3937-3950 Research India Publications http://www.ripublication.com Two-parameter regularization method for

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 SOME INVERSE SCATTERING PROBLEMS FOR TWO-DIMENSIONAL SCHRÖDINGER

More information

Fast Algorithms for the Computation of Oscillatory Integrals

Fast Algorithms for the Computation of Oscillatory Integrals Fast Algorithms for the Computation of Oscillatory Integrals Emmanuel Candès California Institute of Technology EPSRC Symposium Capstone Conference Warwick Mathematics Institute, July 2009 Collaborators

More information

Quality Improves with More Rays

Quality Improves with More Rays Recap Quality Improves with More Rays Area Area 1 shadow ray 16 shadow rays CS348b Lecture 8 Pat Hanrahan / Matt Pharr, Spring 2018 pixelsamples = 1 jaggies pixelsamples = 16 anti-aliased Sampling and

More information

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Qingtang Jiang Abstract This paper is about the construction of univariate wavelet bi-frames with each framelet being symmetric.

More information

Spectral Methods and Inverse Problems

Spectral Methods and Inverse Problems Spectral Methods and Inverse Problems Omid Khanmohamadi Department of Mathematics Florida State University Outline Outline 1 Fourier Spectral Methods Fourier Transforms Trigonometric Polynomial Interpolants

More information

Applied and Computational Harmonic Analysis 7, (1999) Article ID acha , available online at

Applied and Computational Harmonic Analysis 7, (1999) Article ID acha , available online at Applied and Computational Harmonic Analysis 7, 0 35 (999) Article ID acha.999.06, available online at http://www.idealibrary.com on Detection of Edges in Spectral Data Anne Gelb Department of Mathematics,

More information

arxiv: v1 [eess.sp] 4 Nov 2018

arxiv: v1 [eess.sp] 4 Nov 2018 Estimating the Signal Reconstruction Error from Threshold-Based Sampling Without Knowing the Original Signal arxiv:1811.01447v1 [eess.sp] 4 Nov 2018 Bernhard A. Moser SCCH, Austria Email: bernhard.moser@scch.at

More information

Beyond incoherence and beyond sparsity: compressed sensing in the real world

Beyond incoherence and beyond sparsity: compressed sensing in the real world Beyond incoherence and beyond sparsity: compressed sensing in the real world Clarice Poon 1st November 2013 University of Cambridge, UK Applied Functional and Harmonic Analysis Group Head of Group Anders

More information

Fourier transform of tempered distributions

Fourier transform of tempered distributions Fourier transform of tempered distributions 1 Test functions and distributions As we have seen before, many functions are not classical in the sense that they cannot be evaluated at any point. For eample,

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

DETECTION OF EDGES IN SPECTRAL DATA II. NONLINEAR ENHANCEMENT

DETECTION OF EDGES IN SPECTRAL DATA II. NONLINEAR ENHANCEMENT SIAM J. UMER. AAL. Vol. 38, o. 4, pp. 389 48 c 2 Society for Industrial and Applied Mathematics DETECTIO OF EDGES I SPECTRAL DATA II. OLIEAR EHACEMET AE GELB AD EITA TADMOR Abstract. We discuss a general

More information

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and related topics

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and related topics Boundedness of Fourier integral operators on Fourier Lebesgue spaces and related topics Fabio Nicola (joint work with Elena Cordero and Luigi Rodino) Dipartimento di Matematica Politecnico di Torino Applied

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as 88 CHAPTER 3. WAVELETS AND APPLICATIONS We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma 3..7 and (3.55) with j =. We can write any f W as (3.58) f(ξ) = p(2ξ)ν(2ξ)

More information

Assignment 2 Solutions

Assignment 2 Solutions EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Solutions 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

MATH 220 solution to homework 4

MATH 220 solution to homework 4 MATH 22 solution to homework 4 Problem. Define v(t, x) = u(t, x + bt), then v t (t, x) a(x + u bt) 2 (t, x) =, t >, x R, x2 v(, x) = f(x). It suffices to show that v(t, x) F = max y R f(y). We consider

More information

Contributors and Resources

Contributors and Resources for Introduction to Numerical Methods for d-bar Problems Jennifer Mueller, presented by Andreas Stahel Colorado State University Bern University of Applied Sciences, Switzerland Lexington, Kentucky, May

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

WAVELETS, SHEARLETS AND GEOMETRIC FRAMES: PART II

WAVELETS, SHEARLETS AND GEOMETRIC FRAMES: PART II WAVELETS, SHEARLETS AND GEOMETRIC FRAMES: PART II Philipp Grohs 1 and Axel Obermeier 2 October 22, 2014 1 ETH Zürich 2 ETH Zürich, supported by SNF grant 146356 OUTLINE 3. Curvelets, shearlets and parabolic

More information

A fast method for solving the Heat equation by Layer Potentials

A fast method for solving the Heat equation by Layer Potentials A fast method for solving the Heat equation by Layer Potentials Johannes Tausch Abstract Boundary integral formulations of the heat equation involve time convolutions in addition to surface potentials.

More information

arxiv: v3 [math.na] 6 Sep 2015

arxiv: v3 [math.na] 6 Sep 2015 Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples Ben Adcock Milana Gataric Anders C. Hansen April 23, 2018 arxiv:1405.3111v3 [math.na] 6

More information

Introduction to Fourier Analysis

Introduction to Fourier Analysis Lecture Introduction to Fourier Analysis Jan 7, 2005 Lecturer: Nati Linial Notes: Atri Rudra & Ashish Sabharwal. ext he main text for the first part of this course would be. W. Körner, Fourier Analysis

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Lecture 9 February 2, 2016

Lecture 9 February 2, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 9 February 2, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates Outline Agenda:

More information

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Jungho Yoon Abstract. The theory of interpolation by using conditionally positive definite function provides optimal

More information

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp A Tutorial on Wavelets and their Applications Martin J. Mohlenkamp University of Colorado at Boulder Department of Applied Mathematics mjm@colorado.edu This tutorial is designed for people with little

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information

Wavelets and Image Compression Augusta State University April, 27, Joe Lakey. Department of Mathematical Sciences. New Mexico State University

Wavelets and Image Compression Augusta State University April, 27, Joe Lakey. Department of Mathematical Sciences. New Mexico State University Wavelets and Image Compression Augusta State University April, 27, 6 Joe Lakey Department of Mathematical Sciences New Mexico State University 1 Signals and Images Goal Reduce image complexity with little

More information

Inverse Theory Methods in Experimental Physics

Inverse Theory Methods in Experimental Physics Inverse Theory Methods in Experimental Physics Edward Sternin PHYS 5P10: 2018-02-26 Edward Sternin Inverse Theory Methods PHYS 5P10: 2018-02-26 1 / 29 1 Introduction Indirectly observed data A new research

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Discrete Fourier transform (DFT)

Discrete Fourier transform (DFT) Discrete Fourier transform (DFT) Signal Processing 2008/9 LEA Instituto Superior Técnico Signal Processing LEA (IST) Discrete Fourier transform 1 / 34 Periodic signals Consider a periodic signal x[n] with

More information

NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS

NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS Nikolaos D. Atreas Department of Mathematics, Aristotle University of Thessaloniki, 54006, Greece, e-mail:natreas@auth.gr Abstract We

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information