Appendix: Bar Induction in the Proof 1 of Termination of Gentzens Reduction 2 Procedure 3

Size: px
Start display at page:

Download "Appendix: Bar Induction in the Proof 1 of Termination of Gentzens Reduction 2 Procedure 3"

Transcription

1 Appendix: Bar Induction in the Proof 1 of Termination of Gentzens Reduction 2 Procedure 3 Annika Siders and Jan von Plato 4 1 Introduction 5 We shall give an explicit formulation to the use of bar induction in Gentzen s 6 original proof of consistency, as a continuation of the analysis in the preceding essay 7 about the Hilfssatz, referred to here as HH. 8 The article Bernays (1970) was the first one to explain in print the ideas in 9 Gentzen s original proof of consistency, and it also made clear that the proof 10 was in the end based on bar induction. There is a review of Bernays article by 11 Joseph Shoenfield in which the latter writes that the progress made in formalizing 12 intuitionistic systems in recent years should make it possible to formalize this 13 proof and thus see exactly what intuitionistic principles are needed to carry it out 14 (Mathematical Reviews, MR ) Bar Induction in the 1935 Proof 16 We prove that derivable sequents reduce to endform. As the basic predicate B in the 17 induction, the property is used that the succedent of a derivable sequent is an atomic 18 formula, here an equation. For the inductive predicate I, we use the property that a 19 derivable sequent with an atomic formula as a succedent reduces to endform. For the 20 proof, we show first that reduction steps in the succedent preserve the derivability 21 of a sequent: 22 Lemma If! C is a derivable sequent and an S-move is applied to it, a derivable 23 sequent is obtained. 24 A. Siders J. von Plato Department of Philosophy, University of Helsinki, Helsinki, Finland annika.siders@helsinki.fi; jan.vonplato@helsinki.fi 127

2 128 A. Siders and J. von Plato We go through the possible S-moves in turn: 25 SVar. If! C has free variables, numbers are chosen at will to instantiate these 26 until there are no free variables left. Derivability is maintained under substitution 27 so that the reduced sequent is derivable. 28 S&. The sequent is! A & B, and both of the reduced sequents! A and 29! B are derivable by rule &E. 30 S:. The sequent is!:a. The following derivation by the rules of the calculus 31 NLK shows that A;!0 D 1 is derivable, with Wk, Ref,andDN standing for the 32 rules of weakening, refutation, and elimination of double negation, respectively: 33 A! A!:A : 0 D 1; A! A Wk : 0 D 1;!:A Wk Ref A;!::0 D 1 A;! 0 D 1 DN S8. The sequent is!8xa.x/, and any instance! A.n/ is derivable by rule 34 8E. QED. 35 Theorem Derivable sequents reduce to endform. 36 For a proof, we go through the four conditions for bar induction: B has to be decidable. This is the case For any given derivable sequent! C and any sequence of reduction steps, 39 there is a step in the sequence by which the succedent formula has turned into an 40 equality. To show this, consider the reductions steps: If there are free variables 41 in! C, move Svar must be applied first, to substitute them by constants. 42 Thereafter the other S-moves must be applied, each producing a shorter formula 43 in the succedent until it is an equation Given a derivable sequent such that each applicable reduction step produces a 45 sequent that reduces to endform, to show that the sequent before the reduction 46 reduces to endform. This is immediate Finally, it has to be shown that if a derivable sequent has been reduced so that it 48 has the property B, i.e., is of the form, it is a derivable sequent that 49 reduces to endform. The derivability part follows by the lemma. The rest is an 50 induction on the last rule in the derivation of. Ifm D n is true, the 51 sequent is in endform. Therefore we may assume m D n to be false. 52 The possible cases are: is an initial sequent. Then the antecedent is the false equation 54 m D n and the sequent in endform is a mathematical groundsequent, for which we take the 56 formulation with free parameters, as in HH, Section IV.4, with all free 57 variables removed by steps of Svar: 58! m D m; n D m! m D n; m D k; k D n! m D n; 59 k C 1 D k! 0 D 1;! h C k D k C h;!.h C k/c l D h C.k C l/: 60

3 Appendix: Bar Induction in the Proof of Termination of Gentzens Reduction Procedure 129 The reflexivity groundsequent is in endform and symmetry has a false 61 antecedent n D m whenever the succedent m D n is false. With transitivity, 62 if m D n is false, if m D k in the antecedent is true, then k D n in the 63 antecedent is false and similarly if k D n is true. With k C 1 D k! 0 D 1, 64 the antecedent is false, and for the rest, the succedent is true The last rule is a logical one. There are the cases &E;8E,andDN The last rule is &E: 67! A & m D n The premiss reduces to endform by assumption, and therefore also the 68 conclusion. The reductionis similar if the secondformofrule &E is applied The last rule is 8E: 70!8x:x D n The premiss reduces to endform by assumption, and therefore also the 71 conclusion. The reduction is similar if the right member of the equation was 72 quantified The last rule is DN: 74!::m D n The first step of reduction for the premiss gives : m D n;! 0 D 1.Ifstep 75 A: is applied to : m D n, the reduced sequent is : m D n; 76 with a false equation in the succedent. Therefore some other reduction step 77 must be applied, and if A: is applied at some later stage to : m D n, a 78 similar useless loop is produced. Therefore : m D n in the antecedent can 79 be left intact and reduces to endform by the same steps as : m D 80 n;! 0 D The last rule is CI with 0 ; 00 and the conclusion 0 ; 00! m D n: 82 &E 8E DN 0! m D 0 m D x; 00! m D x C 1 0 ; 00! m D n If m D 0 is false, the conclusion reduces to endform by the same steps as 83 0! m D 0.Ifm D 0 is true, Svar gives in particular for the second premiss 84 the reducible sequent m D 0; 00! m D 0 C 1 with a false succedent. The 85 steps of reduction leave the true equation m D 0 intact and apply as well for 86 the reduction of 0 ; 00! m D n. 87 By 1 4, the conditions for bar induction are satisfied and all derivable 88 sequents have the property I, i.e., reduce to endform. QED. 89 CI

4 130 A. Siders and J. von Plato References 90 AQ1 Bernays, P. (1970) On the original Gentzen consistency proof for number theory. In J. Myhill et al., 91 eds, Intuitionism and Proof Theory, pp , North-Holland. 92 Shoenfield, J. (1972) Review of Bernays (1970). Mathematical Reviews, MR

5 AUTHOR QUERY AQ1. Please note that reference Shoenfield (1972) has not been cited in the text but present in the list. Please provide in-text citation for this reference or delete this from the reference list.

Explicit Composition and Its Application in Proofs of Normalization

Explicit Composition and Its Application in Proofs of Normalization Explicit osition and Its Application in Proofs of Normalization Jan von Plato Abstract The class of derivations in a system of logic has an inductive definition One would thus expect that crucial properties

More information

Chapter 2 Preliminaries

Chapter 2 Preliminaries Chapter 2 Preliminaries Abstract The calculus NLK and further notions preliminary to the 1936 consistency proof are defined in this chapter. The most important notion is endform which represents sequents

More information

NORMAL DERIVABILITY IN CLASSICAL NATURAL DEDUCTION

NORMAL DERIVABILITY IN CLASSICAL NATURAL DEDUCTION THE REVIEW OF SYMOLI LOGI Volume 5, Number, June 0 NORML DERIVILITY IN LSSIL NTURL DEDUTION JN VON PLTO and NNIK SIDERS Department of Philosophy, University of Helsinki bstract normalization procedure

More information

An Introduction to Proof Theory

An Introduction to Proof Theory An Introduction to Proof Theory Class 1: Foundations Agata Ciabattoni and Shawn Standefer anu lss december 2016 anu Our Aim To introduce proof theory, with a focus on its applications in philosophy, linguistics

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

Lecture 11: Measuring the Complexity of Proofs

Lecture 11: Measuring the Complexity of Proofs IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 11: Measuring the Complexity of Proofs David Mix Barrington and Alexis Maciel July

More information

Teaching Natural Deduction as a Subversive Activity

Teaching Natural Deduction as a Subversive Activity Teaching Natural Deduction as a Subversive Activity James Caldwell Department of Computer Science University of Wyoming Laramie, WY Third International Congress on Tools for Teaching Logic 3 June 2011

More information

185.A09 Advanced Mathematical Logic

185.A09 Advanced Mathematical Logic 185.A09 Advanced Mathematical Logic www.volny.cz/behounek/logic/teaching/mathlog13 Libor Běhounek, behounek@cs.cas.cz Lecture #1, October 15, 2013 Organizational matters Study materials will be posted

More information

Notation for Logical Operators:

Notation for Logical Operators: Notation for Logical Operators: always true always false... and...... or... if... then...... if-and-only-if... x:x p(x) x:x p(x) for all x of type X, p(x) there exists an x of type X, s.t. p(x) = is equal

More information

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic CHAPTER 10 Gentzen Style Proof Systems for Classical Logic Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. By humans, not mentioning

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Bulletin of the Section of Logic Volume 45/1 (2016), pp 33 51 http://dxdoiorg/1018778/0138-068045103 Mirjana Ilić 1 AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Abstract

More information

Sequent calculus for predicate logic

Sequent calculus for predicate logic CHAPTER 13 Sequent calculus for predicate logic 1. Classical sequent calculus The axioms and rules of the classical sequent calculus are: Axioms { Γ, ϕ, ϕ for atomic ϕ Γ, Left Γ,α 1,α 2 Γ,α 1 α 2 Γ,β 1

More information

A Semantics of Evidence for Classical Arithmetic

A Semantics of Evidence for Classical Arithmetic Thierry Coquand Chambery, June 5, 2009 Intuitionistic analysis of classical logic This work is motivated by the first consistency proof of arithmetic by Gentzen (1936) Unpublished by Gentzen (criticisms

More information

Lecture Notes on Cut Elimination

Lecture Notes on Cut Elimination Lecture Notes on Cut Elimination 15-317: Constructive Logic Frank Pfenning Lecture 10 October 5, 2017 1 Introduction The entity rule of the sequent calculus exhibits one connection between the judgments

More information

TRANSLATING A SUPPES-LEMMON STYLE NATURAL DEDUCTION INTO A SEQUENT CALCULUS

TRANSLATING A SUPPES-LEMMON STYLE NATURAL DEDUCTION INTO A SEQUENT CALCULUS EuJAP VOL. 11 No. 2 2015 ORIGINAL SCIENTIFIC PAPER TRANSLATING A SUPPES-LEMMON STYLE NATURAL DEDUCTION INTO A SEQUENT CALCULUS UDK: 161/162 164:23 EDI PAVLOVIĆ Central European University Budapest ABSTRACT

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

CS 512, Spring 2016, Handout 02 Natural Deduction, and Examples of Natural Deduction, in Propositional Logic

CS 512, Spring 2016, Handout 02 Natural Deduction, and Examples of Natural Deduction, in Propositional Logic CS 512, Spring 2016, Handout 02 Natural Deduction, and Examples of Natural Deduction, in Propositional Logic Assaf Kfoury January 19, 2017 Assaf Kfoury, CS 512, Spring 2017, Handout 02 page 1 of 41 from

More information

Proof Theory for Distributed Knowledge

Proof Theory for Distributed Knowledge Proof Theory for Distributed Knowledge Raul Hakli and Sara Negri Department of Philosophy P. O. Box 9 (Siltavuorenpenger 20 A) FIN-00014 University of Helsinki, Finland {Raul.Hakli,Sara.Negri}@Helsinki.Fi

More information

Assignments for Math 220, Formal Methods. J. Stanley Warford

Assignments for Math 220, Formal Methods. J. Stanley Warford Assignments for J. Stanley Warford September 28, 205 Assignment Chapter, Section, and Exercise numbers in these assignments refer to the text for this course, A Logical Approach to Discrete Math, David

More information

FROM AXIOMS TO STRUCTURAL RULES, THEN ADD QUANTIFIERS.

FROM AXIOMS TO STRUCTURAL RULES, THEN ADD QUANTIFIERS. FROM AXIOMS TO STRUCTURAL RULES, THEN ADD QUANTIFIERS. REVANTHA RAMANAYAKE We survey recent developments in the program of generating proof calculi for large classes of axiomatic extensions of a non-classical

More information

Chapter 11: Automated Proof Systems

Chapter 11: Automated Proof Systems Chapter 11: Automated Proof Systems SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems are

More information

Proof-Theoretic Analysis of the Quantified Argument Calculus

Proof-Theoretic Analysis of the Quantified Argument Calculus Proof-Theoretic Analysis of the Quantified Argument Calculus Edi Pavlovic Central European University, Budapest #IstandwithCEU PhDs in Logic IX May 2-4 2017, RUB Edi Pavlovic (CEU) Proof-Theoretic Analysis

More information

Proof Complexity of Intuitionistic Propositional Logic

Proof Complexity of Intuitionistic Propositional Logic Proof Complexity of Intuitionistic Propositional Logic Alexander Hertel & Alasdair Urquhart November 29, 2006 Abstract We explore the proof complexity of intuitionistic propositional logic (IP L) The problem

More information

On the duality of proofs and countermodels in labelled sequent calculi

On the duality of proofs and countermodels in labelled sequent calculi On the duality of proofs and countermodels in labelled sequent calculi Sara Negri Department of Philosophy PL 24, Unioninkatu 40 B 00014 University of Helsinki, Finland sara.negri@helsinki.fi The duality

More information

The Method of Socratic Proofs for Normal Modal Propositional Logics

The Method of Socratic Proofs for Normal Modal Propositional Logics Dorota Leszczyńska The Method of Socratic Proofs for Normal Modal Propositional Logics Instytut Filozofii Uniwersytetu Zielonogórskiego w Zielonej Górze Rozprawa doktorska napisana pod kierunkiem prof.

More information

A CUT-FREE SIMPLE SEQUENT CALCULUS FOR MODAL LOGIC S5

A CUT-FREE SIMPLE SEQUENT CALCULUS FOR MODAL LOGIC S5 THE REVIEW OF SYMBOLIC LOGIC Volume 1, Number 1, June 2008 3 A CUT-FREE SIMPLE SEQUENT CALCULUS FOR MODAL LOGIC S5 FRANCESCA POGGIOLESI University of Florence and University of Paris 1 Abstract In this

More information

Implementing Proof Systems for the Intuitionistic Propositional Logic

Implementing Proof Systems for the Intuitionistic Propositional Logic Implementing Proof Systems for the Intuitionistic Propositional Logic Veronica Zammit Supervisor: Dr. Adrian Francalanza Faculty of ICT University of Malta May 27, 2011 Submitted in partial fulfillment

More information

Notes on Inference and Deduction

Notes on Inference and Deduction Notes on Inference and Deduction Consider the following argument 1 Assumptions: If the races are fixed or the gambling houses are crooked, then the tourist trade will decline. If the tourist trade declines

More information

Structuring Logic with Sequent Calculus

Structuring Logic with Sequent Calculus Structuring Logic with Sequent Calculus Alexis Saurin ENS Paris & École Polytechnique & CMI Seminar at IIT Delhi 17th September 2004 Outline of the talk Proofs via Natural Deduction LK Sequent Calculus

More information

Using the Prover I: Lee Pike. June 3, NASA Langley Formal Methods Group Using the Prover I:

Using the Prover I: Lee Pike. June 3, NASA Langley Formal Methods Group Using the Prover I: Basic Basic NASA Langley Formal Methods Group lee.s.pike@nasa.gov June 3, 2005 Basic Sequents Basic Sequent semantics: The conjunction of the antecedents above the turnstile implies the disjunction of

More information

Introduction to Intuitionistic Logic

Introduction to Intuitionistic Logic Introduction to Intuitionistic Logic August 31, 2016 We deal exclusively with propositional intuitionistic logic. The language is defined as follows. φ := p φ ψ φ ψ φ ψ φ := φ and φ ψ := (φ ψ) (ψ φ). A

More information

Equivalent Types in Lambek Calculus and Linear Logic

Equivalent Types in Lambek Calculus and Linear Logic Equivalent Types in Lambek Calculus and Linear Logic Mati Pentus Steklov Mathematical Institute, Vavilov str. 42, Russia 117966, Moscow GSP-1 MIAN Prepublication Series for Logic and Computer Science LCS-92-02

More information

Dual-Intuitionistic Logic and Some Other Logics

Dual-Intuitionistic Logic and Some Other Logics Dual-Intuitionistic Logic and Some Other Logics Hiroshi Aoyama 1 Introduction This paper is a sequel to Aoyama(2003) and Aoyama(2004). In this paper, we will study various proof-theoretic and model-theoretic

More information

The Church-Fitch knowability paradox in the light of structural proof theory

The Church-Fitch knowability paradox in the light of structural proof theory The Church-Fitch knowability paradox in the light of structural proof theory Paolo Maffezioli Alberto Naibo Sara Negri Department of Philosophy, University of Florence paolo.maffezioli@unifi.it Department

More information

General methods in proof theory for modal logic - Lecture 1

General methods in proof theory for modal logic - Lecture 1 General methods in proof theory for modal logic - Lecture 1 Björn Lellmann and Revantha Ramanayake TU Wien Tutorial co-located with TABLEAUX 2017, FroCoS 2017 and ITP 2017 September 24, 2017. Brasilia.

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Cut-elimination for Provability Logic GL

Cut-elimination for Provability Logic GL Cut-elimination for Provability Logic GL Rajeev Goré and Revantha Ramanayake Computer Sciences Laboratory The Australian National University { Rajeev.Gore, revantha }@rsise.anu.edu.au Abstract. In 1983,

More information

The Skolemization of existential quantifiers in intuitionistic logic

The Skolemization of existential quantifiers in intuitionistic logic The Skolemization of existential quantifiers in intuitionistic logic Matthias Baaz and Rosalie Iemhoff Institute for Discrete Mathematics and Geometry E104, Technical University Vienna, Wiedner Hauptstrasse

More information

A Note on Bootstrapping Intuitionistic Bounded Arithmetic

A Note on Bootstrapping Intuitionistic Bounded Arithmetic A Note on Bootstrapping Intuitionistic Bounded Arithmetic SAMUEL R. BUSS Department of Mathematics University of California, San Diego Abstract This paper, firstly, discusses the relationship between Buss

More information

Pedagogical Natural Deduction Systems: the Propositional Case

Pedagogical Natural Deduction Systems: the Propositional Case Journal of Universal Computer Science, vol. 13, no. 10 (2007), 1396-1410 submitted: 28/11/06, accepted: 23/10/07, appeared: 28/10/07 J.UCS Pedagogical Natural Deduction Systems: the Propositional Case

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

First-Order Intuitionistic Logic with Decidable Propositional Atoms

First-Order Intuitionistic Logic with Decidable Propositional Atoms First-Order Intuitionistic Logic with Decidable Propositional Atoms Alexander Sakharov alex@sakharov.net http://alex.sakharov.net Abstract First-order intuitionistic logic extended with the assumption

More information

On Sequent Calculi for Intuitionistic Propositional Logic

On Sequent Calculi for Intuitionistic Propositional Logic On Sequent Calculi for Intuitionistic Propositional Logic Vítězslav Švejdar Jan 29, 2005 The original publication is available at CMUC. Abstract The well-known Dyckoff s 1992 calculus/procedure for intuitionistic

More information

Valentini s cut-elimination for provability logic resolved

Valentini s cut-elimination for provability logic resolved Valentini s cut-elimination for provability logic resolved Rajeev Goré and Revantha Ramanayake abstract. In 1983, Valentini presented a syntactic proof of cut-elimination for a sequent calculus GLS V for

More information

CONTRACTION CONTRACTED

CONTRACTION CONTRACTED Bulletin of the Section of Logic Volume 43:3/4 (2014), pp. 139 153 Andrzej Indrzejczak CONTRACTION CONTRACTED Abstract This short article is mainly of methodological character. We are concerned with the

More information

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism The Curry-Howard Isomorphism Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) The Curry-Howard Isomorphism MFES 2008/09

More information

SOME REMARKS ON MAEHARA S METHOD. Abstract

SOME REMARKS ON MAEHARA S METHOD. Abstract Bulletin of the Section of Logic Volume 30/3 (2001), pp. 147 154 Takahiro Seki SOME REMARKS ON MAEHARA S METHOD Abstract In proving the interpolation theorem in terms of sequent calculus, Maehara s method

More information

Refutability and Post Completeness

Refutability and Post Completeness Refutability and Post Completeness TOMASZ SKURA Abstract The goal of this paper is to give a necessary and sufficient condition for a multiple-conclusion consequence relation to be Post complete by using

More information

SOCRATES DID IT BEFORE GÖDEL

SOCRATES DID IT BEFORE GÖDEL Logic and Logical Philosophy Volume 20 (2011), 205 214 DOI: 10.12775/LLP.2011.011 Josef Wolfgang Degen SOCRATES DID IT BEFORE GÖDEL Abstract. We translate Socrates famous saying I know that I know nothing

More information

Krivine s Intuitionistic Proof of Classical Completeness (for countable languages)

Krivine s Intuitionistic Proof of Classical Completeness (for countable languages) Krivine s Intuitionistic Proof of Classical Completeness (for countable languages) Berardi Stefano Valentini Silvio Dip. Informatica Dip. Mat. Pura ed Applicata Univ. Torino Univ. Padova c.so Svizzera

More information

The Independence of Peano's Fourth Axiom from. Martin-Lof's Type Theory without Universes. Jan M. Smith. Department of Computer Science

The Independence of Peano's Fourth Axiom from. Martin-Lof's Type Theory without Universes. Jan M. Smith. Department of Computer Science The Independence of Peano's Fourth Axiom from Martin-Lof's Type Theory without Universes Jan M. Smith Department of Computer Science University of Goteborg/Chalmers S-412 96 Goteborg Sweden March 1987

More information

Sciences, St Andrews University, St Andrews, Fife KY16 9SS, Scotland,

Sciences, St Andrews University, St Andrews, Fife KY16 9SS, Scotland, A Deterministic Terminating Sequent Calculus for Godel-Dummett logic ROY DYCKHOFF, School of Mathematical and Computational Sciences, St Andrews University, St Andrews, Fife KY16 9SS, Scotland, rd@dcs.st-and.ac.uk

More information

Display calculi in non-classical logics

Display calculi in non-classical logics Display calculi in non-classical logics Revantha Ramanayake Vienna University of Technology (TU Wien) Prague seminar of substructural logics March 28 29, 2014 Revantha Ramanayake (TU Wien) Display calculi

More information

Teaching Natural Deduction as a Subversive Activity

Teaching Natural Deduction as a Subversive Activity Teaching Natural Deduction as a Subversive Activity James Caldwell Department of Computer Science University of Wyoming Laramie, WY March 21, 2011 Abstract In this paper we argue that sequent proofs systems

More information

Propositions and Proofs

Propositions and Proofs Chapter 2 Propositions and Proofs The goal of this chapter is to develop the two principal notions of logic, namely propositions and proofs There is no universal agreement about the proper foundations

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

A Finitely Axiomatized Formalization of Predicate Calculus with Equality

A Finitely Axiomatized Formalization of Predicate Calculus with Equality A Finitely Axiomatized Formalization of Predicate Calculus with Equality Note: This is a preprint of Megill, A Finitely Axiomatized Formalization of Predicate Calculus with Equality, Notre Dame Journal

More information

Sequent calculi of quantum logic with strict implication

Sequent calculi of quantum logic with strict implication CTFM 2015 9/7 Sequent calculi of quantum logic with strict implication Tokyo Institute of Technology Graduate School of Information Science and Engineering Tomoaki Kawano About quantum logic Sequent calculi

More information

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them:

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them: Completeness in the Monadic Predicate Calculus We have a system of eight rules of proof. Let's list them: PI At any stage of a derivation, you may write down a sentence φ with {φ} as its premiss set. TC

More information

ON THE ATOMIC FORMULA PROPERTY OF HÄRTIG S REFUTATION CALCULUS

ON THE ATOMIC FORMULA PROPERTY OF HÄRTIG S REFUTATION CALCULUS Takao Inoué ON THE ATOMIC FORMULA PROPERTY OF HÄRTIG S REFUTATION CALCULUS 1. Introduction It is well-known that Gentzen s sequent calculus LK enjoys the so-called subformula property: that is, a proof

More information

Bidirectional Decision Procedures for the Intuitionistic Propositional Modal Logic IS4

Bidirectional Decision Procedures for the Intuitionistic Propositional Modal Logic IS4 Bidirectional ecision Procedures for the Intuitionistic Propositional Modal Logic IS4 Samuli Heilala and Brigitte Pientka School of Computer Science, McGill University, Montreal, Canada {sheila1,bpientka}@cs.mcgill.ca

More information

3.17 Semantic Tableaux for First-Order Logic

3.17 Semantic Tableaux for First-Order Logic 3.17 Semantic Tableaux for First-Order Logic There are two ways to extend the tableau calculus to quantified formulas: using ground instantiation using free variables Tableaux with Ground Instantiation

More information

Computational Logic for Computer Science

Computational Logic for Computer Science Motivation: formalization - proofs & deduction Computational proofs - logic & deduction Formal proofs Pr Computational Logic for Computer Science Mauricio Ayala-Rinco n & Fla vio L.C. de Moura Grupo de

More information

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra.

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra. Section 2.2 Set Operations Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. The operators in set theory are defined in terms of the corresponding

More information

On the computational content of intuitionistic propositional proofs

On the computational content of intuitionistic propositional proofs On the computational content of intuitionistic propositional proofs Samuel R. Buss 1,3 Pavel Pudlák 2,3 1 Introduction The intuitionistic calculus was introduced to capture reasoning in constructive mathematics.

More information

Proof analysis for Lewis counterfactuals

Proof analysis for Lewis counterfactuals Proof analysis for Lewis counterfactuals Sara Negri Department of Philosophy University of Helsinki sara.negri@helsinki.fi Giorgio Sbardolini Department of Philosophy The Ohio State University sbardolini.1@osu.edu

More information

On Urquhart s C Logic

On Urquhart s C Logic On Urquhart s C Logic Agata Ciabattoni Dipartimento di Informatica Via Comelico, 39 20135 Milano, Italy ciabatto@dsiunimiit Abstract In this paper we investigate the basic many-valued logics introduced

More information

A SEQUENT CALCULUS FOR A NEGATIVE FREE LOGIC

A SEQUENT CALCULUS FOR A NEGATIVE FREE LOGIC A SEQUENT CALCULUS FOR A NEGATIVE FREE LOGIC Abstract This article presents a sequent calculus for a negative free logic with identity, called N. The main theorem (in part 1) is the admissibility of the

More information

An Introduction to Proof Theory

An Introduction to Proof Theory CHAPTER I An Introduction to Proof Theory Samuel R. Buss Departments of Mathematics and Computer Science, University of California, San Diego La Jolla, California 92093-0112, USA Contents 1. Proof theory

More information

Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis

Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis Uwe Egly uwe@krtuwienacat Stephan Schmitt steph@cscornelledu presented by: Christoph Kreitz kreitz@cscornelledu

More information

Type Theory and Constructive Mathematics. Type Theory and Constructive Mathematics Thierry Coquand. University of Gothenburg

Type Theory and Constructive Mathematics. Type Theory and Constructive Mathematics Thierry Coquand. University of Gothenburg Type Theory and Constructive Mathematics Type Theory and Constructive Mathematics Thierry Coquand University of Gothenburg Content An introduction to Voevodsky s Univalent Foundations of Mathematics The

More information

Logic for Computer Science - Week 4 Natural Deduction

Logic for Computer Science - Week 4 Natural Deduction Logic for Computer Science - Week 4 Natural Deduction 1 Introduction In the previous lecture we have discussed some important notions about the semantics of propositional logic. 1. the truth value of a

More information

Interpolation via translations

Interpolation via translations Interpolation via translations Walter Carnielli 2,3 João Rasga 1,3 Cristina Sernadas 1,3 1 DM, IST, TU Lisbon, Portugal 2 CLE and IFCH, UNICAMP, Brazil 3 SQIG - Instituto de Telecomunicações, Portugal

More information

References A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC. The Starting Point. Goals of foundational programmes for logic:

References A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC. The Starting Point. Goals of foundational programmes for logic: A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC Goals of foundational programmes for logic: Supply an operational semantic basis for extant logic calculi (ex post) Rational reconstruction of the practice

More information

Kripke completeness revisited

Kripke completeness revisited Kripke completeness revisited Sara Negri Department of Philosophy, P.O. Box 9, 00014 University of Helsinki, Finland. e-mail: sara.negri@helsinki.fi Abstract The evolution of completeness proofs for modal

More information

Errata and Remarks for The Semantics and Proof Theory of the Logic of Bunched Implications BI-monograph-errata.

Errata and Remarks for The Semantics and Proof Theory of the Logic of Bunched Implications  BI-monograph-errata. Errata and Remarks for The Semantics and Proof Theory of the Logic of Bunched Implications http://www.cs.bath.ac.uk/~pym/ BI-monograph-errata.pdf David J. Pym University of Bath 30 March, 2008 Abstract

More information

Proof-theoretic semantics, self-contradiction and the format of deductive reasoning

Proof-theoretic semantics, self-contradiction and the format of deductive reasoning St. Andrews, 19.11.2011 p. 1 To appear as an article in: L. Tranchini (ed.), Anti-Realistic Notions of Truth, Special issue of Topoi vol. 31 no. 1, 2012 Proof-theoretic semantics, self-contradiction and

More information

Craig Interpolation Theorem for L!1! (or L!! )

Craig Interpolation Theorem for L!1! (or L!! ) Craig Interpolation Theorem for L!1! (or L!! ) Theorem We assume that L 1 and L 2 are vocabularies. Suppose =!, where is an L 1 -sentence and is an L 2 -sentence of L!!. Then there is an L 1 \ L 2 -sentence

More information

TR : Binding Modalities

TR : Binding Modalities City University of New York (CUNY) CUNY Academic Works Computer Science Technical Reports Graduate Center 2012 TR-2012011: Binding Modalities Sergei N. Artemov Tatiana Yavorskaya (Sidon) Follow this and

More information

INTERPOLATION IN MODAL LOGICS

INTERPOLATION IN MODAL LOGICS INTERPOLATION IN MODAL LOGICS By Marta Bílková Supervised by Pavel Pudlák PH.D. THESIS DEPARTMENT OF LOGIC, FACULTY OF PHILOSOPHY AND ARTS CHARLES UNIVERSITY PRAGUE, CZECH REPUBLIC 2006 c Copyright by

More information

Natural Deduction for Propositional Logic

Natural Deduction for Propositional Logic Natural Deduction for Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 10, 2018 Bow-Yaw Wang (Academia Sinica) Natural Deduction for Propositional Logic

More information

Overview of Logic and Computation: Notes

Overview of Logic and Computation: Notes Overview of Logic and Computation: Notes John Slaney March 14, 2007 1 To begin at the beginning We study formal logic as a mathematical tool for reasoning and as a medium for knowledge representation The

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem Michael Beeson The hypotheses needed to prove incompleteness The question immediate arises whether the incompleteness

More information

First-Order Theorem Proving and Vampire

First-Order Theorem Proving and Vampire First-Order Theorem Proving and Vampire Laura Kovács 1,2 and Martin Suda 2 1 TU Wien 2 Chalmers Outline Introduction First-Order Logic and TPTP Inference Systems Saturation Algorithms Redundancy Elimination

More information

Substructural Logics and Residuated Lattices an Introduction

Substructural Logics and Residuated Lattices an Introduction Hiroakira Ono Substructural Logics and Residuated Lattices an Introduction Abstract. This is an introductory survey of substructural logics and of residuated lattices which are algebraic structures for

More information

A Schütte-Tait style cut-elimination proof for first-order Gödel logic

A Schütte-Tait style cut-elimination proof for first-order Gödel logic A Schütte-Tait style cut-elimination proof for first-order Gödel logic Matthias Baaz and Agata Ciabattoni Technische Universität Wien, A-1040 Vienna, Austria {agata,baaz}@logic.at Abstract. We present

More information

Proof-theoretic Validity. Stephen Read University of St Andrews. Analytic Validity Harmony GE-Harmony Justifying the E-rules

Proof-theoretic Validity. Stephen Read University of St Andrews. Analytic Validity Harmony GE-Harmony Justifying the E-rules Boğaziçi University Arché: Philosophical esearch Centre for Logic, Language, Metaphysics and Epistemology Foundations of Logical Consequence Project Funded by slr@st-andacuk 4 April 2012 slr@st-andacuk

More information

Gödel s Incompleteness Theorems

Gödel s Incompleteness Theorems Seminar Report Gödel s Incompleteness Theorems Ahmet Aspir Mark Nardi 28.02.2018 Supervisor: Dr. Georg Moser Abstract Gödel s incompleteness theorems are very fundamental for mathematics and computational

More information

A Tableau Calculus for Minimal Modal Model Generation

A Tableau Calculus for Minimal Modal Model Generation M4M 2011 A Tableau Calculus for Minimal Modal Model Generation Fabio Papacchini 1 and Renate A. Schmidt 2 School of Computer Science, University of Manchester Abstract Model generation and minimal model

More information

A SHORT NOTE ON INTUITIONISTIC PROPOSITIONAL LOGIC WITH MULTIPLE CONCLUSIONS

A SHORT NOTE ON INTUITIONISTIC PROPOSITIONAL LOGIC WITH MULTIPLE CONCLUSIONS CDD: A SHORT NOTE ON INTUITIONISTIC PROPOSITIONAL LOGIC WITH MULTIPLE CONCLUSIONS VALERIA DE PAIVA ISL, PARC 3333 Coyote Hill Road PALO ALTO, CA 94304 USA Valeria.dePaiva@parc.com LUIZ CARLOS PEREIRA Dep.

More information

Classical Propositional Logic

Classical Propositional Logic The Language of A Henkin-style Proof for Natural Deduction January 16, 2013 The Language of A Henkin-style Proof for Natural Deduction Logic Logic is the science of inference. Given a body of information,

More information

Appendix to Hilbert s lecture The foundations of mathematics (1927) Paul Bernays

Appendix to Hilbert s lecture The foundations of mathematics (1927) Paul Bernays Bernays Project: Text No. 6 Appendix to Hilbert s lecture The foundations of mathematics (1927) Paul Bernays (Zusatz zu Hilbert s Vorlesung Die Grundlagen der Mathematik, 1927.) Translation by: Stefan

More information

Generalised elimination rules and harmony

Generalised elimination rules and harmony Generalised elimination rules and harmony Roy Dyckhoff Based on joint work with Nissim Francez Supported by EPSR grant EP/D064015/1 St ndrews, May 26, 2009 1 Introduction Standard natural deduction rules

More information

A CONSERVATION RESULT CONCERNING BOUNDED THEORIES AND THE COLLECTION AXIOM

A CONSERVATION RESULT CONCERNING BOUNDED THEORIES AND THE COLLECTION AXIOM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 100, Number 4, August 1987 A CONSERVATION RESULT CONCERNING BOUNDED THEORIES AND THE COLLECTION AXIOM SAMUEL R. BUSS Abstract. We present two proofs,

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering First-Order Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner Hähnle (Chalmers

More information

THESES SIS/LIBRARY TELEPHONE:

THESES SIS/LIBRARY TELEPHONE: THESES SIS/LIBRARY TELEPHONE: +61 2 6125 4631 R.G. MENZIES LIBRARY BUILDING NO:2 FACSIMILE: +61 2 6125 4063 THE AUSTRALIAN NATIONAL UNIVERSITY EMAIL: library.theses@anu.edu.au CANBERRA ACT 0200 AUSTRALIA

More information

Lecture Notes on Sequent Calculus

Lecture Notes on Sequent Calculus Lecture Notes on Sequent Calculus 15-816: Modal Logic Frank Pfenning Lecture 8 February 9, 2010 1 Introduction In this lecture we present the sequent calculus and its theory. The sequent calculus was originally

More information