Jackson 2.11 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Size: px
Start display at page:

Download "Jackson 2.11 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell"

Transcription

1 Jackson 2.11 Homework Problem Solution Dr. Christopher S. aird University of Massachusetts Lowell PROLEM: A line charge with linear charge density τ is placed parallel to, and a distance R away from, the axis of a conducting cylinder of radius b held at fixed voltage such that the potential vanishes at infinity. Find (a) the magnitude and position of the image charge(s); (b) the potential at any point (expressed in polar coordinates with the origin at the axis of the cylinder and the direction from the origin to the line charge as the x axis), including the asymptotic form far from the cylinder; (c) the induced surface-charge density, and plot it as a function of angle for R/b = 2, 4 in units of τ/2πb (d) the force per unit length on the line charge SOLUTION: This problem is similar to a point charge next to sphere. Let us place an image line charge τ' inside the cylinder at R' as shown in the diagram below. y b R' R x V τ' τ The electric field surrounding one wire without anything else present is found by drawing a cylindrical Gaussian surface around the line charge and using Gauss's Law. Due to the symmetry, the electric field is parallel to the surface normal and constant over the Gaussian surface. It can thus be taken out of the integral.

2 S E n da= 1 0 q enc E S da= 1 0 L E 2r L= 1 0 L E= 2 0 r r Use the definition of the potential and solve for the potential E= d d r = 2 0 r = lnr A 2 0 Set the arbitrary integration constant to A= ln and use the laws of logarithms: 2 0 = 4 0 ln 2 r 2 (The potential due to one line charge) The total potential is now found by including both the line charge and the image line charge: = 4 0 ln 2 2 r ' ln 2 2 r 2 The variables r 1 and r 2 are the distance from the respective wires to the observation point. We must now express them in terms of the cylindrical coordinates,, z : = 4 0 ln 2 2 R 2 2 R cos ' 4 0 ln 2 2 R ' 2 2 R ' cos Apply the boundary condition =0 0= 4 0 ln 2 2 R 2 2 R cos ' 4 0 ln 2 2 R ' 2 2 R ' cos 2 R 2 2R cos 2 R ' 2 2 R 'cos ' = 2 '

3 As ρ approaches infinity, only the highest power of ρ will survive and all other terms will approach zero by comparison: ' = 2 ' 2 ' = 2 ' 'ln 2 ln 2 =0 '=0 '= This makes sense because for the potential to be zero at infinity, the total charge should be zero. The image charge cancels out the line charge at large distances. The solution now becomes: = 4 0[ ln 2 2 R 2 2 R cos ln 2 2 R ' 2 2 R ' cos] = 4 0 ln 2 R ' 2 2 R 'cos 2 R 2 2 R cos Apply the boundary condition =b=v V = 4 0 ln b2 R ' 2 2 b R ' cos b 2 R 2 2 b R cos 4 0V b 2 R ' 2 2b R ' cos e = b 2 R 2 2b R cos 4 0V b 2 R 2 2b R cos e =b 2 R ' 2 2b R ' cos 4 0V b 2 R 2 e b 2 R ' =[ 2 2b R '2b R e 4 V 0 ] cos This must be true for all so that the both sides of the equation are independent and thus equal to a constant. The constant must be zero to accommodate the case of =/ V b 2 R 2 e 4 0V b 2 R ' 2 =0 and 0= 2 b R '2 b R e 4 0V b 2 R 2 e b 2 R ' 2 =0 and R' =e 4 0V R

4 We can use these two equations to eliminate the dependence on V and make the solution more general. b 2 R 2 R ' R b2 R' 2 =0 R ' 2 b 2 R 2 R ' R b2 =0 R '= b2 R (b) the potential at any point (expressed in polar coordinates with the origin at the axis of the cylinder and the direction from the origin to the line charge as the x axis), including the asymptotic form far from the cylinder; Plugging in the image charge magnitude and location as found above, the solution to the potential now becomes: = 4 0 ln 2 b 4 / R 2 2b 2 / Rcos 2 R 2 2 R cos To get the asymptotic form, we put the term in parentheses in a form that is easy to expand: = 4 0 ln b 4 / R 2 2b 2 /R cos 2 R 2 2 R cos = b 4 0 ln 4 1/ R 2 R 2 b 2 2/ Rcos 1 R4 2 R 2 2Rcos Use the expansion ln 1x=x x 2 / 2x 3 /3... = 4 0 [ R4 b 4 1 / R 2 R 2 b 2 2 /R cos 2 R 2 2 R cos 1/2 R4 b 4 1/ R 2 R 2 b / R cos...] 2 R 2 2 R cos Far away from the cylinder is defined as ρ >> b and far away from the line charge is defined as ρ >> R so that we can drop all the higher order terms in the expansion = 4 0 R 4 b 4 1/ R 2 R 2 b 2 2/ Rcos 2 R 2 2 R cos

5 Similarly, we can drop all but the highest term in the numerator and denominator. = R 2 b 2 cos 2 0 R (c) the induced surface-charge density, and plot it as a function of angle for R/b = 2, 4 in units of τ/2πb As shown previously, the surface-charge density on a conductor is found using Gauss's Law to be: [ E n = 1 0 ]n=n 0 =[ 0 n ]n=n 0 The normal to the conductor's surface is just in the cylindrical radial direction: =[ 0 ]=b =[ ln 2 b 4 / R 2 2 b 2 / Rcos 2 R 2 2 R cos ]=b =[ [ln2 b 4 / R 2 2b 2 / Rcos ln 2 R 2 2 R cos]]=b =[ 0[ 2 2b 2 / R cos b 4 / R 2 2 b 2 /R cos 2 2 R cos 2 R 2 2 R cos]]=b = b[ 1 R/b 2 2 1R/b 2 2 R /bcos] For R/b = 2 = 3 2 b[ 5 4cos] In units of (τ/2πb) this becomes: = 3 5 4cos

6 For R/b = 4 = 15 2 b[ 17 8cos ] In units of (τ/2πb) this becomes: = cos

7 (d) the force per unit length on the line charge The electric field felt at some point at a distance d from the image line charge due to the image line charge is: E= ' 2 0 d The image charge is known to be '= and the distance d is just the distance between the image charge and the line charge, d =R R '=R b2 R, so that E= 2 0 R b 2 / R The force is the charge being acted upon times the electric field: F=q E F= L E where L is some length along the line charge F= L 2 0 R b 2 / R Force per unit length: F L = 2 R 2 0 R 2 b 2 (The force is attractive)

Jackson 2.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: A straight-line charge with constant linear charge λ is located perpendicular to the x-y plane in

More information

Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: A uniformly magnetized and conducting sphere of radius R and total magnetic moment m = 4πMR 3

More information

Physics 114 Exam 1 Spring 2013

Physics 114 Exam 1 Spring 2013 Physics 114 Exam 1 Spring 2013 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Gauss's Law 2017-07-08 www.njctl.org Electric Flux Gauss's Law Sphere Table of Contents: Gauss's Law Click on the topic to go to that section. Infinite Rod of Charge Infinite Plane

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Solutions to PS 2 Physics 201

Solutions to PS 2 Physics 201 Solutions to PS Physics 1 1. ke dq E = i (1) r = i = i k eλ = i k eλ = i k eλ k e λ xdx () (x x) (x x )dx (x x ) + x dx () (x x ) x ln + x x + x x (4) x + x ln + x (5) x + x To find the field for x, we

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20 Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition Homer Reid December 8, 999 Chapter : Problems - Problem A line charge with linear charge density τ is placed parallel to, and

More information

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau Problem 1 Physics 7B Midterm 2 Solutions - Fall 217 Professor R. Birgeneau (a) Since the wire is a conductor, the electric field on the inside is simply zero. To find the electric field in the exterior

More information

AMPERE'S LAW. B dl = 0

AMPERE'S LAW. B dl = 0 AMPERE'S LAW The figure below shows a basic result of an experiment done by Hans Christian Oersted in 1820. It shows the magnetic field produced by a current in a long, straight length of current-carrying

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Last time: Gauss's Law To formulate Gauss's law, introduced a few new

More information

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion CHAPTER 3 POTENTIALS Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. Laplace s equation 2. The Method of Images 3. Separation of Variables 4. Multipole Expansion

More information

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_4 Sunday, February 03, 008 Page 1 Name: Date: 1. A point charged particle is placed at the center of a spherical Gaussian surface. The net electric flux Φ net

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

ragsdale (zdr82) HW5 ditmire (58335) 1

ragsdale (zdr82) HW5 ditmire (58335) 1 ragsdale (zdr82) HW5 ditmire (58335) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 (part 1 of 2) 10.0

More information

Lecture 14 - Capacitors

Lecture 14 - Capacitors Lecture 14 - Capacitors A Puzzle... Gravity Screen Insulators are often thought of as "electrical screens," since they block out all external electric fields. For example, if neutral objects are kept inside

More information

which checks. capacitance is determined entirely by the dimensions of the cylinders.

which checks. capacitance is determined entirely by the dimensions of the cylinders. 4.3. IDENTIFY and SET UP: It is a parallel-plate air capacitor, so we can apply the equations of Section 4.. EXEUTE: (a) (b) = ε 0 A d (c) V ab so Q V = so 0 ab V ab 6 Q 0. 48 0 = = = 604 V. 45 0 F 3 d

More information

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface Electric flux Electric Fields and Gauss s Law Electric flux is a measure of the number of field lines passing through a surface. The flux is the product of the magnitude of the electric field and the surface

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

Electric Field Lines. lecture 4.1.1

Electric Field Lines. lecture 4.1.1 Electric Field Lines Two protons, A and B, are in an electric field. Which proton has the larger acceleration? A. Proton A B. Proton B C. Both have the same acceleration. lecture 4.1.1 Electric Field Lines

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law 22-1 Electric Flux Electric flux: Electric flux through an area is proportional to the total number of field lines crossing the area. 22-1 Electric Flux Example 22-1: Electric flux.

More information

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 24 Lecture RANDALL D. KNIGHT Chapter 24 Gauss s Law IN THIS CHAPTER, you will learn about and apply Gauss s law. Slide 24-2 Chapter

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

3 Chapter. Gauss s Law

3 Chapter. Gauss s Law 3 Chapter Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example 3.2: Infinite

More information

More Gauss, Less Potential

More Gauss, Less Potential More Gauss, Less Potential Today: Gauss Law examples Monday: Electrical Potential Energy (Guest Lecturer) new SmartPhysics material Wednesday: Electric Potential new SmartPhysics material Thursday: Midterm

More information

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a Physics 7B Midterm 2 - Fall 207 Professor R. Birgeneau Total Points: 00 ( Problems) This exam is out of 00 points. Show all your work and take particular care to explain your steps. Partial credit will

More information

Capacitors. Gauss s law leads to

Capacitors. Gauss s law leads to Capacitors The electric field lines starts from a positive charge and ends at a negative charge. Gauss s law leads to If the two charge sheets are on two conductor plates, you have a parallel-plate capacitor.

More information

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work!

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work! PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, 2013 7pm-9pm Make sure you show your work! Problem 1 - Current and Resistivity (20 pts) a) A cable of diameter d carries a current

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 212 Gauss Law Lectures 3-4 Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 23 Gauss Law In this chapter we will introduce the following new concepts:

More information

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2.

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2. Chapter 27 Gauss s Law Chapter Goal: To understand and apply Gauss s law. Slide 27-2 Chapter 27 Preview Slide 27-3 Chapter 27 Preview Slide 27-4 1 Chapter 27 Preview Slide 27-5 Chapter 27 Preview Slide

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

Physics 505 Fall 2005 Homework Assignment #7 Solutions

Physics 505 Fall 2005 Homework Assignment #7 Solutions Physics 505 Fall 005 Homework Assignment #7 Solutions Textbook problems: Ch. 4: 4.10 Ch. 5: 5.3, 5.6, 5.7 4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

More information

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman PHYS 41 Fields and Waves Instructor: Jorge A. López Office: PSCI 9 A, Phone: 747-758 Textbook: University Physics 11e, Young and Freedman Chapter : Gauss law.1 Charge and electric flux. Calculating electric

More information

Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law

Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law REFERENCE: Section 4.2, 8.02

More information

Physics 208, Spring 2015 Exam #1

Physics 208, Spring 2015 Exam #1 Physics 208, Spring 2015 Exam #1 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Homework 4 PHYS 212 Dr. Amir

Homework 4 PHYS 212 Dr. Amir Homework 4 PHYS Dr. Amir. (I) A uniform electric field of magnitude 5.8 passes through a circle of radius 3 cm. What is the electric flux through the circle when its face is (a) perpendicular to the field

More information

Boundary value problems

Boundary value problems 1 Introduction Boundary value problems Lecture 5 We have found that the electric potential is a solution of the partial differential equation; 2 V = ρ/ǫ 0 The above is Poisson s equation where ρ is the

More information

IMPORTANT: LABS START NEXT WEEK

IMPORTANT: LABS START NEXT WEEK Chapter 21: Gauss law Thursday September 8 th IMPORTANT: LABS START NEXT WEEK Gauss law The flux of a vector field Electric flux and field lines Gauss law for a point charge The shell theorem Examples

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

1. (3) Write Gauss Law in differential form. Explain the physical meaning. Electrodynamics I Midterm Exam - Part A - Closed Book KSU 204/0/23 Name Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about the physics involved,

More information

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths Chapter 2. Electrostatics Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths 2.1 The Electric Field Test charge 2.1.1 Introduction Source charges The fundamental problem that electromagnetic

More information

Physics 9 Spring 2012 Midterm 1 Solutions

Physics 9 Spring 2012 Midterm 1 Solutions Physics 9 Spring 22 NAME: TA: Physics 9 Spring 22 Midterm s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

Physics (2): Problem set 1 solutions

Physics (2): Problem set 1 solutions Physics (2): Problem set solutions PHYS 04 Problem : Two identical charges q = nc are located on the x-axis at positions 2 cm and 2 cm. What is the electric field at the origin (centre between the two

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

4.4 Rational Expressions

4.4 Rational Expressions 4.4 Rational Epressions Learning Objectives Simplify rational epressions. Find ecluded values of rational epressions. Simplify rational models of real-world situations. Introduction A rational epression

More information

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

3: Gauss s Law July 7, 2008

3: Gauss s Law July 7, 2008 3: Gauss s Law July 7, 2008 3.1 Electric Flux In order to understand electric flux, it is helpful to take field lines very seriously. Think of them almost as real things that stream out from positive charges

More information

Version: A. Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p = kg

Version: A. Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p = kg PHYS 2212 G & J Quiz and Exam Formulæ & Constants Fall 2017 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Module 2: Electrostatics Lecture 6: Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

Electric flux. You must be able to calculate the electric flux through a surface.

Electric flux. You must be able to calculate the electric flux through a surface. Today s agenda: Announcements. lectric field lines. You must be able to draw electric field lines, and interpret diagrams that show electric field lines. A dipole in an external electric field. You must

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lectures & 3 Spring 5 Midterm, C. Bordel Monday, April 6, 5 7pm-9pm Make sure you show all your work and justify your answers in order to get full credit. Problem esistance & current ( pts)

More information

Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q

Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q I- on the surface: Lets choose points A and B on the surface Conclusion: Surface of any conductor is

More information

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0 PHY2049 Fall 2010 Profs. S. Hershfield, A. Petkova Exam 1 Solution 1. Four charges are placed at the corners of a rectangle as shown in the figure. If Q 1 = 1µC, Q 2 = 2µC, Q 3 = 1µC, and Q 4 = 2µC, what

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d)

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d) Homework 2 Due Monday, 14 June 1. There is a small number of simple conductor/dielectric configurations for which we can relatively easily find the capacitance. Students of electromagnetics should be sure

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

1. (3) Write Gauss Law in differential form. Explain the physical meaning. Electrodynamics I Midterm Exam - Part A - Closed Book KSU 204/0/23 Name Electro Dynamic Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1 CHAPTER 24 GAUSS LAW 659 CHAPTER 24 Answer to Checkpoint Questions 1. (a) +EA; (b) EA; (c) ; (d) 2. (a) 2; (b) 3; (c) 1 3. (a) eual; (b) eual; (c) eual 4. +5e; (b) 15e 5. 3 and 4 tie, then 2, 1 Answer

More information

Magnetic field of single coils / Biot-Savart's law

Magnetic field of single coils / Biot-Savart's law Principle The magnetic field along the axis of wire loops and coils of different dimensions is measured with a teslameter (Hall probe). The relationship between the maximum field strength and the dimensions

More information

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0)

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0) In the previous lesson we showed how to solve quadratic equations that were not factorable and were not perfect squares by making perfect square trinomials using a process called completing the square.

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

PRACTICE EXAM 1 for Midterm 1

PRACTICE EXAM 1 for Midterm 1 PRACTICE EXAM 1 for Midterm 1 Multiple Choice Questions 1) The figure shows three electric charges labeled Q 1, Q 2, Q 3, and some electric field lines in the region surrounding the charges. What are the

More information

Electricity & Magnetism Lecture 4: Gauss Law

Electricity & Magnetism Lecture 4: Gauss Law Electricity & Magnetism Lecture 4: Gauss Law Today s Concepts: A) Conductors B) Using Gauss Law Electricity & Magne/sm Lecture 4, Slide 1 Another question... whats the applica=on to real life? Stuff you

More information

Chapter 2 Gauss Law 1

Chapter 2 Gauss Law 1 Chapter 2 Gauss Law 1 . Gauss Law Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface Consider the flux passing through a closed surface

More information

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 21 Gauss s Law PowerPoint Lecture prepared by Richard Wolfson Slide 21-1 In this lecture you ll learn To represent electric fields using field-line diagrams

More information

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11 : olution et One Northwestern University, Electrodynamics I Wednesday, January 13, 2016 Contents 1 Problem #1: General Forms of Gauss and tokes Theorems. 2 1.1 Gauss Theorem - Ordinary Product............................

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

Lecture 3. Electric Field Flux, Gauss Law

Lecture 3. Electric Field Flux, Gauss Law Lecture 3. Electric Field Flux, Gauss Law Attention: the list of unregistered iclickers will be posted on our Web page after this lecture. From the concept of electric field flux to the calculation of

More information

Physics for Scientists and Engineers 4th Edition 2017

Physics for Scientists and Engineers 4th Edition 2017 A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+.

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Phys102 Lecture 4 Phys102 Lecture 4-1 Gauss s Law Key Points Electric Flux Gauss s Law Applications of Gauss s Law References SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Electric Flux Electric flux: The direction

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

nrv P = P 1 (V2 2 V1 2 ) = nrt ( ) 1 T2 T 1 W = nr(t 2 T 1 ) U = d 2 nr T. Since a diatomic gas has 5 degrees of freedom, we find for our case that

nrv P = P 1 (V2 2 V1 2 ) = nrt ( ) 1 T2 T 1 W = nr(t 2 T 1 ) U = d 2 nr T. Since a diatomic gas has 5 degrees of freedom, we find for our case that Problem Figure. P-V diagram for the thermodynamics process described in Problem. a) To draw this on a P-V diagram we use the ideal gas law to obtain, T V = P nrv P = P V. V The process thus appears as

More information

ABCD42BEF F2 F8 5 4D65F89 CC89

ABCD42BEF F2 F8 5 4D65F89 CC89 ABCD BEF F F D F CC Problem A solid insulating sphere of radius a carries a net positive charge 3Q, uniformly distributed throughout its volume. Concentric with this sphere is a conducting spherical shell

More information

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge.

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no

More information