Making Change for n Cents: Two Approaches

Size: px
Start display at page:

Download "Making Change for n Cents: Two Approaches"

Transcription

1 Maing Change for n Cents: Two Approaches William Gasarch arxiv:406523v4 [mathho] 26 Jun 204 Univ of MD at College Par Abstract Given a dollar, how many ways are there to mae change using pennies, nicels, dimes, and quarters? What if you are given a different amount of money? What if you use different coin denominations? First we derive formulas for some problems of this type, including pennies, nicels, dimes, and quarters Second we derive, for every finite set of coins, a formula Introduction How many ways are there to mae change of a dollar using pennies, nicels, dimes, and quarters? This is a well nown question; however, the answers I found in the literature, and on the web 2 They were of two types: There are 242 ways to mae change The author then points to a program he wrote or to the actual list of ways to do it University of Maryland, College Par, MD 20742, gasarch@csumdedu Searching JSTOR for occurrences of the words change and coin in an article in a Mathematics Journal turned up only one that is relevant: Deborah Levine s article [4] has a formula for maing change with pennies, nicels, and quarters This article does not seem to be well nown 2 This entry on mathstacexchange maing-change-for-a-dollar-and-other-number-partitioning-problems offers programs and generating functions but no formula

2 2 The number of ways to mae change for n cents is the coefficient of z n in the power series for ( z( z 5 ( x 0 ( z 25 which can be wored out One possible exception: Graham, Knuth, Patashni [3] obtained a formula for pennies, nicels, dimes, quarters, and half-dollars that wored when n 0 (mod 50 A general formula (even for just pennies, nicels, dimes, and quarters would involve 4 cases and 3 constants (see [2] for an exposition The first answer yields an actual number but is not interesting mathematically The second answer is interesting mathematically but not does easily yield an actual number Def If S is a set of coin denominations then the change function for S is the function that, on input n, outputs the number of ways to mae change for n using the coins in S In the first part of this paper we derive simple formulas for the change function for two types of sets: ( S = {, s, s} where s, 2, and (2 S = {, s, s, rs} where x 2, and 2 < r As a corollary we obtain the case of pennies, nicels, dimes and quarters In passing we solve the change-for-a-dollar problem by hand In the second part of this paper obtain, for any finite set S, the change function The formulas obtained are rather complicated Hence we will also discuss what is meant by the informal term formula 2 General Definitions and Theorems Convention 2 Let S be a non empty set of coins The number of ways to mae 0 cents change is For all n the number of ways to mae n cents change is 0 Def 22 Let S = { < s < t < u} 2

3 a n is the number of ways to mae change of n cents using pennies Clearly ( n[a n = ] 2 b n is the number of ways to mae change of n cents using the first two coins (pennies and s-cent coins Clearly ( n[b n = a n + b n s ] We use that ( n [a n = 0] 3 c n is the number of ways to mae change of n cents using the first three coins (pennies, s-cent coins, and t-cent coins Clearly ( n[c n = b n + c n t ] 4 d n is the number of ways to mae change of n cents using all four coins (pennies, s-cent coins, t-cent coins, and u-cent coins Clearly ( n[d n = b n + c n u ] We do one example: Let S = {, 2, 4, 5} What is d 9? If one 5-cent coin is used then for the remaining four cents you must use either one 4-cent coin; two 2-cents coins; one 2-cent coin and two pennies; or four pennies 2 If no 5-cent coins and one 4-cent coin is used then for the remaining five cents you must use either two 2-cents coins and one penny; one 2-cent coin and three pennies; or five pennies 3 If no 5-cent coins and two 4-cent coins are used then for the remaining one cent you must use one penny 4 If no 5-cent coins and no 4-cent coins are used then you must use either zero, one, two, three, or four 2-cent coins and the appropriate number of pennies This results in five ways to mae change Hence d 9 = = 2 Using the recurrence for b n and ( n[a n = ], one can show the following Theorem 23 ( n[b n = n s + ] We can now solve the change-for-a-dollar problem by hand Let S = {, 5, 0, 25} We need to compute d 00 We use the exact formula for b n and the recurrences for c n and d n 3

4 d 00 = c 00 + c 75 + c 50 + c 25 + c 0 c 0 = c 25 = b 25 + b 5 + b 5 = = 2 c 50 = b 50 + b 40 + b 30 + b 20 + b 0 + b 0 = = 36 c 75 = b 75 + b 65 + b 55 + b 45 + b 35 + c 25 = = 72 c 00 = b 00 + b 90 + b 0 + b 70 + b 60 + c 50 = = 2 Hence d 00 = = The Coin Set {, s, s} Throughout this section we will be using the coin set S = {, s, s} where s, 2 are fixed natural numbers The quantities a n, b n, c n are as in Definition 22 with coin set S To determine the number of ways to mae change, you can always round down to the nearest multiple of s Formally c sl+l0 = c sl We use this without mention Let n = sl + L 0 where 0 L 0 s and L Using the recurrence for c n and the formula for b n (from Theorem 23 we have: c n = c sl = b sl + c s(l = b sl + b s(l + c s(l = b s(l 0 + b s(l + + b s(l i + c s(l i = (L + + (L (L i + + c s(l i Let L j (mod Let i = (L j Then the last term in the sum is c sj Since j, sj < s Hence c sj = b sj = j + The resulting sum is an arithmetic series with first term j +, last term j + + ( L j have the following, and number of terms L j + = L j+ Hence after easy algebra we Theorem 3 Let n = sl + L 0 where 0 L 0 s and L (So that L = n s 4

5 Let j be such that L j mod Then 2 c n = L2 + ( + 2L + n 2 + n c s 2 2s n n2 + (+2n + ( 22 + s 2 s + ( 2j j2 Proof: Part follows from our wor We prove Part 2 For the lower bound we use that L n s s, of For the upper bound we use that L n s 0 j, of ( 22 + and note that the last term has min value, as 0 j and note that the last term is max value, as Note 32 Theorem 3 for the special case of pennies, nicels, and dimes (s = 5, = 2 was proven by Deborah Levine s article [4] Note 33 One can derive c n = n2 + Θ( n from Schur s theorem [, 5, 6] s 2 4 The Coin Set {, s, s, rs} Throughout this section we will be using the coin set S = {, s, s, rs} where s,, r are fixed natural numbers with s,, r 2 and r > The quantities a n, b n, c n, d n are as in Definition 22 with coin set S To determine the number of ways to mae change, you can always round down to the nearest multiple of s Formally d sl+l0 = d sl We use this without mention Let n = s(rl + M + L 0 where 0 M r, 0 L 0 s Using the recurrence for d n we have: 5

6 d n = d s(rl+m = c s(rl+m + d s(rl+m r = c s(rl+m + c s(rl+m r + d s(rl+m r 2 = c s(rl+m + c s(rl+m r + c s(rl+m r c s(m+r + d sm = c s(rl+m + c s(rl+m r + c s(rl+m r c s(m+r + c sm = L c s(ri+m Using the formula for c n from Theorem 3 we obtain d n = L (M + ri 2 + ( + 2(M + ri + + L ( 2(ri + M mod (ri + M mod 2 We will evaluate the second sum later For now we name it: Notation 4 (L, M = L ( 2(ri+M mod (ri+m mod 2 Thus d n is L (M + ri 2 + ( + 2(M + ri + + (L, M = ( (L + (M 2 + M + 2M + + r(2m L i + r 2 =0 L i 2 + (L, M = ( (L + (2r 2 L 2 + (r 2 + 6Mr + 3r + 6rL + 6M 2 + (6 + 2M + + (L, M 6

7 Lemma 42 Let L, M and a 0 L (ri + M mod a = j=0 (rj + Ma L j+ 2 (L, M = ( j=0 ( L j + (( 2(rj + M mod (rj + M mod 2 3 If = 2 and r 0 (mod 2 then (L, M = (+( M+ (L+ 4 If = 2 and r (mod 2 then (L, M = 2L+(+( L (+( M+ +(+( L+ 6 Proof: We brea this sum into parts depending on what i is congruent to mod L (ri + M mod a = L j=0,i j mod = j=0 (ri + M mod a L,i j mod (rj + M mod a = j=0 (rj + M mod a L = j=0 (rj + M mod a L j+,i j mod 2 This follows from part using a = and a = 2 3 and 4 If = 2 then notice that the expression for (L, M is simplified considerably since 2 = 0 and (rj + M mod 2 2 = (rj + M mod 2 Also note that the summation only has two terms (j = 0 and j = Hence we obtain (L, M = 4 Case 0: r 0 (mod 2 ( L + 2 If M 0 (mod 2 then (L, M = 0 If M (mod 2 then 2 (M mod 2 + L + (L, M = ( L + 2 L (M mod 2 = L + 4

8 One can chec that (L, M = (+( M+ (L+ Case : r (mod 2 Then (L, M = 4 ( L (M mod 2 + L + 2 ( + M mod 2 The following table summarizes what (L, M is, given what L, M are mod 2 L mod 2 M mod 2 (L, M 0 0 L 0 L+2 0 L+ L+ One can chec that (L, M = 2L+(+( L (+( M+ +(+( L+ 6 Putting this all together we have the following Theorem 43 Let n = s(rl + M + L 0 where 0 M r, 0 L 0 s, and L (So L = n rs, M = n mod rs s, and n L0 (mod s Then the following are true d n is ( (L + (2r 2 L 2 + (r 2 + 6Mr + 3r + 6rL + 6M 2 + (6 + 2M + + ( L j ( j=0 2 d n = n3 6rs 3 + Θ(n 2 + (( 2(rj + M mod (rj + M mod 2

9 3 If = 2 and r 0 (mod 2 then d n is ( (L + (2r 2 L 2 + (r 2 + 6Mr + 2rL + 6M M + 24 ( + ( M+ (L If = 2 and r (mod 2 then d n is ( (L + (2r 2 L 2 + (r 2 + 6Mr + 2rL + 6M M L + ( + ( L ( + ( M+ + ( + ( L+ 6 Note 44 One can derive the asymptotic result (part 2 from Schur s theorem [, 5, 6] As a corollary of Theorem 43 we obtain a formula for maing change of n cents using pennies, nicels, dimes, and quarters Corollary 45 If s = 5, = 2, and r = 5 then d n is ( (L + (50L 2 + (530ML + 6M M Any Finite Coin Set + 2L + ( + ( L ( + ( M+ + ( + ( L+ 6 Throughout this section S = {t < t 2 < < t v } is our coin set We will derive the change function for S using generating functions While this is new many of the ideas are from Graham, Knuth, Patashni [3] 9

10 Lemma 5 For v ( x = v ( i + v v x i It is easy to see that the number of ways to mae change of n cents using the coins in S is the coefficient of z n in C(z = v i= ( z t i Let t be the least common multiple of {t,, t v } For i v let f i be the polynomial such that ( z t = ( z t i f i (z Then C(z = f (z f v (z ( z t v Let A(z = f (z f v (z Let M be the degree of A(z which is ((t t + (t t (t t v = tv Let the coefficient of z j in A(z be a j By Lemma 5 ( M ( ( i + v C(z = a j z z j ti = v j=0 M j=0 ( i + v a j z ti+j v The coefficient of z n is 0 j M:j n mod t ( n j + v a t j v Can this be considered a formula? We argue yes Given t,, t v one can find the a j s and the binomial coefficients needed for the formula Then, given n, one can find the answer in roughly M/t v times (One would need to code this up carefully and only visit those j n mod t Note that v does not depend on n so the number of steps is constant Hence the above is a formula There is one caveat Finding the a j s and the binomial coefficients can tae a lot of time (though still constant Nevertheless, we regard the above formula as a formula 0

11 6 Acnowledgment I would lie to than Tucer Bane, Adam Busis, and Clyde Krusal for proofreading and suggestions I would also lie to than Eric Weaver who wrote a program that helped give confidence in the formulas presented References [] W Gasarch Quantum techniques/gen functions-don t be afraid of new techniques, quantum-techniquesgen-functions-don t-behtml [2] W Gasarch An exposition of how GKP solved the change problem, umdedu/~gasarch/blogpapers/nuthchangepdf [3] R L Graham, D E Knuth, and O Patashni Concrete Mathematics: a foundation for computer science Addison-Wesley, 99 [4] D Levine Maing change: a problems solving activity The Mathematics Teacher, 75:4 7, 92 [5] Wiipedia Schur s theorem s_theorem [6] H Wilf Generatingfunctionology Academic Press, 994

Making Change of n cents

Making Change of n cents A Complete High School Proof of Schur s Theorem on Making Change of n cents William Gasarch Univ. of MD at College Park Introduction Let a, a 2,..., a L be coin denominations. Assume you have an unlimited

More information

Linear Recurrence Relations for Sums of Products of Two Terms

Linear Recurrence Relations for Sums of Products of Two Terms Linear Recurrence Relations for Sums of Products of Two Terms Yan-Ping Mu College of Science, Tianjin University of Technology Tianjin 300384, P.R. China yanping.mu@gmail.com Submitted: Dec 27, 2010; Accepted:

More information

NOTES Edited by Sergei Tabachnikov. Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations

NOTES Edited by Sergei Tabachnikov. Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations NOTES Edited by Sergei Tabachniov Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations Michael Z Spivey Abstract We give elementary probabilistic proofs of a binomial identity,

More information

Passing from generating functions to recursion relations

Passing from generating functions to recursion relations Passing from generating functions to recursion relations D Klain last updated December 8, 2012 Comments and corrections are welcome In the textbook you are given a method for finding the generating function

More information

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6 Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Ayhan Dil and Veli Kurt Department of Mathematics

More information

Applications of Riordan matrix functions to Bernoulli and Euler polynomials

Applications of Riordan matrix functions to Bernoulli and Euler polynomials Illinois Wesleyan University From the SelectedWors of Tian-Xiao He 06 Applications of Riordan matrix functions to Bernoulli and Euler polynomials Tian-Xiao He Available at: https://worsbepresscom/tian_xiao_he/78/

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China Ramanuan J. 40(2016, no. 3, 511-533. CONGRUENCES INVOLVING g n (x n ( n 2 ( 2 0 x Zhi-Wei Sun Deartment of Mathematics, Naning University Naning 210093, Peole s Reublic of China zwsun@nu.edu.cn htt://math.nu.edu.cn/

More information

Algorithmic Approach to Counting of Certain Types m-ary Partitions

Algorithmic Approach to Counting of Certain Types m-ary Partitions Algorithmic Approach to Counting of Certain Types m-ary Partitions Valentin P. Bakoev Abstract Partitions of integers of the type m n as a sum of powers of m (the so called m-ary partitions) and their

More information

1 Answers to Chapter 8, Odd-numbered Exercises

1 Answers to Chapter 8, Odd-numbered Exercises Answers to Chapter 8, Odd-numbered Exercises ) (a) + 4x + 6x + 4x 3 + x 4. (b) + x + x + x 3 + x 4 + x 7. (c) x 3 + x 4 + 3x 5 + 4x 6 + 6x 7. (d) + x + x + x 3 + x 4 + x 5 + x 6. (e) 3 + x 3 4x 4 + 7x

More information

International Journal of Pure and Applied Mathematics Volume 21 No , THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION

International Journal of Pure and Applied Mathematics Volume 21 No , THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION International Journal of Pure and Applied Mathematics Volume 21 No. 3 2005, 387-394 THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION Eungchun Cho 1, Moon Jung Cho 2, John Eltinge 3 1 Department

More information

THE EGG GAME DR. WILLIAM GASARCH AND STUART FLETCHER

THE EGG GAME DR. WILLIAM GASARCH AND STUART FLETCHER THE EGG GAME DR. WILLIAM GASARCH AND STUART FLETCHER Abstract. We present a game and proofs for an optimal solution. 1. The Game You are presented with a multistory building and some number of superstrong

More information

2. (25%) Suppose you have an array of 1234 records in which only a few are out of order and they are not very far from their correct positions. Which

2. (25%) Suppose you have an array of 1234 records in which only a few are out of order and they are not very far from their correct positions. Which COT 6401 The Analysis of Algorithms Midterm Test Open books and notes Name - SSN - 1. (25%) Suppose that the function F is dened for all power of 2 and is described by the following recurrence equation

More information

KUMMER S LEMMA KEITH CONRAD

KUMMER S LEMMA KEITH CONRAD KUMMER S LEMMA KEITH CONRAD Let p be an odd prime and ζ ζ p be a primitive pth root of unity In the ring Z[ζ], the pth power of every element is congruent to a rational integer mod p, since (c 0 + c 1

More information

2 Generating Functions

2 Generating Functions 2 Generating Functions In this part of the course, we re going to introduce algebraic methods for counting and proving combinatorial identities. This is often greatly advantageous over the method of finding

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

Counting k-marked Durfee Symbols

Counting k-marked Durfee Symbols Counting k-marked Durfee Symbols Kağan Kurşungöz Department of Mathematics The Pennsylvania State University University Park PA 602 kursun@math.psu.edu Submitted: May 7 200; Accepted: Feb 5 20; Published:

More information

NOTES ON OCT 9, 2012

NOTES ON OCT 9, 2012 NOTES ON OCT 9, 0 MIKE ZABROCKI Exercises: I said that I would solve problems that people asked me about in class. I am going to put the solutions to these (the ones that people asked about so that you

More information

2017 VCE Mathematical Methods 2 examination report

2017 VCE Mathematical Methods 2 examination report 7 VCE Mathematical Methods examination report General comments There were some excellent responses to the 7 Mathematical Methods examination and most students were able to attempt the four questions in

More information

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n ZEROES OF INTEGER LINEAR RECURRENCES DANIEL LITT Consider the integer linear recurrence 1. Introduction x n = x n 1 + 2x n 2 + 3x n 3 with x 0 = x 1 = x 2 = 1. For which n is x n = 0? Answer: x n is never

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

WBHS Algebra 2 - Final Exam

WBHS Algebra 2 - Final Exam Class: _ Date: _ WBHS Algebra 2 - Final Eam Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the pattern in the sequence. Find the net three terms.

More information

On the indecomposability of polynomials

On the indecomposability of polynomials On the indecomposability of polynomials Andrej Dujella, Ivica Gusić and Robert F. Tichy Abstract Applying a combinatorial lemma a new sufficient condition for the indecomposability of integer polynomials

More information

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA.

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007, #A4 ON DIVISIBILITY OF SOME POWER SUMS Tamás Lengyel Department of Mathematics, Occidental College, 600 Campus Road, Los Angeles, USA

More information

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity COMP 555 Bioalgorithms Fall 2014 Lecture 3: Algorithms and Complexity Study Chapter 2.1-2.8 Topics Algorithms Correctness Complexity Some algorithm design strategies Exhaustive Greedy Recursion Asymptotic

More information

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 000 Chapter 1 Arithmetic in 1.1 The Division Algorithm Revisited 1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = 3. 2. (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 3. (a) q = 6, r =

More information

GRADE LEVEL: THIRD SUBJECT: MATH DATE: CONTENT STANDARD INDICATORS SKILLS ASSESSMENT VOCABULARY ISTEP

GRADE LEVEL: THIRD SUBJECT: MATH DATE: CONTENT STANDARD INDICATORS SKILLS ASSESSMENT VOCABULARY ISTEP GRADE LEVEL: THIRD SUBJECT: MATH DATE: 2015 2016 GRADING PERIOD: QUARTER 1 MASTER COPY 9 24 15 CONTENT STANDARD INDICATORS SKILLS ASSESSMENT VOCABULARY ISTEP NUMBER SENSE Standard form Expanded form Models

More information

Chapter Generating Functions

Chapter Generating Functions Chapter 8.1.1-8.1.2. Generating Functions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 8. Generating Functions Math 184A / Fall 2017 1 / 63 Ordinary Generating Functions (OGF) Let a n (n = 0, 1,...)

More information

Introduction to Techniques for Counting

Introduction to Techniques for Counting Introduction to Techniques for Counting A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in

More information

Square-Difference-Free Sets of Size Ω(n )

Square-Difference-Free Sets of Size Ω(n ) Square-Difference-Free Sets of Size Ω(n 0.7334 ) Richard Beigel Temple University William Gasarch Univ. of MD at College Park Abstract A set A N is square-difference free (henceforth SDF) if there do not

More information

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math. x (xxxx), xxx xxx. doi:10.2298/aadmxxxxxxxx ON THE COEFFICIENTS OF AN ASYMPTOTIC

More information

Convoluted Convolved Fibonacci Numbers

Convoluted Convolved Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 7 (2004, Article 04.2.2 Convoluted Convolved Fibonacci Numbers Pieter Moree Max-Planc-Institut für Mathemati Vivatsgasse 7 D-53111 Bonn Germany moree@mpim-bonn.mpg.de

More information

A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM

A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM Jrl Syst Sci & Complexity (2006) 19: 266 273 A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM Yingshan ZHANG Weiguo LI Shisong MAO Zhongguo ZHENG Received: 14 December 2004 / Revised:

More information

On the Partitions of a Number into Arithmetic Progressions

On the Partitions of a Number into Arithmetic Progressions 1 3 47 6 3 11 Journal of Integer Sequences, Vol 11 (008), Article 0854 On the Partitions of a Number into Arithmetic Progressions Augustine O Munagi and Temba Shonhiwa The John Knopfmacher Centre for Applicable

More information

Excluded permutation matrices and the Stanley Wilf conjecture

Excluded permutation matrices and the Stanley Wilf conjecture Excluded permutation matrices and the Stanley Wilf conjecture Adam Marcus Gábor Tardos November 2003 Abstract This paper examines the extremal problem of how many 1-entries an n n 0 1 matrix can have that

More information

Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers

Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 16 (2013, Article 1332 Generalized Aiyama-Tanigawa Algorithm for Hypersums of Powers of Integers José Luis Cereceda Distrito Telefónica, Edificio Este

More information

On the Density of Languages Representing Finite Set Partitions 1

On the Density of Languages Representing Finite Set Partitions 1 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 2005, Article 05.2.8 On the Density of Languages Representing Finite Set Partitions Nelma Moreira and Rogério Reis DCC-FC & LIACC Universidade do Porto

More information

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118 The -adic valuation of Stirling numbers Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 7011 Abstract We analyze properties of the -adic

More information

Mathematics Florida Standards (MAFS) Grade 1

Mathematics Florida Standards (MAFS) Grade 1 Mathematics Florida Standards (MAFS) Grade 1 Domain: OPERATIONS AND ALGEBRAIC THINKING Cluster 1: Represent and solve problems involving addition and subtraction. MAFS.1.OA.1.1 Use addition and subtraction

More information

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling CSCE 990: Real-Time Systems Static-Priority Scheduling Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtimesystems Static-priority Scheduling Real-Time Systems Static-Priority

More information

* 8 Groups, with Appendix containing Rings and Fields.

* 8 Groups, with Appendix containing Rings and Fields. * 8 Groups, with Appendix containing Rings and Fields Binary Operations Definition We say that is a binary operation on a set S if, and only if, a, b, a b S Implicit in this definition is the idea that

More information

ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS

ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS Journal of Applied Mathematics and Computational Mechanics 2013, 12(3), 93-104 ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS Edyta Hetmaniok, Mariusz Pleszczyński, Damian Słota,

More information

Find the Missing Number or Numbers: An Exposition

Find the Missing Number or Numbers: An Exposition Find the Missing Number or Numbers: An Exposition William Gasarch Univ. of MD at College Park Introduction The following is a classic problem in streaming algorithms and often the first one taught. Assume

More information

Announcements. CompSci 102 Discrete Math for Computer Science. Chap. 3.1 Algorithms. Specifying Algorithms

Announcements. CompSci 102 Discrete Math for Computer Science. Chap. 3.1 Algorithms. Specifying Algorithms CompSci 102 Discrete Math for Computer Science Announcements Read for next time Chap. 3.1-3.3 Homework 3 due Tuesday We ll finish Chapter 2 first today February 7, 2012 Prof. Rodger Chap. 3.1 Algorithms

More information

Generating Functions

Generating Functions Generating Functions Karen Ge May, 07 Abstract Generating functions gives us a global perspective when we need to study a local property. We define generating functions and present its applications in

More information

To appear: Math. Comp LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS

To appear: Math. Comp LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS To appear: Math Comp 21 LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS GEORGE BOROS AND VICTOR H MOLL Abstract We present a rational version of the classical Landen transformation for

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solving in Math (Math 43900) Fall 203 Week six (October ) problems recurrences Instructor: David Galvin Definition of a recurrence relation We met recurrences in the induction hand-out. Sometimes

More information

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH Polyexponentials Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH 45810 k-boyadzhiev@onu.edu 1. Introduction. The polylogarithmic function [15] (1.1) and the more general

More information

Rectangle Free Coloring of Grids

Rectangle Free Coloring of Grids Rectangle Free Coloring of Grids Stephen Fenner Univ of South Carolina William Gasarch Univ. of MD at College Park Semmy Purewal Univ of NC at Ashville Charles Glover Univ. of MD at College Park Abstract

More information

California CCSS Mathematics Grades 1-3

California CCSS Mathematics Grades 1-3 Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. 1.OA.1. Use addition and subtraction within 20 to solve word problems involving situations of adding to,

More information

Decidability of WS1S and S1S (An Exposition) Exposition by William Gasarch-U of MD

Decidability of WS1S and S1S (An Exposition) Exposition by William Gasarch-U of MD 1 Introduction Decidability of WS1S and S1S (An Exposition) Exposition by William Gasarch-U of MD We are going to prove that a (small) fragment of mathematics is decidable. 1. A Formula allows variables

More information

LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS. 1. Introduction We consider the space of even rational functions of degree 2p

LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS. 1. Introduction We consider the space of even rational functions of degree 2p MATHEMATICS OF COMPUTATION Volume 71, Number 238, Pages 649 668 S 25-5718(1)1347-3 Article electronically published on November 9, 21 LANDEN TRANSFORMATIONS AND THE INTEGRATION OF RATIONAL FUNCTIONS GEORGE

More information

Polynomial Approximation of Survival Probabilities Under Multi-point Crossover

Polynomial Approximation of Survival Probabilities Under Multi-point Crossover Polynomial Approximation of Survival Probabilities Under Multi-point Crossover Sung-Soon Choi and Byung-Ro Moon School of Computer Science and Engineering, Seoul National University, Seoul, 151-74 Korea

More information

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From q-series Michael Gri th History and q-integers The idea of q-series has existed since at least Euler. In constructing the generating function for the partition function, he developed the basic idea of

More information

ON THE SLACK EULER PAIR FOR VECTOR PARTITION

ON THE SLACK EULER PAIR FOR VECTOR PARTITION #A7 INTEGERS 18 (2018 ON THE SLACK EULER PAIR FOR VECTOR PARTITION Shishuo Fu College of Mathematics and Statistics, Chongqing University, Huxi Campus, Chongqing, P.R. China. fsshuo@cqu.edu.cn Ting Hua

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information

On the Sylvester Denumerants for General Restricted Partitions

On the Sylvester Denumerants for General Restricted Partitions On the Sylvester Denumerants for General Restricted Partitions Geir Agnarsson Abstract Let n be a nonnegative integer and let ã = (a 1... a k be a k-tuple of positive integers. The term denumerant introduced

More information

Lesson Title PA Common Core CCSS Numbers and Counting. Instruction Lesson Day Routines CC A.3 2.MD.8

Lesson Title PA Common Core CCSS Numbers and Counting. Instruction Lesson Day Routines CC A.3 2.MD.8 Second Grade Scope and Sequence 2016-2017 Numbers and Counting Lesson 1.1 1 Day Routines CC.2.4.2.A.3 2.MD.8 Lesson 1.2 1 Day Counting on a Number Line CC.2.4.2.A.6, CC.2.1.2.B.2 2.MD.6, 2.NBT.2 Lesson

More information

Subcritical pattern languages for and/or trees

Subcritical pattern languages for and/or trees Fifth Colloquium on Mathematics and Computer Science DMTCS proc. AI, 2008, 437 448 Subcritical pattern languages for and/or trees Jaub Kozi Theoretical Computer Science, Jagiellonian University Gronostajowa

More information

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 000 Chapter 1 Arithmetic in 1.1 The Division Algorithm Revisited 1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = 3. 2. (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 3. (a) q = 6, r =

More information

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 006 A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS M.A. NYBLOM ABSTRACT. A closed form expression for the Nth partial

More information

Divide and Conquer. Arash Rafiey. 27 October, 2016

Divide and Conquer. Arash Rafiey. 27 October, 2016 27 October, 2016 Divide the problem into a number of subproblems Divide the problem into a number of subproblems Conquer the subproblems by solving them recursively or if they are small, there must be

More information

arxiv: v1 [math.nt] 26 Jun 2015

arxiv: v1 [math.nt] 26 Jun 2015 A -DIGITAL BINOMIAL THEOREM TOUFIK MANSOUR AND HIEU D. NGUYEN arxiv:1506.07945v1 [math.nt] 26 Jun 2015 Abstract. We present a multivariable generalization of the digital binomial theorem from which a -analog

More information

Discrete Math Notes. Contents. William Farmer. April 8, Overview 3

Discrete Math Notes. Contents. William Farmer. April 8, Overview 3 April 8, 2014 Contents 1 Overview 3 2 Principles of Counting 3 2.1 Pigeon-Hole Principle........................ 3 2.2 Permutations and Combinations.................. 3 2.3 Binomial Coefficients.........................

More information

Harbor Creek School District

Harbor Creek School District Numeration Unit of Study Big Ideas Algebraic Concepts How do I match a story or equation to different symbols? How do I determine a missing symbol in an equation? How does understanding place value help

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

HAMMING DISTANCE FROM IRREDUCIBLE POLYNOMIALS OVER F Introduction and Motivation

HAMMING DISTANCE FROM IRREDUCIBLE POLYNOMIALS OVER F Introduction and Motivation HAMMING DISTANCE FROM IRREDUCIBLE POLYNOMIALS OVER F 2 GILBERT LEE, FRANK RUSKEY, AND AARON WILLIAMS Abstract. We study the Hamming distance from polynomials to classes of polynomials that share certain

More information

Generating Functions

Generating Functions Generating Functions Prachi Pendse January 9, 03 Motivation for Generating Functions Question How many ways can you select 6 cards from a set of 0? ( + ) 0 = ( + )( + )( + )... = 0 + 0 9 + 4 8 + 0 ( )

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

Review problems solutions

Review problems solutions Review problems solutions Math 3152 December 15, 2017 1. Use the binomial theorem to prove that, for all n 1 and k satisfying 0 k n, ( )( ) { n i ( 1) i k 1 if k n; i k 0 otherwise. ik Solution: Using

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Composition operators on Hilbert spaces of entire functions Author(s) Doan, Minh Luan; Khoi, Le Hai Citation

More information

= i 0. a i q i. (1 aq i ).

= i 0. a i q i. (1 aq i ). SIEVED PARTITIO FUCTIOS AD Q-BIOMIAL COEFFICIETS Fran Garvan* and Dennis Stanton** Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved

More information

Successive Derivatives and Integer Sequences

Successive Derivatives and Integer Sequences 2 3 47 6 23 Journal of Integer Sequences, Vol 4 (20, Article 73 Successive Derivatives and Integer Sequences Rafael Jaimczu División Matemática Universidad Nacional de Luján Buenos Aires Argentina jaimczu@mailunlueduar

More information

Application of Logic to Generating Functions. Holonomic (P-recursive) Sequences

Application of Logic to Generating Functions. Holonomic (P-recursive) Sequences Application of Logic to Generating Functions Holonomic (P-recursive) Sequences Johann A. Makowsky Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel http://www.cs.technion.ac.il/

More information

RAMSEY THEORY. Contents 1. Introduction Arithmetic Ramsey s Theorem

RAMSEY THEORY. Contents 1. Introduction Arithmetic Ramsey s Theorem RAMSEY THEORY CAN LIU Abstract. We give a proof to arithmetic Ramsey s Theorem. In addition, we show the proofs for Schur s Theorem, the Hales-Jewett Theorem, Van der Waerden s Theorem and Rado s Theorem,

More information

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)!

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3 A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! Ira M. Gessel 1 and Guoce Xin Department of Mathematics Brandeis

More information

Parity Theorems for Statistics on Domino Arrangements

Parity Theorems for Statistics on Domino Arrangements Parity Theorems for Statistics on Domino Arrangements Mar A Shattuc Mathematics Department University of Tennessee Knoxville, TN 37996-1300 shattuc@mathutedu Carl G Wagner Mathematics Department University

More information

The Maximal Rank Conjecture

The Maximal Rank Conjecture The Maximal Ran Conjecture Eric Larson Abstract Let C be a general curve of genus g, embedded in P r via a general linear series of degree d. In this paper, we prove the Maximal Ran Conjecture, which determines

More information

Two finite forms of Watson s quintuple product identity and matrix inversion

Two finite forms of Watson s quintuple product identity and matrix inversion Two finite forms of Watson s uintuple product identity and matrix inversion X. Ma Department of Mathematics SuZhou University, SuZhou 215006, P.R.China Submitted: Jan 24, 2006; Accepted: May 27, 2006;

More information

A Motivated Introduction to Modular Forms

A Motivated Introduction to Modular Forms May 3, 2006 Outline of talk: I. Motivating questions II. Ramanujan s τ function III. Theta Series IV. Congruent Number Problem V. My Research Old Questions... What can you say about the coefficients of

More information

First Grade Common Core Math: Freebie

First Grade Common Core Math: Freebie First Grade Common Core Math: Freebie By: Renee Jenner Fonts: Jen Jones Graphics: www.mycutegraphics.com Common Core Math Operations and Algebraic Thinking Represent and solve problems involving addition

More information

CUCC; You may use a calculator.

CUCC; You may use a calculator. Algebra Final Exam Name Date Closed Book; 90 minutes to complete CUCC; You may use a calculator. 1. Translate the verbal phrase into an algebraic equation: The difference between 12 and the product of

More information

2 BORWEIN & BRADLEY Koecher's formula points up a potential problem with symbolic searching. Namely, negative results need to be interpreted carefully

2 BORWEIN & BRADLEY Koecher's formula points up a potential problem with symbolic searching. Namely, negative results need to be interpreted carefully SEARCHING SYMBOLICALLY FOR APERY-LIKE FORMULAE FOR VALUES OF THE RIEMANN ZETA FUNCTION Jonathan Borwein and David Bradley Abstract. We discuss some aspects of the search for identities using computer algebra

More information

Some thoughts concerning power sums

Some thoughts concerning power sums Some thoughts concerning power sums Dedicated to the memory of Zoltán Szvetits (929 20 Gábor Nyul Institute of Mathematics, University of Debrecen H 00 Debrecen POBox 2, Hungary e mail: gnyul@scienceunidebhu

More information

11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic

11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic 11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic Bezout s Lemma Let's look at the values of 4x + 6y when x and y are integers. If x is -6 and y is 4 we

More information

Year 6 Place Value Practice Test

Year 6 Place Value Practice Test Year 6 Place Value Practice Test 25 KS2 SATs Questions and Mark Scheme: Arithmetic and Reasoning First name Last name Class Score / 25 Instructions You may not use a calculator to answer any questions

More information

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. Recounting the Rationals Author(s): Neil Calkin and Herbert S. Wilf Source: The American Mathematical Monthly, Vol. 107, No. 4 (Apr., 2000), pp. 360-363 Published by: Mathematical Association of America

More information

Generating All Circular Shifts by Context-Free Grammars in Chomsky Normal Form

Generating All Circular Shifts by Context-Free Grammars in Chomsky Normal Form Generating All Circular Shifts by Context-Free Grammars in Chomsky Normal Form Peter R.J. Asveld Department of Computer Science, Twente University of Technology P.O. Box 217, 7500 AE Enschede, the Netherlands

More information

The Generating Functions for Pochhammer

The Generating Functions for Pochhammer The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, 25000 Sombor SERBIA and MONTENEGRO Email

More information

Fraction-free Computation of Matrix Padé Systems

Fraction-free Computation of Matrix Padé Systems Fraction-free Computation of Matrix Padé Systems Bernhard Becermann, Laboratoire d Analyse Numérique et d Optimisation, UFR IEEA M3, USTL Flres Artois, F 59655 Villeneuve d Ascq CEDEX, France, e-mail:

More information

South Carolina Alternate Assessments Performance Level Descriptors. Mathematics. Revised: June 29, 2018

South Carolina Alternate Assessments Performance Level Descriptors. Mathematics. Revised: June 29, 2018 South Carolina Alternate Assessments Performance Level Descriptors Mathematics Revised: June 29, 2018 Contents Standards Reference Number Abbreviations... 1 Grade 3... 2 Grade 4... 6 Grade 5... 9 Grade

More information

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Outline We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Induction P(1) ( n 2)[P(n 1) P(n)] ( n 1)[P(n)] Why Does This Work? I P(1) ( n 2)[P(n

More information

Assignment 4. CSci 3110: Introduction to Algorithms. Sample Solutions

Assignment 4. CSci 3110: Introduction to Algorithms. Sample Solutions Assignment 4 CSci 3110: Introduction to Algorithms Sample Solutions Question 1 Denote the points by p 1, p 2,..., p n, ordered by increasing x-coordinates. We start with a few observations about the structure

More information

Theorem (Special Case of Ramsey s Theorem) R(k, l) is finite. Furthermore, it satisfies,

Theorem (Special Case of Ramsey s Theorem) R(k, l) is finite. Furthermore, it satisfies, Math 16A Notes, Wee 6 Scribe: Jesse Benavides Disclaimer: These notes are not nearly as polished (and quite possibly not nearly as correct) as a published paper. Please use them at your own ris. 1. Ramsey

More information

A Correlation of. Student Activity Book. to the Common Core State Standards for Mathematics. Grade 2

A Correlation of. Student Activity Book. to the Common Core State Standards for Mathematics. Grade 2 A Correlation of Student Activity Book to the Common Core State Standards for Mathematics Grade 2 Copyright 2016 Pearson Education, Inc. or its affiliate(s). All rights reserved Grade 2 Units Unit 1 -

More information

Algorithms: Background

Algorithms: Background Algorithms: Background Amotz Bar-Noy CUNY Amotz Bar-Noy (CUNY) Algorithms: Background 1 / 66 What is a Proof? Definition I: The cogency of evidence that compels acceptance by the mind of a truth or a fact.

More information

Question 1. Find the coordinates of the y-intercept for. f) None of the above. Question 2. Find the slope of the line:

Question 1. Find the coordinates of the y-intercept for. f) None of the above. Question 2. Find the slope of the line: of 4 4/4/017 8:44 AM Question 1 Find the coordinates of the y-intercept for. Question Find the slope of the line: of 4 4/4/017 8:44 AM Question 3 Solve the following equation for x : Question 4 Paul has

More information

10.4 The Kruskal Katona theorem

10.4 The Kruskal Katona theorem 104 The Krusal Katona theorem 141 Example 1013 (Maximum weight traveling salesman problem We are given a complete directed graph with non-negative weights on edges, and we must find a maximum weight Hamiltonian

More information

K-8 Math Standards by Domain

K-8 Math Standards by Domain In this document, the Louisiana Student Standards for Mathematics for Kindergarten through Grade 8 are listed by domain and then by grade. The purpose of this arrangement is to show how mathematical concepts

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information