Restless Bandit Index Policies for Solving Constrained Sequential Estimation Problems

Size: px
Start display at page:

Download "Restless Bandit Index Policies for Solving Constrained Sequential Estimation Problems"

Transcription

1 Restless Bandit Index Policies for Solving Constrained Sequential Estimation Problems Sofía S. Villar Postdoctoral Fellow Basque Center for Applied Mathemathics (BCAM) Lancaster University November 5th, 2012

2 The objective of the talk Multi-armed Restless Bandit Problems (OR) Optimal Sequential Estimation Problems (Statistics) Novel Solution to existing Applied Problems in Modern Sensor Systems

3 Porblem 1: Multi-target tracking (I) A set of moving targets to be tracked during a period of time:

4 Problem 1: Multi-target tracking (II) A set of flexible (and error-prone) sensors to track them

5 Problem 1: Multi-target tracking (III) P1: How to best estimate the position of all targets over time by selecting the beams direction to produce sensors measurements?

6 Problem 2: Finding elusive targets An error prone sensor must find an object which hides/exposes itself when sensed/not sensed. P2: How should we select when to activate the sensor to maximize the chances of finding the object?

7 Outline Optimal Sequential Estimation Problems Multi-armed Restless Bandit Problems Some Results Further Work

8 Optimal Sequential Estimation and Multitarget Tracking An illustrative example Let the position of some target n at time t, be a random variable x n,t evolving over time: x n,t = x n,t 1 + ω n,t, ω n,t N(0, q n ) t 1 (1) Let the measurement of target s n position at time t: y n,t, be such that y n,t = x n,t + ν n,t, ν n,t N(0, r n ) (2) E(x n,0 ) = µ and V(x n,0 ) = 0. Q: From the observed sequence of measurements produce estimates of unobservale variables, i.e., y n,t ˆx n,t? Can these estimates be more precise than those based on a single measurement alone?

9 The Kalman Filter Algorithm Let v n,t be the variance of the sequential estimator ˆx n,t A priori estimate of x n,t from (1) (Predictive Step) (ˆx n,t ) P = ˆx n,t 1 (3) (v n,t ) P = v n,t 1 + q n. (4) A posteriori estimate of x n,t (Updating Step) Where k (ˆx n,t ) U = (1 k )ˆx n,t 1 + k y n,t (5) (v n,t ) U = v n,t 1 + q n v n,t 1 /r n + q n /r n + 1. (6) (v n,t 1) p (v n,t 1 ) p +r is the optimal Kalman Gain, and it is optimal in the sense that it minimizes (v n,t ) U

10 Applications, Properties & More The Kalman Filter algorithm is defined for models more general than equations (1) and (2). Widely used for time series analysis, in fields such as signal processing and econometrics. Theoretical properties: minimum Mean Squared Error (MSE) estimators. Key Issue: If there are N targets and N sensors the Kalman filter yields the minimum MSE targets locations estimators at every t. If sensors fall below N, at each time for some targets there will be a prediction without update, therefore resulting in a higher total predictive error. Room for optimizing while estimating!

11 Outline Optimal Sequential Estimation Problems Multi-armed Restless Bandit Problems Some Results Further Work

12 Markov Decision Problems Dynamic and Stochastic Optimization Models in OR Markov Decision Problems (MDPs) are a natural way of formulating optimal sequential estimation problems. State space: X t X the sufficient statistic for the N targets state upon which to make decisions at time t. Action Set: a t A t (X t ) the feasible control set applicable to the system at time t. If binary a t {0, 1} Bandit Transition Dynamics: X t+1 P(. X t, a t ) A probability measure following from the corresponding Filter algorithm. One-period net rewards/costs: R(X t, a t ) / C(X t, a t ) representing the effect in terms of the objective of the system of the selected actions. Multi-armed Bandit Problems are a special class of constrained MDPs.

13 Multitarget tracking and Multi-armed Bandit Problems Elements Arms: N (Moving targets) Action Set: a n,t {0, 1} with a n,t = 1 if target n is observed in t and 0 otherwise. State space: v n,t V n [0, ) One-period Dynamics: ( φ n vn,t 1, 0 ) v n,t 1 + q n, if a n,t = 0 v n,t = ( φ n vn,t 1, 1 ) v n,t 1 + q n v n,t 1 /r n + q n /r n + 1, if a n,t = 1, Time periods: t = 0, 1,... (Infinite horizon) One-period costs: C n (v n,t, a n,t ) d n φ n (v n,t, a n,t ) + h n a n,t h n 0 : measurement cost of measuring target n d n > 0: relative importance of tracking precision of target n.

14 Optimal Sequential Estimation A Constrained MDP s optimal policy The estimation rule yielding the total minimum (discounted) variance solves MDP (7) [ N V (V 0 ) min π Π(M) Eπ V 0 β t C (n)( ) ] v t, a t, (7) n=1 t=0 E π V 0 [.] denotes expectation under π conditioned on V 0. Π(M) contains all the possible solutions that observe at most M targets at each t. β is a discount factor in [0, 1). The solution to (7) π is stationary deterministic policy solving the traditional dynamic programming (DP) equations V (V 0 ) min {C(V 0, a) + βe V1 V (V 1 )}, V 0, V 1 [0, ) N a A(V 0 )

15 Heuristic based Solutions Methods An alternative to Dynamic Programming (1) The cardinality of the state space V determines the computation and storage requirements of the DP approach. V R N infinite size. Existence of closed-form solutions. If V n = k its size is k N. Worse for infinite horizon. = Practical implementation of π for realistic scenarios is hindered by the curse of dimensionality. (2) Mathematically based Heuristic solution Methodology Design tractable and near-optimal priority-index policies.

16 Bandit Indexation A Mathematically based Methodology Gittins 74 First showed that the optimal solution to the Classic version (Bandits state remain frozen if not activated) admitted an expression that breaks the curse of dimensionality. For each arm, an index function (depending on its current state) exists and recovers its optimal policy (Indexability). The index function assigns a priority value (index) to each arm to being activated, depending on its state. Heuristic Index Policy Allocate available resources at each t to activate M arms with highest priority values. hittle 88 Proposed a relaxation and a Lagrangian approach for the Restless case (Bandits state evolve even if not activated) Index functions were not ensured to always exist. The resulting heuristic was not guaranteed to be optimal.

17 Solving Sequential Estimation Problems as MDPs Research Challenges Multi-armed Bandit reformulations of the resulting MDPs are restless Predicting and Updating Predicting Q: Index existence? Index computation? Tractable? Niño-Mora 01: Discrete-State Sufficient Indexability Conditions (SIC). If SIC hold Index exists and it is computable through a tractable algorithm. Continuous state space Extended SIC for infinite state? Optimal sequential estimation models complex nonlinear dynamics for the state variable (Möbius Transformations) Q: How to address these complications to establish extended SIC? If Whittle heuristic exists, it is not neccesarily optimal. Q: Assesing Suboptimality Gap?

18 Outline Optimal Sequential Estimation Problems Multi-armed Restless Bandit Problems Some Results Further Work

19 Whittle Index for Multitarget Tracking The marginal profit of pulling an arm Definition: Single-arm problem is indexable if an index function λ (v) such that λ R and state v V 0,1, it is optimal to observe the target in state v iff λ (v) λ. One-arm problem: V (v) min π Π Eπ V [ ] β t ( ) d n φ n vn,t, a n,t + hn a n,t, (8) t=0 SIC for the single-target problem hold Niño-Mora and Villar (2009) the single-arm tracking problem is indexable under the β-discounted criterion. The Whittle index can be computed as follows: λ (v) = d n ( φn ( vn, 0 ) φ n ( vn, 1 )) h n +β (V (φ(v, 0) V (φ(v, 1))

20 Index Existence & Evaluation Λ*HvL H1L Φ Β = The Whittle index for different discount factors β in a target instance of r = 1, and q = 5 v

21 Whittle Index Policy: Benchmarking results Base instance: β = 0.99, T = 10 4, M = 1, N = 4, where n N, q n 10, r n 1, d n 1, h n 0, and v n,0 = 0. Total Prediction Error for the prediction of the position of all targets over time Performance Objective 60 Modify it by letting: q 1 {0.5, 1,..., 10}. 50 Myopic policy (β = 0) TEV policy, index v t Whittle policy, index λ (v) Lower Bound on V D (v)

22 Outline Optimal Sequential Estimation Problems Multi-armed Restless Bandit Problems Some Results Further Work

23 Further Work Current and Future Work Other Applied Problems. Some of them: Sensor Networks Search of a reactive (elusive) target. Wireless Cellular Systems Allocation of jobs under partial observability of channel conditions. Clinical Trials Design of Multi-arm multi-stage trials. Methodological: Optimality Conditions for the Whittle Heuristic. Computational: Use properties of Möbious transformations to improve on index computation method (by truncation).

24 Discussion Questions & Comments Thanks for the attention!

25 Discussion Questions & Comments Thanks for the attention!

26 References I Gittins, J. C. and Jones, D. M. (1974). A dynamic allocation index for the sequential design of experiments. In Gani, J., Sarkadi, K., and Vincze, I., editors, Progress in Statistics (European Meeting of Statisticians, Budapest, 1972), pages North-Holland, Amsterdam, The Netherlands. Whittle, P. (1988). Restless bandits: activity allocation in a changing world. Journal of Applied Probability, 25: Niño-Mora, J. (2001). Restless bandits, partial conservation laws and indexability. Advances in Applied Probability, 33(1): Niño-Mora, J. and Villar, S. S. (2009). Multitarget tracking via restless bandit marginal productivity indices and Kalman filter in discrete time. In Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the th Chinese Control Conference. CDC/CCC 2009, pages IEEE. Niño-Mora, J. and Villar, S. S. (2011). Sensor scheduling for hunting elusive hiding targets via whittle s restless bandit index policy. In NetGCOOP 2011 : International conference on NETwork Games, COntrol and OPtimization. IEEE. P. Jacko, S. S. Villar (2012). Opportunistic Schedulers for Optimal Scheduling of Flows in Wireless Systems with ARQ Feedback Proceedings of The 24th International Teletraffic Congress (ITC), pp. 1-8

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits Peter Jacko YEQT III November 20, 2009 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain Example: Congestion

More information

Wireless Channel Selection with Restless Bandits

Wireless Channel Selection with Restless Bandits Wireless Channel Selection with Restless Bandits Julia Kuhn and Yoni Nazarathy Abstract Wireless devices are often able to communicate on several alternative channels; for example, cellular phones may

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

Power Allocation over Two Identical Gilbert-Elliott Channels

Power Allocation over Two Identical Gilbert-Elliott Channels Power Allocation over Two Identical Gilbert-Elliott Channels Junhua Tang School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, China Email: junhuatang@sjtu.edu.cn Parisa

More information

Index Policies and Performance Bounds for Dynamic Selection Problems

Index Policies and Performance Bounds for Dynamic Selection Problems Index Policies and Performance Bounds for Dynamic Selection Problems David B. Brown Fuqua School of Business Duke University dbbrown@duke.edu James E. Smith Tuck School of Business Dartmouth College jim.smith@dartmouth.edu

More information

Multi-channel Opportunistic Access: A Case of Restless Bandits with Multiple Plays

Multi-channel Opportunistic Access: A Case of Restless Bandits with Multiple Plays Multi-channel Opportunistic Access: A Case of Restless Bandits with Multiple Plays Sahand Haji Ali Ahmad, Mingyan Liu Abstract This paper considers the following stochastic control problem that arises

More information

Near-optimal policies for broadcasting files with unequal sizes

Near-optimal policies for broadcasting files with unequal sizes Near-optimal policies for broadcasting files with unequal sizes Majid Raissi-Dehkordi and John S. Baras Institute for Systems Research University of Maryland College Park, MD 20742 majid@isr.umd.edu, baras@isr.umd.edu

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

Optimality of Myopic Sensing in Multi-Channel Opportunistic Access

Optimality of Myopic Sensing in Multi-Channel Opportunistic Access Optimality of Myopic Sensing in Multi-Channel Opportunistic Access Tara Javidi, Bhasar Krishnamachari, Qing Zhao, Mingyan Liu tara@ece.ucsd.edu, brishna@usc.edu, qzhao@ece.ucdavis.edu, mingyan@eecs.umich.edu

More information

COMPUTING OPTIMAL SEQUENTIAL ALLOCATION RULES IN CLINICAL TRIALS* Michael N. Katehakis. State University of New York at Stony Brook. and.

COMPUTING OPTIMAL SEQUENTIAL ALLOCATION RULES IN CLINICAL TRIALS* Michael N. Katehakis. State University of New York at Stony Brook. and. COMPUTING OPTIMAL SEQUENTIAL ALLOCATION RULES IN CLINICAL TRIALS* Michael N. Katehakis State University of New York at Stony Brook and Cyrus Derman Columbia University The problem of assigning one of several

More information

Sequential Selection of Projects

Sequential Selection of Projects Sequential Selection of Projects Kemal Gürsoy Rutgers University, Department of MSIS, New Jersey, USA Fusion Fest October 11, 2014 Outline 1 Introduction Model 2 Necessary Knowledge Sequential Statistics

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms

Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms Julia Kuhn The University of Queensland, University of Amsterdam j.kuhn@uq.edu.au Michel Mandjes University of Amsterdam

More information

Optimality of Myopic Sensing in Multi-Channel Opportunistic Access

Optimality of Myopic Sensing in Multi-Channel Opportunistic Access Optimality of Myopic Sensing in Multi-Channel Opportunistic Access Tara Javidi, Bhasar Krishnamachari,QingZhao, Mingyan Liu tara@ece.ucsd.edu, brishna@usc.edu, qzhao@ece.ucdavis.edu, mingyan@eecs.umich.edu

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Bayesian Contextual Multi-armed Bandits

Bayesian Contextual Multi-armed Bandits Bayesian Contextual Multi-armed Bandits Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University October 22, 2012 1 / 33 Outline 1 Motivating

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

On the Optimality of Myopic Sensing. in Multi-channel Opportunistic Access: the Case of Sensing Multiple Channels

On the Optimality of Myopic Sensing. in Multi-channel Opportunistic Access: the Case of Sensing Multiple Channels On the Optimality of Myopic Sensing 1 in Multi-channel Opportunistic Access: the Case of Sensing Multiple Channels Kehao Wang, Lin Chen arxiv:1103.1784v1 [cs.it] 9 Mar 2011 Abstract Recent works ([1],

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Resource Capacity Allocation to Stochastic Dynamic Competitors: Knapsack Problem for Perishable Items and Index-Knapsack Heuristic

Resource Capacity Allocation to Stochastic Dynamic Competitors: Knapsack Problem for Perishable Items and Index-Knapsack Heuristic Annals of Operations Research manuscript No. (will be inserted by the editor) Resource Capacity Allocation to Stochastic Dynamic Competitors: Knapsack Problem for Perishable Items and Index-Knapsack Heuristic

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

MULTI-ARMED BANDIT PROBLEMS

MULTI-ARMED BANDIT PROBLEMS Chapter 6 MULTI-ARMED BANDIT PROBLEMS Aditya Mahajan University of Michigan, Ann Arbor, MI, USA Demosthenis Teneketzis University of Michigan, Ann Arbor, MI, USA 1. Introduction Multi-armed bandit MAB)

More information

Mathematical Optimization Models and Applications

Mathematical Optimization Models and Applications Mathematical Optimization Models and Applications Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 1, 2.1-2,

More information

Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones. Jefferson Huang

Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones. Jefferson Huang Reductions Of Undiscounted Markov Decision Processes and Stochastic Games To Discounted Ones Jefferson Huang School of Operations Research and Information Engineering Cornell University November 16, 2016

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Multi-armed Bandits and the Gittins Index

Multi-armed Bandits and the Gittins Index Multi-armed Bandits and the Gittins Index Richard Weber Statistical Laboratory, University of Cambridge A talk to accompany Lecture 6 Two-armed Bandit 3, 10, 4, 9, 12, 1,... 5, 6, 2, 15, 2, 7,... Two-armed

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Multi-armed Bandits and the Gittins Index

Multi-armed Bandits and the Gittins Index Multi-armed Bandits and the Gittins Index Richard Weber Statistical Laboratory, University of Cambridge Seminar at Microsoft, Cambridge, June 20, 2011 The Multi-armed Bandit Problem The Multi-armed Bandit

More information

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes Information Relaxation Bounds for Infinite Horizon Markov Decision Processes David B. Brown Fuqua School of Business Duke University dbbrown@duke.edu Martin B. Haugh Department of IE&OR Columbia University

More information

The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount

The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount Yinyu Ye Department of Management Science and Engineering and Institute of Computational

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Abstract We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, wher

Abstract We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, wher On certain greedoid polyhedra, partially indexable scheduling problems, and extended restless bandit allocation indices Submitted to Mathematical Programming José Ni~no-Mora Λ April 5, 2 Λ Dept. of Economics

More information

Bayesian Congestion Control over a Markovian Network Bandwidth Process

Bayesian Congestion Control over a Markovian Network Bandwidth Process Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard 1/30 Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard (USC) Joint work

More information

Prophet Inequalities and Stochastic Optimization

Prophet Inequalities and Stochastic Optimization Prophet Inequalities and Stochastic Optimization Kamesh Munagala Duke University Joint work with Sudipto Guha, UPenn Bayesian Decision System Decision Policy Stochastic Model State Update Model Update

More information

Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel

Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel Online Learning to Optimize Transmission over an Unknown Gilbert-Elliott Channel Yanting Wu Dept. of Electrical Engineering University of Southern California Email: yantingw@usc.edu Bhaskar Krishnamachari

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Vivek F. Farias Ritesh Madan 22 June 2008 Revised: 16 June 2009 Abstract This paper considers the multi-armed bandit problem with multiple simultaneous arm pulls

More information

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Jefferson Huang March 21, 2018 Reinforcement Learning for Processing Networks Seminar Cornell University Performance

More information

Dynamic spectrum access with learning for cognitive radio

Dynamic spectrum access with learning for cognitive radio 1 Dynamic spectrum access with learning for cognitive radio Jayakrishnan Unnikrishnan and Venugopal V. Veeravalli Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University

More information

Infinite-Horizon Discounted Markov Decision Processes

Infinite-Horizon Discounted Markov Decision Processes Infinite-Horizon Discounted Markov Decision Processes Dan Zhang Leeds School of Business University of Colorado at Boulder Dan Zhang, Spring 2012 Infinite Horizon Discounted MDP 1 Outline The expected

More information

Infinite-Horizon Average Reward Markov Decision Processes

Infinite-Horizon Average Reward Markov Decision Processes Infinite-Horizon Average Reward Markov Decision Processes Dan Zhang Leeds School of Business University of Colorado at Boulder Dan Zhang, Spring 2012 Infinite Horizon Average Reward MDP 1 Outline The average

More information

Approximate dynamic programming for stochastic reachability

Approximate dynamic programming for stochastic reachability Approximate dynamic programming for stochastic reachability Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour and John Lygeros Abstract In this work we illustrate how approximate dynamic

More information

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming

State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming Control and Cybernetics vol. 35 (2006) No. 4 State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming by Dariusz Janczak and Yuri Grishin Department

More information

Temporal-Difference Q-learning in Active Fault Diagnosis

Temporal-Difference Q-learning in Active Fault Diagnosis Temporal-Difference Q-learning in Active Fault Diagnosis Jan Škach 1 Ivo Punčochář 1 Frank L. Lewis 2 1 Identification and Decision Making Research Group (IDM) European Centre of Excellence - NTIS University

More information

Multi-armed Bandits with Limited Exploration

Multi-armed Bandits with Limited Exploration Multi-armed Bandits with Limited Exploration Sudipto Guha Kamesh Munagala Abstract A central problem to decision making under uncertainty is the trade-off between exploration and exploitation: between

More information

SOME MEMORYLESS BANDIT POLICIES

SOME MEMORYLESS BANDIT POLICIES J. Appl. Prob. 40, 250 256 (2003) Printed in Israel Applied Probability Trust 2003 SOME MEMORYLESS BANDIT POLICIES EROL A. PEKÖZ, Boston University Abstract We consider a multiarmed bit problem, where

More information

INDEX POLICIES FOR DISCOUNTED BANDIT PROBLEMS WITH AVAILABILITY CONSTRAINTS

INDEX POLICIES FOR DISCOUNTED BANDIT PROBLEMS WITH AVAILABILITY CONSTRAINTS Applied Probability Trust (4 February 2008) INDEX POLICIES FOR DISCOUNTED BANDIT PROBLEMS WITH AVAILABILITY CONSTRAINTS SAVAS DAYANIK, Princeton University WARREN POWELL, Princeton University KAZUTOSHI

More information

Finding the Value of Information About a State Variable in a Markov Decision Process 1

Finding the Value of Information About a State Variable in a Markov Decision Process 1 05/25/04 1 Finding the Value of Information About a State Variable in a Markov Decision Process 1 Gilvan C. Souza The Robert H. Smith School of usiness, The University of Maryland, College Park, MD, 20742

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Some notes on Markov Decision Theory

Some notes on Markov Decision Theory Some notes on Markov Decision Theory Nikolaos Laoutaris laoutaris@di.uoa.gr January, 2004 1 Markov Decision Theory[1, 2, 3, 4] provides a methodology for the analysis of probabilistic sequential decision

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Optimal and Suboptimal Policies for Opportunistic Spectrum Access: A Resource Allocation Approach

Optimal and Suboptimal Policies for Opportunistic Spectrum Access: A Resource Allocation Approach Optimal and Suboptimal Policies for Opportunistic Spectrum Access: A Resource Allocation Approach by Sahand Haji Ali Ahmad A dissertation submitted in partial fulfillment of the requirements for the degree

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

WIRELESS systems often operate in dynamic environments

WIRELESS systems often operate in dynamic environments IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 9, NOVEMBER 2012 3931 Structure-Aware Stochastic Control for Transmission Scheduling Fangwen Fu and Mihaela van der Schaar, Fellow, IEEE Abstract

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks A Whittle s Indexability Analysis

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks A Whittle s Indexability Analysis 1 Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks A Whittle s Indexability Analysis Wenzhuo Ouyang, Sugumar Murugesan, Atilla Eryilmaz, Ness B Shroff Abstract We address

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Coupled Bisection for Root Ordering

Coupled Bisection for Root Ordering Coupled Bisection for Root Ordering Stephen N. Pallone, Peter I. Frazier, Shane G. Henderson School of Operations Research and Information Engineering Cornell University, Ithaca, NY 14853 Abstract We consider

More information

Stochastic Multi-Armed-Bandit Problem with Non-stationary Rewards

Stochastic Multi-Armed-Bandit Problem with Non-stationary Rewards 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks Wenzhuo Ouyang, Sugumar Murugesan, Atilla Eryilmaz, Ness B. Shroff Department of Electrical and Computer Engineering The

More information

arxiv: v1 [math.oc] 9 Oct 2018

arxiv: v1 [math.oc] 9 Oct 2018 A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces Insoon Yang arxiv:1810.03847v1 [math.oc] 9 Oct 2018 Abstract A convex optimization-based method is proposed to

More information

Dynamic Discrete Choice Structural Models in Empirical IO

Dynamic Discrete Choice Structural Models in Empirical IO Dynamic Discrete Choice Structural Models in Empirical IO Lecture 4: Euler Equations and Finite Dependence in Dynamic Discrete Choice Models Victor Aguirregabiria (University of Toronto) Carlos III, Madrid

More information

Performance of Round Robin Policies for Dynamic Multichannel Access

Performance of Round Robin Policies for Dynamic Multichannel Access Performance of Round Robin Policies for Dynamic Multichannel Access Changmian Wang, Bhaskar Krishnamachari, Qing Zhao and Geir E. Øien Norwegian University of Science and Technology, Norway, {changmia,

More information

Introduction to Sequential Teams

Introduction to Sequential Teams Introduction to Sequential Teams Aditya Mahajan McGill University Joint work with: Ashutosh Nayyar and Demos Teneketzis, UMichigan MITACS Workshop on Fusion and Inference in Networks, 2011 Decentralized

More information

Learning of Uncontrolled Restless Bandits with Logarithmic Strong Regret

Learning of Uncontrolled Restless Bandits with Logarithmic Strong Regret Learning of Uncontrolled Restless Bandits with Logarithmic Strong Regret Cem Tekin, Member, IEEE, Mingyan Liu, Senior Member, IEEE 1 Abstract In this paper we consider the problem of learning the optimal

More information

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p.

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. Preface p. xiii Acknowledgment p. xix Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. 4 Bayes Decision p. 5

More information

Players as Serial or Parallel Random Access Machines. Timothy Van Zandt. INSEAD (France)

Players as Serial or Parallel Random Access Machines. Timothy Van Zandt. INSEAD (France) Timothy Van Zandt Players as Serial or Parallel Random Access Machines DIMACS 31 January 2005 1 Players as Serial or Parallel Random Access Machines (EXPLORATORY REMARKS) Timothy Van Zandt tvz@insead.edu

More information

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks Ji an Luo 2008.6.6 Outline Background Problem Statement Main Results Simulation Study Conclusion Background Wireless

More information

Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels?

Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels? Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels? Zhiyuan Jiang, Bhaskar Krishnamachari, Sheng Zhou, Zhisheng Niu, Fellow, IEEE {zhiyuan,

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Approximate policy iteration for dynamic resource-constrained project scheduling

Approximate policy iteration for dynamic resource-constrained project scheduling Approximate policy iteration for dynamic resource-constrained project scheduling Mahshid Salemi Parizi, Yasin Gocgun, and Archis Ghate June 14, 2017 Abstract We study non-preemptive scheduling problems

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

CS 598 Statistical Reinforcement Learning. Nan Jiang

CS 598 Statistical Reinforcement Learning. Nan Jiang CS 598 Statistical Reinforcement Learning Nan Jiang Overview What s this course about? A grad-level seminar course on theory of RL 3 What s this course about? A grad-level seminar course on theory of RL

More information

A LAGRANGIAN APPROACH TO DYNAMIC RESOURCE ALLOCATION

A LAGRANGIAN APPROACH TO DYNAMIC RESOURCE ALLOCATION Proceedings of the 2010 Winter Simulation Conference B. ohansson, S. ain,. Montoya-Torres,. Hugan, and E. Yücesan, eds. A LAGRANGAN APPROACH TO DYNAMC RESOURCE ALLOCATON Yasin Gocgun Archis Ghate ndustrial

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel

A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel 1 Munish Goyal, Anurag Kumar and Vinod Sharma Dept. of Electrical Communication Engineering,

More information

Dynamic Control of a Tandem Queueing System with Abandonments

Dynamic Control of a Tandem Queueing System with Abandonments Dynamic Control of a Tandem Queueing System with Abandonments Gabriel Zayas-Cabán 1 Jungui Xie 2 Linda V. Green 3 Mark E. Lewis 1 1 Cornell University Ithaca, NY 2 University of Science and Technology

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Markov decision processes with threshold-based piecewise-linear optimal policies

Markov decision processes with threshold-based piecewise-linear optimal policies 1/31 Markov decision processes with threshold-based piecewise-linear optimal policies T. Erseghe, A. Zanella, C. Codemo Dept. of Information Engineering, University of Padova, Italy Padova, June 2, 213

More information

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks

Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks 1 Exploiting Channel Memory for Joint Estimation and Scheduling in Downlink Networks Wenzhuo Ouyang, Sugumar Murugesan, Atilla Eryilmaz, Ness B. Shroff arxiv:1009.3959v6 [cs.ni] 7 Dec 2011 Abstract We

More information

A Generic Mean Field Model for Optimization in Large-scale Stochastic Systems and Applications in Scheduling

A Generic Mean Field Model for Optimization in Large-scale Stochastic Systems and Applications in Scheduling A Generic Mean Field Model for Optimization in Large-scale Stochastic Systems and Applications in Scheduling Nicolas Gast Bruno Gaujal Grenoble University Knoxville, May 13th-15th 2009 N. Gast (LIG) Mean

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Marginal Productivity Index Policies for Admission Control and Routing to Parallel Multi-server Loss Queues with Reneging

Marginal Productivity Index Policies for Admission Control and Routing to Parallel Multi-server Loss Queues with Reneging Marginal Productivity Index Policies for Admission Control and Routing to Parallel Multi-server Loss Queues with Reneging José Niño-Mora Universidad Carlos III de Madrid Department of Statistics C/ Madrid

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

Variable Objective Search

Variable Objective Search Variable Objective Search Sergiy Butenko, Oleksandra Yezerska, and Balabhaskar Balasundaram Abstract This paper introduces the variable objective search framework for combinatorial optimization. The method

More information

Joint-optimal Probing and Scheduling in Wireless Systems

Joint-optimal Probing and Scheduling in Wireless Systems Joint-optimal Probing and Scheduling in Wireless Systems Prasanna Chaporkar and Alexandre Proutiere Abstract Consider a wireless system where a sender can transmit data to various users with independent

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic

Practical Dynamic Programming: An Introduction. Associated programs dpexample.m: deterministic dpexample2.m: stochastic Practical Dynamic Programming: An Introduction Associated programs dpexample.m: deterministic dpexample2.m: stochastic Outline 1. Specific problem: stochastic model of accumulation from a DP perspective

More information