Ranked Predicate Abstraction for Branching Time. Complete, Incremental, and Precise

Size: px
Start display at page:

Download "Ranked Predicate Abstraction for Branching Time. Complete, Incremental, and Precise"

Transcription

1 : Complete, Incremental, and Precise Harald Fecher 1 Michael Huth 2 1 Christian-Albrechts-University at Kiel, Germany 2 Imperial College London, United Kingdom Beijing, ATVA 2006

2 Main Issues Foundation for counter-example-guided abstraction refinement (CEGAR) for the full mu-calculus: Development of extended predicate abstraction: sound, precise, incremental, and complete

3 Introduction Branching time (multiple system observers; biological systems) Branching time logic: mu-calculus having least and greatest fixpoints Model checking not directly applicable on large or infinite systems Counter-example-guided abstraction refinement (CEGAR): initial abstraction; model check; spurious counterexample refinement; loop Abstraction technique: predicate abstraction (synthesized automatically using theorem prover)

4 Predicate abstraction Divide concrete state space by a set of predicates: abstract state is subset of predicates (related concrete are those satisfing the contained predicates and not satisfying the omitted). Mu-calculus needs over approximation (may-transition) and under approximation (must-transition). Must-hypertransition increase expressiveness.

5 Intro Ranking Model Statements Conclusion Predicate abstraction illustration p 0 p 1 p 1 p 1 = AX (νx.(p 0 EX (p 1 EX EX EX X )))

6 Intro Ranking Model Statements Conclusion Predicate abstraction illustration p 0 p 1 p 1 p 1 = AX (νx.(p 0 EX (p 1 EX EX EX X )))

7 Intro Ranking Model Statements Conclusion Predicate abstraction illustration p p 1 p 1 p 1 3 = AX (νx.(p 0 EX (p 1 EX EX EX X ))) = p0 0 p p 1 p + 1

8 Intro Ranking Model Statements Conclusion Current predicate abstraction insufficient Problem: least fixpoint formulas p 0 p 1 p 1 p 1 = AX (µx.(p 0 EX (p 1 EX EX EX X )))

9 Intro Ranking Model Statements Conclusion Current predicate abstraction insufficient Problem: least fixpoint formulas 1 p 0 0 p 1 p 1 p 1 = AX (µx.(p 0 EX (p 1 EX EX EX X ))) 2 3 = p0 0 p p 1 p + 1

10 Intro Ranking Model Statements Conclusion Current predicate abstraction insufficient Problem: least fixpoint formulas 1 p 0 0 p 1 p 1 p 1 = AX (µx.(p 0 EX (p 1 EX EX EX X ))) No other predicate abstraction does. 2 3 = p0 0 p p 1 p + 1

11 Intro Ranking Model Statements Conclusion Current predicate abstraction insufficient Problem: least fixpoint formulas 1 p 0 0 p 1 p 1 p 1 = AX (µx.(p 0 EX (p 1 EX EX EX X ))) No other predicate abstraction does. Solution: ranking functions 2 3 = p0 0 p p 1 p + 1

12 Ranked predicate abstraction Definition A ranked predicate abstraction ℵ of a state space S is a tuple (I, h ) where h : S I is a surjective function mapping concrete (S) to abstract (I ) states

13 Ranked predicate abstraction Definition A ranked predicate abstraction ℵ of a state space S is a tuple (I, h, ( k ) k K ) where h : S I is a surjective function mapping concrete (S) to abstract (I ) states for all k K, with K a (possible empty) index set, k (S ) (S ) is a pre-order with well-founded irreflexive version < k ;

14 Ranked predicate abstraction Definition A ranked predicate abstraction ℵ of a state space S is a tuple (I, h, J, ( k ) k K ) where h : S I is a surjective function mapping concrete (S) to abstract (I ) states J is a non-empty set of rank locations; [think J to be the subproperties] for all k K, with K a (possible empty) index set, k (S J) (S J) is a pre-order with well-founded irreflexive version < k ;

15 Ranked predicate abstraction Definition A ranked predicate abstraction ℵ of a state space S is a tuple (I, h, J, ( k ) k K ) where h : S I is a surjective function mapping concrete (S) to abstract (I ) states J is a non-empty set of rank locations; [think J to be the subproperties] for all k K, with K a (possible empty) index set, k (S J) (S J) is a pre-order with well-founded irreflexive version < k ; I + J + K is finite.

16 Hypermixed Kripke structures The abstract model has to be extended by Fairness constraints (Streett over transitions naturally occur) and May-hypertransition (conjunctively interpreted) for handling J.

17 Hypermixed Kripke structures The abstract model has to be extended by Fairness constraints (Streett over transitions naturally occur) and May-hypertransition (conjunctively interpreted) for handling J. Streett: Infinite 1-transitions infinite 2-transitions

18 Hypermixed Kripke structures The abstract model has to be extended by Fairness constraints (Streett over transitions naturally occur) and May-hypertransition (conjunctively interpreted) for handling J. refines Streett: Infinite 1-transitions infinite 2-transitions

19 Satisfaction Via Games: in EX : Verifier choose must hypertrans; Refuter choose element from target in AX : Refuter choose may hypertrans; Verifier choose element from target Verifier wins infinite plays: Non-acceptance at the model or acceptance at the property

20 Satisfaction example S 00 = AX (µx.(p 0 EX (p 1 EX EX EX X ))) AX : Player I chooses s10 2 or s2 20 EX -circle: Player I chooses must-transition to {s31 0 } she chooses must-transition to {s21 0 } she chooses must-transition to {s1 10, s0 20 } she chooses must-transition to s01 1, resp. to {s1 10, s1 20 } either p 0 is reached or non-acceptant model sequence

21 Soundness Winning conditions for satisfaction are Rabin conditions (since Streett RabinChain). Thus deciding satisfaction is in NP Theorem (Soundness) Suppose M 1 refines M 2 and φ is mu-calculus formula: M 2 = φ M 1 = φ

22 ℵ-abstraction game Player I tries to show that model M 1 is abstracted by model M 2 up to ranked predicate abstraction ℵ (is ℵ-abstracted by): Player II can additionally switch between states of M 1 that map to the same elements via the abstraction function h as long as no contradiction to the ranking functions of ℵ is produced. Player I controls the ranking positions J. Theorem If M 1 is ℵ-abstracted by M 2, then M 1 is abstracted by M 2.

23 Intro Ranking Model Statements Conclusion Precise abstraction 0,0 p ,1 3,2 4,3 5,4 p 1 p 1 p 1 1,2 2,3 3,4 2 3 J={g,b} and (s,j ) 0 (s,j) ω(s,j ) ω(s,j) where ω(s,j) is depicted with colors

24 Intro Ranking Model Statements Conclusion Precise abstraction State space: I J (K {0, 1, 2}) function indicates for k K if k remains equal, decrease, or increase 0,0 p ,1 3,2 4,3 5,4 p 1 p 1 p 1 1,2 2,3 3,4 2 3 J={g,b} and (s,j ) 0 (s,j) ω(s,j ) ω(s,j) where ω(s,j) is depicted with colors

25 Intro Ranking Model Statements Conclusion Precise abstraction State space: I J (K {0, 1, 2}) function indicates for k K if k remains equal, decrease, or increase 0,0 p ,1 3,2 4,3 5,4 p 1 p 1 p 1 1,2 2,3 3,4 2 3 J={g,b} and (s,j ) 0 (s,j) ω(s,j ) ω(s,j) where ω(s,j) is depicted with colors

26 Intro Ranking Model Statements Conclusion Precise abstraction State space: I J (K {0, 1, 2}) function indicates for k K if k remains equal, decrease, or increase 0,0 p ,1 3,2 4,3 5,4 p 1 p 1 p 1 1,2 2,3 3,4 2 3 J={g,b} and (s,j ) 0 (s,j) ω(s,j ) ω(s,j) where ω(s,j) is depicted with colors

27 Intro Ranking Model Statements Conclusion Precise abstraction State space: I J (K {0, 1, 2}) function indicates for k K if k remains equal, decrease, or increase 0,0 p ,1 3,2 4,3 5,4 p 1 p 1 p 1 1,2 2,3 3,4 2 3 J={g,b} and (s,j ) 0 (s,j) ω(s,j ) ω(s,j) where ω(s,j) is depicted with colors Streett fairness: at any k K, if the state function (third component) at k is infinitely often 1, then it is also infinitely often 2.

28 Preciseness Theorem (Precision) The defined abstraction M ℵ is finite and a precise ℵ-abstraction, i.e., M ℵ is a ℵ-abstraction of M and if M 2 is a ℵ-abstraction of M, then M 2 abstracts M ℵ.

29 Incremental Definition ℵ 1 is an extension of ℵ 2 if the partition is finer and only ranking functions are added. Theorem If ℵ 1 is an extension of ℵ 2, then M ℵ1 is abstracted by M ℵ2. Theorem (Confluence of extensions) For ℵ 1 and ℵ 2 there is constructible predicate abstraction being an extension of ℵ 1 and of ℵ 2.

30 Intro Ranking Model Statements Conclusion Non-trivial ranking positions J necessary for completeness There is no ranked predicate abstraction ℵ of p 0 p 1 p 1 p 1 such that its J is a singleton and its abstraction satisfies AX (µx.(p 0 EX (p 1 EX EX EX X ))). We already saw that it is possible with non-singleton J.

31 Completeness Let M Kripke structure and θ memoryless strategy for M = φ. Partition (function h θ ): states are equivalent if they satisfy same subformulas via θ and θ behaves same on -properties Ranking locations J: set of subproperties Ranking function ω θ,k : the least number of unfoldings necessary to guarantee that no further 2k + 1 value (level of fixpoint operator nesting; odd number always corresponds to least fixpoints) can be reached via θ by remaining below 2k + 2. Theorem (Completeness) For this constructed ranked predicate abstraction ℵ θ we have (M ℵθ, (h θ (s), q, g)) = φ whenever θ is winning for (s, q).

32 Conclusion Development of extended predicate abstraction that is sound, precise, incremental, and complete for the full mu-calculus (i.e. liveness properties are adequately handled). Good foundation for the automated synthesis of abstractions and counter-example-guided abstraction-refinement for branching time. Application: extension of existing tools like BLAST or SLAM.

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

Lecture 9 Synthesis of Reactive Control Protocols

Lecture 9 Synthesis of Reactive Control Protocols Lecture 9 Synthesis of Reactive Control Protocols Nok Wongpiromsarn Singapore-MIT Alliance for Research and Technology Richard M. Murray and Ufuk Topcu California Institute of Technology EECI, 16 May 2012

More information

Contents Propositional Logic: Proofs from Axioms and Inference Rules

Contents Propositional Logic: Proofs from Axioms and Inference Rules Contents 1 Propositional Logic: Proofs from Axioms and Inference Rules... 1 1.1 Introduction... 1 1.1.1 An Example Demonstrating the Use of Logic in Real Life... 2 1.2 The Pure Propositional Calculus...

More information

Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement Counterexample-Guided Abstraction Refinement Edmund Clarke Orna Grumberg Somesh Jha Yuan Lu Helmut Veith Seminal Papers in Verification (Reading Group) June 2012 O. Rezine () Verification Reading Group

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Complexity Bounds for Muller Games 1

Complexity Bounds for Muller Games 1 Complexity Bounds for Muller Games 1 Paul Hunter a, Anuj Dawar b a Oxford University Computing Laboratory, UK b University of Cambridge Computer Laboratory, UK Abstract We consider the complexity of infinite

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Lecture 7 Synthesis of Reactive Control Protocols

Lecture 7 Synthesis of Reactive Control Protocols Lecture 7 Synthesis of Reactive Control Protocols Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology AFRL, 25 April 2012 Outline Review: networked control systems and cooperative

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

A Game-Theoretic Decision Procedure for the Constructive Description Logic calc

A Game-Theoretic Decision Procedure for the Constructive Description Logic calc A Game-Theoretic Decision Procedure for the Constructive Description Logic calc Martin Sticht University of Bamberg, Informatics Theory Group Abstract In recent years, several languages of non-classical

More information

CHRISTIAN-ALBRECHTS-UNIVERSITÄT KIEL

CHRISTIAN-ALBRECHTS-UNIVERSITÄT KIEL INSTITUT FÜR INFORMTIK UND PRKTISCHE MTHEMTIK Complete abstractions through extensions of disjunctive modal transition systems Harald Fecher Michael Huth Bericht Nr. 0604 März 2006 CHRISTIN-LBRECHTS-UNIVERSITÄT

More information

Finitary Winning in \omega-regular Games

Finitary Winning in \omega-regular Games Finitary Winning in \omega-regular Games Krishnendu Chatterjee Thomas A. Henzinger Florian Horn Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2007-120

More information

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 5 Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, January 29, 2010 Model Theory of Modal Logic Lecture

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

Finite Model Theory: First-Order Logic on the Class of Finite Models

Finite Model Theory: First-Order Logic on the Class of Finite Models 1 Finite Model Theory: First-Order Logic on the Class of Finite Models Anuj Dawar University of Cambridge Modnet Tutorial, La Roche, 21 April 2008 2 Finite Model Theory In the 1980s, the term finite model

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

Information Flow Analysis via Path Condition Refinement

Information Flow Analysis via Path Condition Refinement Information Flow Analysis via Path Condition Refinement Mana Taghdiri, Gregor Snelting, Carsten Sinz Karlsruhe Institute of Technology, Germany FAST September 16, 2010 KIT University of the State of Baden-Wuerttemberg

More information

Hierarchic Superposition: Completeness without Compactness

Hierarchic Superposition: Completeness without Compactness Hierarchic Superposition: Completeness without Compactness Peter Baumgartner 1 and Uwe Waldmann 2 1 NICTA and Australian National University, Canberra, Australia Peter.Baumgartner@nicta.com.au 2 MPI für

More information

KE/Tableaux. What is it for?

KE/Tableaux. What is it for? CS3UR: utomated Reasoning 2002 The term Tableaux refers to a family of deduction methods for different logics. We start by introducing one of them: non-free-variable KE for classical FOL What is it for?

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 26, 2003 Computational Properties 1 Satisfiability Problem: Given a modal µ-calculus formula Φ, is Φ satisfiable?

More information

A 3 Valued Contraction Model Checking Game: Deciding on the World of Partial Information

A 3 Valued Contraction Model Checking Game: Deciding on the World of Partial Information A 3 Valued Contraction Model Checking Game: Deciding on the World of Partial Information Jandson S. Ribeiro and Aline Andrade Distributed Systems Laboratory (LaSiD) Computer Science Department Mathematics

More information

Thorough Checking Revisited

Thorough Checking Revisited Thorough Checking Revisited Shiva Nejati Mihaela Gheorghiu Marsha Chechik {shiva,mg,chechik}@cs.toronto.edu University of Toronto 1 Automated Abstraction SW/HW Artifact Correctness Property Model Extraction

More information

Reactive Synthesis. Swen Jacobs VTSA 2013 Nancy, France u

Reactive Synthesis. Swen Jacobs VTSA 2013 Nancy, France u Reactive Synthesis Nancy, France 24.09.2013 u www.iaik.tugraz.at 2 Property Synthesis (You Will Never Code Again) 3 Construct Correct Systems Automatically Don t do the same

More information

Model Theory of Modal Logic Lecture 4. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 4. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 4 Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, January 28, 2010 Model Theory of Modal Logic Lecture

More information

Lectures on the modal µ-calculus

Lectures on the modal µ-calculus Lectures on the modal µ-calculus Yde Venema c YV 2008 Abstract These notes give an introduction to the theory of the modal µ-calculus and other modal fixpoint logics. Institute for Logic, Language and

More information

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Valentin Goranko a,b Steen Vester a 1 a Department of Applied Mathematics and Computer Science Technical

More information

Argumentation Theory and Modal Logic

Argumentation Theory and Modal Logic Argumentation Theory and Modal Logic Davide Grossi ILLC, University of Amsterdam Preface Argumentation in a nutshell Arguing Arguing The Economist: Mr. Berlusconi is unfit to lead Italy because His election

More information

Algorithmic Verification of Stability of Hybrid Systems

Algorithmic Verification of Stability of Hybrid Systems Algorithmic Verification of Stability of Hybrid Systems Pavithra Prabhakar Kansas State University University of Kansas February 24, 2017 1 Cyber-Physical Systems (CPS) Systems in which software "cyber"

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

A Semantics of Evidence for Classical Arithmetic

A Semantics of Evidence for Classical Arithmetic Thierry Coquand Chambery, June 5, 2009 Intuitionistic analysis of classical logic This work is motivated by the first consistency proof of arithmetic by Gentzen (1936) Unpublished by Gentzen (criticisms

More information

Automated Support for the Investigation of Paraconsistent and Other Logics

Automated Support for the Investigation of Paraconsistent and Other Logics Automated Support for the Investigation of Paraconsistent and Other Logics Agata Ciabattoni 1, Ori Lahav 2, Lara Spendier 1, and Anna Zamansky 1 1 Vienna University of Technology 2 Tel Aviv University

More information

Generalized Parity Games

Generalized Parity Games Generalized Parity Games Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 1 University of California, Berkeley, USA 2 EPFL, Switzerland c krish@eecs.berkeley.edu, {tah,nir.piterman}@epfl.ch

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 458 (2012) 49 60 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Energy parity games Krishnendu

More information

PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2

PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2 PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2 Neil D. Jones DIKU 2005 12 September, 2005 Some slides today new, some based on logic 2004 (Nils

More information

Trading Infinite Memory for Uniform Randomness in Timed Games

Trading Infinite Memory for Uniform Randomness in Timed Games Trading Infinite Memory for Uniform Randomness in Timed Games Krishnendu Chatterjee Thomas A. Henzinger Vinayak Prabhu Electrical Engineering and Computer Sciences University of California at Berkeley

More information

Recent Developments in and Around Coaglgebraic Logics

Recent Developments in and Around Coaglgebraic Logics Recent Developments in and Around Coaglgebraic Logics D. Pattinson, Imperial College London (in collaboration with G. Calin, R. Myers, L. Schröder) Example: Logics in Knowledge Representation Knowledge

More information

SAT-based Model Checking: Interpolation, IC3, and Beyond

SAT-based Model Checking: Interpolation, IC3, and Beyond SAT-based Model Checking: Interpolation, IC3, and Beyond Orna GRUMBERG a, Sharon SHOHAM b and Yakir VIZEL a a Computer Science Department, Technion, Haifa, Israel b School of Computer Science, Academic

More information

SVEN SCHEWE Universität des Saarlandes, Fachrichtung Informatik, Saarbrücken, Germany

SVEN SCHEWE Universität des Saarlandes, Fachrichtung Informatik, Saarbrücken, Germany International Journal of Foundations of Computer Science c World Scientific Publishing Company Semi-Automatic Distributed Synthesis SVEN SCHEWE Universität des Saarlandes, Fachrichtung Informatik, 6623

More information

A subexponential lower bound for the Random Facet algorithm for Parity Games

A subexponential lower bound for the Random Facet algorithm for Parity Games A subexponential lower bound for the Random Facet algorithm for Parity Games Oliver Friedmann 1 Thomas Dueholm Hansen 2 Uri Zwick 3 1 Department of Computer Science, University of Munich, Germany. 2 Center

More information

Alternating nonzero automata

Alternating nonzero automata Alternating nonzero automata Application to the satisfiability of CTL [,, P >0, P =1 ] Hugo Gimbert, joint work with Paulin Fournier LaBRI, Université de Bordeaux ANR Stoch-MC 06/07/2017 Control and verification

More information

Deciding the First Levels of the Modal µ Alternation Hierarchy by Formula Construction

Deciding the First Levels of the Modal µ Alternation Hierarchy by Formula Construction Deciding the First Levels of the Modal µ Alternation Hierarchy by Formula Construction Karoliina Lehtinen and Sandra Quickert Laboratory for Foundations of Computer Science, University of Edinburgh 10

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

Modal Dependence Logic

Modal Dependence Logic Modal Dependence Logic Jouko Väänänen Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam, The Netherlands J.A.Vaananen@uva.nl Abstract We

More information

The Polyranking Principle

The Polyranking Principle The Polyranking Principle Aaron R. Bradley, Zohar Manna, and Henny B. Sipma Computer Science Department Stanford University Stanford, CA 94305-9045 {arbrad,zm,sipma}@theory.stanford.edu Abstract. Although

More information

Logic and Games SS 2009

Logic and Games SS 2009 Logic and Games SS 2009 Prof. Dr. Erich Grädel Łukasz Kaiser, Tobias Ganzow Mathematische Grundlagen der Informatik RWTH Aachen c b n d This work is licensed under: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

More information

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University Infinite Games Sumit Nain Department of Computer Science Rice University 28 January 2013 Slides Credit: Barbara Jobstmann (CNRS/Verimag) Motivation Abstract games are of fundamental importance in mathematics

More information

Syntax and Semantics of Propositional Linear Temporal Logic

Syntax and Semantics of Propositional Linear Temporal Logic Syntax and Semantics of Propositional Linear Temporal Logic 1 Defining Logics L, M, = L - the language of the logic M - a class of models = - satisfaction relation M M, ϕ L: M = ϕ is read as M satisfies

More information

Synthesizing Robust Systems

Synthesizing Robust Systems Synthesizing Robust Systems Roderick Bloem and Karin Greimel (TU-Graz) Thomas Henzinger (EPFL and IST-Austria) Barbara Jobstmann (CNRS/Verimag) FMCAD 2009 in Austin, Texas Barbara Jobstmann 1 Motivation

More information

Tableau-based decision procedures for the logics of subinterval structures over dense orderings

Tableau-based decision procedures for the logics of subinterval structures over dense orderings Tableau-based decision procedures for the logics of subinterval structures over dense orderings Davide Bresolin 1, Valentin Goranko 2, Angelo Montanari 3, and Pietro Sala 3 1 Department of Computer Science,

More information

ERICH GRÄDEL a AND IGOR WALUKIEWICZ b. address: address:

ERICH GRÄDEL a AND IGOR WALUKIEWICZ b.  address:  address: Logical Methods in Computer Science Vol. 2 (4:6) 2006, pp. 1 22 www.lmcs-online.org Submitted Feb. 27, 2006 Published Nov. 3, 2006 POSITIONAL DETERMINACY OF GAMES WITH INFINITELY MANY PRIORITIES ERICH

More information

IC3 and Beyond: Incremental, Inductive Verification

IC3 and Beyond: Incremental, Inductive Verification IC3 and Beyond: Incremental, Inductive Verification Aaron R. Bradley ECEE, CU Boulder & Summit Middle School IC3 and Beyond: Incremental, Inductive Verification 1/62 Induction Foundation of verification

More information

D, such that f(u) = f(v) whenever u = v, has a multiplicative refinement g : [λ] <ℵ 0

D, such that f(u) = f(v) whenever u = v, has a multiplicative refinement g : [λ] <ℵ 0 Maryanthe Malliaris and Saharon Shelah. Cofinality spectrum problems in model theory, set theory and general topology. J. Amer. Math. Soc., vol. 29 (2016), pp. 237-297. Maryanthe Malliaris and Saharon

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann and Markus Latte Dept. of Computer Science, University of Munich, Germany Abstract. We give an overview over three serious attempts to devise an effective decision

More information

Graph Theory and Modal Logic

Graph Theory and Modal Logic Osaka University of Economics and Law (OUEL) Aug. 5, 2013 BLAST 2013 at Chapman University Contents of this Talk Contents of this Talk 1. Graphs = Kripke frames. Contents of this Talk 1. Graphs = Kripke

More information

Languages, logics and automata

Languages, logics and automata Languages, logics and automata Anca Muscholl LaBRI, Bordeaux, France EWM summer school, Leiden 2011 1 / 89 Before all that.. Sonia Kowalewskaya Emmy Noether Julia Robinson All this attention has been gratifying

More information

2. Elements of the Theory of Computation, Lewis and Papadimitrou,

2. Elements of the Theory of Computation, Lewis and Papadimitrou, Introduction Finite Automata DFA, regular languages Nondeterminism, NFA, subset construction Regular Epressions Synta, Semantics Relationship to regular languages Properties of regular languages Pumping

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Lecture 16: Abstract Interpretation VI (Counterexample-Guided Abstraction Refinement) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification) noll@cs.rwth-aachen.de

More information

Modal and temporal logic

Modal and temporal logic Modal and temporal logic N. Bezhanishvili I. Hodkinson C. Kupke Imperial College London 1 / 83 Overview Part II 1 Soundness and completeness. Canonical models. 3 lectures. 2 Finite model property. Filtrations.

More information

Software Verification with Abstraction-Based Methods

Software Verification with Abstraction-Based Methods Software Verification with Abstraction-Based Methods Ákos Hajdu PhD student Department of Measurement and Information Systems, Budapest University of Technology and Economics MTA-BME Lendület Cyber-Physical

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 2 Parity Games, Tree Automata, and S2S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong S2S 14-19 June

More information

On Promptness in Parity Games (preprint version)

On Promptness in Parity Games (preprint version) Fundamenta Informaticae XXI (2X) 28 DOI.3233/FI-22- IOS Press On Promptness in Parity Games (preprint version) Fabio Mogavero Aniello Murano Loredana Sorrentino Università degli Studi di Napoli Federico

More information

Thorough Checking Revisited

Thorough Checking Revisited Thorough Checking Revisited Shiva Nejati, Mihaela Gheorghiu, and Marsha Chechik Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada. Email:{shiva,mg,chechik}@cs.toronto.edu

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

ArgoCaLyPso SAT-Inspired Coherent Logic Prover

ArgoCaLyPso SAT-Inspired Coherent Logic Prover ArgoCaLyPso SAT-Inspired Coherent Logic Prover Mladen Nikolić and Predrag Janičić Automated Reasoning GrOup (ARGO) Faculty of Mathematics University of, February, 2011. Motivation Coherent logic (CL) (also

More information

Synthesis of Designs from Property Specifications

Synthesis of Designs from Property Specifications Synthesis of Designs from Property Specifications Amir Pnueli New York University and Weizmann Institute of Sciences FMCAD 06 San Jose, November, 2006 Joint work with Nir Piterman, Yaniv Sa ar, Research

More information

Löwenheim-Skolem Theorems, Countable Approximations, and L ω. David W. Kueker (Lecture Notes, Fall 2007)

Löwenheim-Skolem Theorems, Countable Approximations, and L ω. David W. Kueker (Lecture Notes, Fall 2007) Löwenheim-Skolem Theorems, Countable Approximations, and L ω 0. Introduction David W. Kueker (Lecture Notes, Fall 2007) In its simplest form the Löwenheim-Skolem Theorem for L ω1 ω states that if σ L ω1

More information

Monadic second-order logic on tree-like structures

Monadic second-order logic on tree-like structures Monadic second-order logic on tree-like structures Igor Walukiewicz Institute of Informatics, Warsaw University Banacha 2, 02-097 Warsaw, POLAND igw@mimuw.edu.pl Abstract An operation M which constructs

More information

Introduction to Model Theory

Introduction to Model Theory Introduction to Model Theory Charles Steinhorn, Vassar College Katrin Tent, University of Münster CIRM, January 8, 2018 The three lectures Introduction to basic model theory Focus on Definability More

More information

Incomplete version for students of easllc2012 only. 94 First-Order Logic. Incomplete version for students of easllc2012 only. 6.5 The Semantic Game 93

Incomplete version for students of easllc2012 only. 94 First-Order Logic. Incomplete version for students of easllc2012 only. 6.5 The Semantic Game 93 65 The Semantic Game 93 In particular, for every countable X M there is a countable submodel N of M such that X N and N = T Proof Let T = {' 0, ' 1,} By Proposition 622 player II has a winning strategy

More information

One Pile Nim with Arbitrary Move Function

One Pile Nim with Arbitrary Move Function One Pile Nim with Arbitrary Move Function by Arthur Holshouser and Harold Reiter Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA, 28208 Harold Reiter Department of Mathematics UNC Charlotte Charlotte,

More information

VC-DENSITY FOR TREES

VC-DENSITY FOR TREES VC-DENSITY FOR TREES ANTON BOBKOV Abstract. We show that for the theory of infinite trees we have vc(n) = n for all n. VC density was introduced in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and

More information

Model Checking via Automatic Abstraction

Model Checking via Automatic Abstraction LTL Generalized Model Checking Revisited Patrice Godefroid Nir Piterman Microsoft Research Imperial College Page 1 January 2009 Model Checking via Automatic Abstraction Implemented in software model checkers

More information

A Propositional Dynamic Logic for Instantial Neighborhood Semantics

A Propositional Dynamic Logic for Instantial Neighborhood Semantics A Propositional Dynamic Logic for Instantial Neighborhood Semantics Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist Abstract We propose a new perspective on logics of computation by combining

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Termination Analysis of Loops

Termination Analysis of Loops Termination Analysis of Loops Zohar Manna with Aaron R. Bradley Computer Science Department Stanford University 1 Example: GCD Algorithm gcd(y 1, y 2 ) = gcd(y 1 y 2, y 2 ) if y 1 > y 2 gcd(y 1, y 2 y

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

Cambridge University Press Dependence Logic. A New Approach to Independence Friendly Logic

Cambridge University Press Dependence Logic. A New Approach to Independence Friendly Logic Jouko Väänänen Dependence Logic A New Approach to Independence Friendly Logic Chapter 1 Dependence Logic Dependence logic introduces the concept of dependence into first order logic by adding a new kind

More information

Complexity Bounds for Regular Games (Extended Abstract)

Complexity Bounds for Regular Games (Extended Abstract) Complexity Bounds for Regular Games (Extended Abstract) Paul Hunter and Anuj Dawar University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK. paul.hunter@cl.cam.ac.uk, anuj.dawar@cl.cam.ac.uk

More information

This paper is also taken by Combined Studies Students. Optional Subject (i): Set Theory and Further Logic

This paper is also taken by Combined Studies Students. Optional Subject (i): Set Theory and Further Logic UNIVERSITY OF LONDON BA EXAMINATION for Internal Students This paper is also taken by Combined Studies Students PHILOSOPHY Optional Subject (i): Set Theory and Further Logic Answer THREE questions, at

More information

The Stevens-Stirling-Algorithm For Solving Parity Games Locally Requires Exponential Time

The Stevens-Stirling-Algorithm For Solving Parity Games Locally Requires Exponential Time The Stevens-Stirling-Algorithm For Solving Parity Games Locally Requires Exponential Time Oliver Friedmann Institut für Informatik, LMU München Oliver.Friedmann@googlemail.com Abstract. This paper presents

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

INTRODUCTION TO PREDICATE LOGIC HUTH AND RYAN 2.1, 2.2, 2.4

INTRODUCTION TO PREDICATE LOGIC HUTH AND RYAN 2.1, 2.2, 2.4 INTRODUCTION TO PREDICATE LOGIC HUTH AND RYAN 2.1, 2.2, 2.4 Neil D. Jones DIKU 2005 Some slides today new, some based on logic 2004 (Nils Andersen), some based on kernebegreber (NJ 2005) PREDICATE LOGIC:

More information

Preliminaries. Introduction to EF-games. Inexpressivity results for first-order logic. Normal forms for first-order logic

Preliminaries. Introduction to EF-games. Inexpressivity results for first-order logic. Normal forms for first-order logic Introduction to EF-games Inexpressivity results for first-order logic Normal forms for first-order logic Algorithms and complexity for specific classes of structures General complexity bounds Preliminaries

More information

Gerwin Klein, June Andronick, Ramana Kumar S2/2016

Gerwin Klein, June Andronick, Ramana Kumar S2/2016 COMP4161: Advanced Topics in Software Verification {} Gerwin Klein, June Andronick, Ramana Kumar S2/2016 data61.csiro.au Content Intro & motivation, getting started [1] Foundations & Principles Lambda

More information

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014 Games and Synthesis, EATCS Young Researchers School,

More information

Adding ternary complex roles to ALCRP(D)

Adding ternary complex roles to ALCRP(D) Adding ternary complex roles to ALCRP(D) A.Kaplunova, V. Haarslev, R.Möller University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30, 22527 Hamburg, Germany Abstract The goal of this paper

More information

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester)

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) First-Order Theorem Proving and Vampire Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) Outline Introduction First-Order Logic and TPTP Inference Systems

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

INTRODUCTION TO CARDINAL NUMBERS

INTRODUCTION TO CARDINAL NUMBERS INTRODUCTION TO CARDINAL NUMBERS TOM CUCHTA 1. Introduction This paper was written as a final project for the 2013 Summer Session of Mathematical Logic 1 at Missouri S&T. We intend to present a short discussion

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

Finitary Winning in ω-regular Games

Finitary Winning in ω-regular Games Finitary Winning in ω-regular Games Krishnendu Chatterjee 1 and Thomas A. Henzinger 1,2 1 University of California, Berkeley, USA 2 EPFL, Switzerland {c krish,tah}@eecs.berkeley.edu Abstract. Games on

More information

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises PUTNAM TRAINING MATHEMATICAL INDUCTION (Last updated: December 11, 017) Remark. This is a list of exercises on mathematical induction. Miguel A. Lerma 1. Prove that n! > n for all n 4. Exercises. Prove

More information

First-Order Theorem Proving and Vampire

First-Order Theorem Proving and Vampire First-Order Theorem Proving and Vampire Laura Kovács 1,2 and Martin Suda 2 1 TU Wien 2 Chalmers Outline Introduction First-Order Logic and TPTP Inference Systems Saturation Algorithms Redundancy Elimination

More information

Semi-Automatic Distributed Synthesis

Semi-Automatic Distributed Synthesis Semi-Automatic Distributed Synthesis Bernd Finkbeiner and Sven Schewe Universität des Saarlandes, 66123 Saarbrücken, Germany {finkbeiner schewe}@cs.uni-sb.de Abstract. We propose a sound and complete compositional

More information

Abstraction for Falsification

Abstraction for Falsification Abstraction for Falsification Thomas Ball 1, Orna Kupferman 2, and Greta Yorsh 3 1 Microsoft Research, Redmond, WA, USA. Email: tball@microsoft.com, URL: research.microsoft.com/ tball 2 Hebrew University,

More information

Two-Way Cost Automata and Cost Logics over Infinite Trees

Two-Way Cost Automata and Cost Logics over Infinite Trees Two-Way Cost Automata and Cost Logics over Infinite Trees Achim Blumensath TU Darmstadt blumensath@mathematik.tudarmstadt.de Thomas Colcombet Université Paris Diderot thomas.colcombet@liafa.univ-parisdiderot.fr

More information