Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition

Size: px
Start display at page:

Download "Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition"

Transcription

1 Lecture Hertablty Hertablty: n Intutve pproac Frst enton Broa Sense: Proporton o te penotypc varaton ue to genetc causes H G Y Narro Sense: Proporton o te penotypc varaton ue to atve genetc eects Y Useul to etermne to at extent genetcs vs envronment mpact a trat Useul to etermne to at extent rectonal selecton can mprove a trat lternatvely, s te proporton o te total varaton attrbutable to erences n breeng values.

2 Perectly ertable trat Osprng Hegt Y R Precte Superorty o Osprng ll o te superorty o parent s passe to te osprng Pop Mean Y P Superorty o parents Parents Hegt Pop Mean Y P Y S 3 Estmaton o Hertablty: Full sbs x x x O O O O O O O k O k O k

3 From Lecture 3 Covarance Full sbs Number o IB 0 IB alleles IB alleles IB alleles Probablty o Sarng /6 8/6 /6 Contrbuton to varances 0 + Cov ( G, G O ) O Total covarancesum Probablty x contrbuton 8 ( )( ) + ( )( + ) Parttonng Varances nto Sources o Varaton NOV Least Squares Meto o Moments Lnear Moel μ + + j j Trat Value Penotype o te jt osprng rom te t amly + 3 Famly 6 3

4 Genetc Varance Equvalence Te penotypc covarance beteen members o te same group equals te varance among groups Note te subscrpt s te same Cov( tn _ amly) ( [( μ + + )(, μ + + )] (, ) + (, ) + (, ) + (, ) j k j j, k k ) j k 7 Wtn amly observaton correlate vs. uncorrelate Trat Value Correlate Trat Value Uncorrelate 3 Famly 3 Famly Correlate observatons tn a amly ncates tat, gven te amly mean, you kno sometng about te perormance o te nvual. Uncorrelate observatons tn amly: knolege o te amly mean tells you notng about perormance o te nvual. Tus amly means vary, ten nvuals tn amles are correlate. 8

5 Relatonsp o Estmate Varance Component t Causal Unerlyng Varance Components Covarance tn FamlyVarance mong Famles + Estmate te Varance mong Famles by NOV 9 NOV Computatonal Formulas 0 5

6 Meto o Moments Set Expecte mean squares equal to estmate mean squares an solve ˆ MS ˆ MS P MS n ˆ ˆ + ˆ + Varances Famly 3kg kg kg Beteen Famly Wtn Famly Famly kg 3kg 5kg + 6

7 Turkey Example Source ss ms E(ms) mong Famly Wtn Famly ˆ (.5 ) (.67) ˆ s.e.ormulas gven n notes Typcally very large 3 Neste Full-sb an Hal Sb μ + s + + jk j jk + + s 7

8 8 5 NOV Table 6 Components o Varance Covarance among members o a group equals te varance beteen groups Total varance can be parttone nto tat tn an among ull sb amles Ec + + From Lecture 3 Total Varance parttone by NOV HS s HS Wtn among + + s

9 Total Varance n terms o lnear moel an n terms o genetc components + + s Lnear Moel + + Genetc Eects E s + + Ec Es 7 Estmatng Genetc Components s ˆ s ( MS MS ) Mn s + + Ec ˆ ( MS MS ) n Es ˆ MS 8 9

10 Example: Table. 0 sres; 3 ams/sre; 0 osprng/am Source ms E(MS) sres s ams/(sres) tn ams s ( 0 ) P Estmatng parent osprng regresson p p pn + e o β 0 + βo p p o E o ( β ) o p on ( o, p ) ( ) p o μ + βo p ( p u) e + + ( e, e ) p o Wen s te envronmental covarance beteen parent osprng not ero? βo p 0 0

11 Regresson on One Parent: Example Butterat (kg) Parent am (X) Osprng augter (Y) X, 369 Y, 79 X 90, 7 X 76, 7 Y 76,7 90,7 (,369)(,79) 0 (,369) 0.96 Sex Lmte Trats must be multple by Because only one o te parents as measure Estmatng m parent osprng regresson m o E E ( β ) o mp ( β ) o mp mn on ( o, mp ) ( ) n [ (, ) + (, )] mp p o ( + ) o p p m + o μ + βo mp μ + e m + o, m + p [ (, ) + (, )] m o ( + ) ( o, p ) p o m P

12 Example cal egt a ay 08 Sre Parents am Parental verage (X) Osprng (Y) Computaton o X 3,69. 5 Y 3, 97 X,8,9. 7 X,0, 68 Y,0,68,8,9.7 ( 3,69.5)( 3,97) 0 ( 3,69.5) 0.797

13 Estmaton as Response to Selecton (Reale Hertablty) Example: Brolers 000 Brs egte at 7 eeks o age t an average egt o kg Te best 00 brs ere save or breeng an egte.kg Tese brs ere ranomly mate en mature an use to prouce te next generaton,500 progeny ere prouce an egte an average o.kg Wat as te reale ertablty? 5 Computaton o Reale Hertablty R R R Y Y R S Y Y P P

14 Examples o ertabltes Back Fat Tckness Pgs aly Gan Ltter se generally range. to.6, n breeng programs.35 s consere g,. s consere lo General tren: trats more closely relate to tness ave loer ertabltes Wy Hnt : at trat(s) oes natural selecton act on? Wat o te allele requences? Hnt : trats more closely relate to tness generally so eteross an H > 7 Problem set. Contnung rom te prevous problem set, Falconer (98) reporte a partally omnant gene n te mouse calle pg pygmy. t sx eeks o age, tey prouce te ollong average egt penotypes n grams (te actual egt o te eteroygote as, but t as reuce to 0 or ts example): + / + :, + / pg : 0, pg / pg : 6 I te populaton o mce s ranomly matng t p+ 0.3, q pg 0.7 ssumng no Envronmental Eects, at are te narro an broa sense ertabltes or ts trat? 8

15 Problems ) I or a gven trat te broa sense an narro sense ertabltes are as ollos, n eac c oul be more eectve at mprovng te trat, a breeng program, mprovng management, neter or bot? H.9,. H.,. H.9,.9 9 5

Lecture 6 Heritability and Field Design. Lucia Gutierrez lecture notes Tucson Winter Institute

Lecture 6 Heritability and Field Design. Lucia Gutierrez lecture notes Tucson Winter Institute Lecture 6 Hertablty and Feld Desgn Luca Guterre lecture notes Tucson Wnter Insttute Selecton Response c µ 0 µ S S µ mean of te ntal Random Matng populaton 0 µ mean of S µ mean of a progeny of selected

More information

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II PubH 7405: REGRESSION ANALSIS SLR: INFERENCES, Part II We cover te topc of nference n two sessons; te frst sesson focused on nferences concernng te slope and te ntercept; ts s a contnuaton on estmatng

More information

Quantitative Genetic Models Least Squares Genetic Model. Hardy-Weinberg (1908) Principle. change of allele & genotype frequency over generations

Quantitative Genetic Models Least Squares Genetic Model. Hardy-Weinberg (1908) Principle. change of allele & genotype frequency over generations Quanttatve Genetc Models Least Squares Genetc Model Hardy-Wenberg (1908) Prncple partton of effects P = G + E + G E P s phenotypc effect G s genetc effect E s envronmental effect G E s nteracton effect

More information

Recall that quantitative genetics is based on the extension of Mendelian principles to polygenic traits.

Recall that quantitative genetics is based on the extension of Mendelian principles to polygenic traits. BIOSTT/STT551, Statstcal enetcs II: Quanttatve Trats Wnter 004 Sources of varaton for multlocus trats and Handout Readng: Chapter 5 and 6. Extensons to Multlocus trats Recall that quanttatve genetcs s

More information

On Optimal Design in Random Coefficient Regression Models and Alike

On Optimal Design in Random Coefficient Regression Models and Alike PODE 26 May 5, 26 On Optmal Desgn n Ranom Coeffcent Regresson Moels an Alke & homas Schmelter,2 Otto von Guercke Unversty Mageburg 2 Scherng AG, Berln raner.schwabe@mathematk.un-mageburg.e Outlne Prologue:

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y:

Y = X +  E [X 0 ] = 0 K E [ 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 1 Ecent OLS 1. Consder te model Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : Ts s OLS appyland! OLS s BLUE ere. 2. So, you get an estmated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 3. You know tat t

More information

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD Lnear dscrmnants Nuno Vasconcelos ECE Department UCSD Classfcaton a classfcaton problem as to tpes of varables e.g. X - vector of observatons features n te orld Y - state class of te orld X R 2 fever blood

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor Reduced sldes Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor 1 The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Optimization. Nuno Vasconcelos ECE Department, UCSD

Optimization. Nuno Vasconcelos ECE Department, UCSD Optmzaton Nuno Vasconcelos ECE Department, UCSD Optmzaton many engneerng problems bol on to optmzaton goal: n mamum or mnmum o a uncton Denton: gven unctons, g,,...,k an h,,...m ene on some oman Ω R n

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Basic concepts and definitions in multienvironment

Basic concepts and definitions in multienvironment Basc concepts and defntons n multenvronment data: G, E, and GxE Marcos Malosett, Danela Bustos-Korts, Fred van Eeuwk, Pter Bma, Han Mulder Contents The basc concepts: ntroducton and defntons Phenotype,

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

SINGULARLY PERTURBED BOUNDARY VALUE. We consider the following singularly perturbed boundary value problem

SINGULARLY PERTURBED BOUNDARY VALUE. We consider the following singularly perturbed boundary value problem Cater PARAETRIC QUITIC SPLIE SOLUTIO OR SIGULARLY PERTURBED BOUDARY VALUE PROBLES Introcton We conser te ollong snglarly ertrbe bonary vale roblem " L r r > an ere s a small ostve arameter st

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Unbalanced Nested ANOVA - Sokal & Rohlf Example

Unbalanced Nested ANOVA - Sokal & Rohlf Example 8 Lnear Models 3 SR Box.6 Nested ANOVA ORIGIN Unbalanced Nested ANOVA - Sokal & Rohlf Example prepared by Wm Sten Ths sheet offers prototyped example of "Full Sb" nested ANOVA appearng n Sokal & Rohlf

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University GMM Method (Sngle-equaton Pongsa Pornchawsesul Faculty of Economcs Chulalongorn Unversty Stochastc ( Gven that, for some, s random COV(, ε E(( µ ε E( ε µ E( ε E( ε (c Pongsa Pornchawsesul, Faculty of Economcs,

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example CONOMICS 5* -- Introducton to NOT CON 5* -- Introducton to NOT : Multple Lnear Regresson Models Interpretng Slope Coeffcents n Multple Lnear Regresson Models: An xample Consder the followng smple lnear

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

The decomposition of inequality and poverty

The decomposition of inequality and poverty The decomposton of nequalty and poverty THE DECOMPOSITIO OF THE FGT IDEX The FGT poverty ndex for a populaton composed of K groups can be wrtten as follows: P(z;α) = K φ(k)p(k; z; α) k = where P(k;z; α

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

Topic 7: Analysis of Variance

Topic 7: Analysis of Variance Topc 7: Analyss of Varance Outlne Parttonng sums of squares Breakdown the degrees of freedom Expected mean squares (EMS) F test ANOVA table General lnear test Pearson Correlaton / R 2 Analyss of Varance

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

On a nonlinear compactness lemma in L p (0, T ; B).

On a nonlinear compactness lemma in L p (0, T ; B). On a nonlnear compactness lemma n L p (, T ; B). Emmanuel Matre Laboratore de Matématques et Applcatons Unversté de Haute-Alsace 4, rue des Frères Lumère 6893 Mulouse E.Matre@ua.fr 3t February 22 Abstract

More information

Danish Institute of Agricultural Sciences, P.O. Box 50, 8830 Tjele, Denmark Aarhus-C, Denmark

Danish Institute of Agricultural Sciences, P.O. Box 50, 8830 Tjele, Denmark Aarhus-C, Denmark Genet. Sel. Evol. 34 00 307 333 307 INRA, EDP Scences, 00 DOI: 10.1051/gse:00010 Orgnal artcle Predcton error varance and expected response to selecton, when selecton s based on the best predctor - or

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

Lecture Nov

Lecture Nov Lecture 18 Nov 07 2008 Revew Clusterng Groupng smlar obects nto clusters Herarchcal clusterng Agglomeratve approach (HAC: teratvely merge smlar clusters Dfferent lnkage algorthms for computng dstances

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

Estimation of Genetic and Phenotypic Covariance Functions for Body Weight as Longitudinal Data of SD-II Swine Line

Estimation of Genetic and Phenotypic Covariance Functions for Body Weight as Longitudinal Data of SD-II Swine Line 6 Estmaton of Genetc and Phenotypc Covarance Functons for Body Weght as Longtudnal Data of SD-II Swne Lne Wenzhong Lu*, Guoqng Cao, Zhongxao Zhou and Guxan Zhang College of Anmal Scence and Technology,

More information

Variance Estimation Using Linear Combination of Tri-mean and Quartile Average

Variance Estimation Using Linear Combination of Tri-mean and Quartile Average Amercan Journal o Bologcal and Envronmental tatstcs 07; 3(): 5-9 http://www.scencepublshnggroup.com/j/ajbes do: 0.648/j.ajbes.07030. IN: 47-9765 (Prnt); IN: 47-979 (Onlne) Varance Estmaton Usng Lnear Combnaton

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING Samplng heory MODULE VII LECURE - 3 VARYIG PROBABILIY SAMPLIG DR. SHALABH DEPARME OF MAHEMAICS AD SAISICS IDIA ISIUE OF ECHOLOGY KAPUR he smple random samplng scheme provdes a random sample where every

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Random Partitions of Samples

Random Partitions of Samples Random Parttons of Samples Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract In the present paper we construct a decomposton of a sample nto a fnte number of subsamples

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information

Central tendency. mean for metric data. The mean. "I say what I means and I means what I say!."

Central tendency. mean for metric data. The mean. I say what I means and I means what I say!. Central tendency "I say hat I means and I means hat I say!." Popeye Normal dstrbuton vdeo clp To ve an unedted verson vst: http://.learner.org/resources/seres65.html# mean for metrc data mportant propertes

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question

Issues To Consider when Estimating Health Care Costs with Generalized Linear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Question Issues To Consder when Estmatng Health Care Costs wth Generalzed Lnear Models (GLMs): To Gamma/Log Or Not To Gamma/Log? That Is The New Queston ISPOR 20th Annual Internatonal Meetng May 19, 2015 Jalpa

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis SK48/98 Survval and event hstory analyss Lecture 7: Regresson modellng Relatve rsk regresson Regresson models Assume that we have a sample of n ndvduals, and let N (t) count the observed occurrences of

More information