Connor Ahlbach Math 308 Notes

Size: px
Start display at page:

Download "Connor Ahlbach Math 308 Notes"

Transcription

1 Connor Ahlbach Math 308 Notes. Echelon Form and educed ow Echelon Form In this section, we address what we are trying to acheive by doing EOs. We are trying to turn a complicated linear system into s simpler one, but what do complicated and simpler actually mean. Also, how do we get from this simpler linear system to the set of solutions. In Example. with variables x, y, z, we did EOs The right set of equations is then x =, y = 6, z = 2, which just tells us the solution. If we can ever make the matrix of the linear system into ones on the main diagonal and zeros elsewhere - called the identity matrix for reasons we will see later, then the augmented part tell us the unique solution. However, we can not always get the matrix of a linear system to be the identity matrix. First, of all the matrix does not need to be square - it could be 2 3 for example, as in And, even if it is square, we may not be able to use EOs to get to the identity matrix. Consider , 0 0 whose second equation is 0 =. Thus this linear system has no solution. But why if there not some other EOs we could do to make the matrix into the identity matrix? Well, if we could, then this linear system would have a unique solution, which is false. If we can t always get the idneity matrix, what is the next best thing? The next best thing will be reduced row echelon form. We first introduce echelon form as an intermediate. Definition.. A linear system is in echelon form (EF) if the leading nonzero entries in each row of its augmented matrix proceed strictly from left to right as we go from top to bottom, and any rows of all zeros and are the bottom. Here are some examples of EFs: , , , where each can represent any number. Example : Why are the following linear systems are not in EF? Perform EOs to put them in EF

2 Solution: This is not in EF since the leading entries in each row all lie in first column This is not in EF since the leading entries in last row s leading entry is not left of leading entry in previous row, among other things Notice that the last example illustrates the utility of the swapping rows operation. Furthermore, by iteratively swapping two rows, we can acheive any rearragement of the rows we desire. We will discuss the usefulness of echelon form later. We now introduce reduced row echelon form (EF). Definition.2. A linear system is in reduced row echelon form (EF) if if satisfies the following: (i) It is an echelon form. (ii) All of the leading nonzero entries in each row are s. (iii) The rest of each column with a leading is all zeros. Here are some examples of EFs: , , , where each can represent any number. Example 2: Why are the following linear systems in EF not in EF? Perform EOs to put them in EF Solution:

3 This is not in EF since its leading entries are not s, and the columns with these leading entries have other nonzero entries This is not in EF since its leading entries are not s, and the columns with these leading entries have other nonzero entries So, why is EF the next best thing to the identity matrix? Just like with the identity matrix. We can go from a linear system in EF to describing its solution easily. But first, we need to discuss pivot and free columns and leading and free variables. Definition.3. In a linear system in EF, (including EF), the pivot columns are the coumns which contain a leading nonzero entry in one of the rows. The other non-pivot columns are free columns. If the linear system has a solution, we call the variables corresponding to pivot columns leading variables, and the variables corresponding to free columns free variables (for reasons that will be clear shortly). Since the last column does not have a variable associated to it, it does not give us a free or leading variable. 3 For example, in , columns, 2, are pivot columns, and columns 3, 4, 6, 7 are free columns, which makes x, x 2, x leading variables, and x 3, x 4, x 6 free variables. Given a linear system in EF, we can describe its set of solutions by first noting it has no solution if it has any instances of [ k ] for some k 0, or equivalently if the augmented part is a pivot column. Otherwise, it has solutions we can describe by making all of the free variables free, and then writing the leading variables in terms of the free variables using each equation. For example, consider , We can rewrite the equations in this linear system as x = x 3 3x 4 x 6 + 8, x 2 = 2x 3 4x 4 6x 6 + 9, x = 7x

4 4 Thus, we can describe the solution to this linear system as x 3, x 4, x 6 are free, and then x = x 3 3x 4 x 6 + 8, x 2 = 2x 3 4x 4 6x 6 + 9, x = 7x Example 3: Describe the set of solutions to the following linear systems: [ ] Here, x, x 4 are free variables, and then, by rewriting the equations, x 2 = 2x 4 + 3, x 3 = x Here, the third column is free. However, the last equation is 0 = 3, which has no solution, so this linear system has no solution. Strictly speaking, x 3 does not get to be a free variable since it does not get to be free when describing the solution. Here, x 3, x 4 are free variables, and then, by rewriting the equations, x = 2x 3 3x 4 + 4, x 2 = 3x 3 + 4x One can perform EOs to get from EF to EF without changing which of the columns are pivot or free by using the leading entries to kill (mathematical term meaning to make 0) all of the nonzero entries above it from right to left - see examples above. Going left to right also works, but right to left is computationally easier. Thus, we can tell if a linear system will have a solution, and a valid set of free variables to describe the solution set directly from EF. Lastly, EF has more significance than just allowing us to describe the set of solution. The EF of a linear system is unqiue! Alice and Bob can do 2 completely different set of EOs to a linear system get to EF, but they will always end up with the same EF. For this purpose, we also say two linear systems are row equivalent, denoted, if they can be obtained from one another by EOs - ecall we can undo EOs with EOs. For example, recalling our earlier examples, , Theorem.4. Every linear system is row equivalent to a unique linear system in EF. Proof. First, we need to argue that any linear system is row equivalent to some linear system in EF. To perform EOs to get a linear system to EF, first locate a nonzero entry in the first column, and swap that row up to the top. If there is no nonzero entry in the first column, move on to the next column. Then, use that nonzero entry to kill each other nonzero entry in the first column. Next, locate a leading nonzero entry in the second column, if there are any, swap it to the second row, and use it to kill all other nonzero leading entries in the second column. Continue to use

5 a nonzero leading entry in each column to kill all other nonzero leading entries in that column until you obtain EF. From EF, make all leading nonzero entries into s by dividing each of the equations by them. Proceed from right to left using the leading nonzero entries to kill all other entries in that column until you reach EF. In this way, one can obtain EF starting with any linear system. To prove uniqueness, it is unwise to try to examine all possible paths of EOs one can trace to get EF. Instead, we refer to something that is invariant under EOs, namely the set of solutions. Given any linear system, it has a set of solutons. We claim that is set of solutions uniquely determines the EF. We describe a one-to-one correspondence between possible EFs and a particular way of describing the set of solutions Consider the variables entering in reverse order: x n, x n,..., x 2, x, and as each variable enters, the linear system set of solutions tells it what it has to be given free variables that have entered already, or if it is free. Thus, for all k, x k can only be written in terms of the free variables among x n,..., x k+. For example, if x,..., x enter, the linear system could say: x is free, then x 4 = 2x +,, then x 3 is free, then x 2 = x 3 + 3x, then x = 7x 3 + x. So we have x 7x 3 x = 0, x 2 + x 3 3x =, x 4 = 2x +. This corresponds to the augmented matrix , which is in EF. Also, we can describe the solution set to any linear system in EF in this way, with x k written in terms of the free variables among x n,..., x k+ for all k, by solving for the leading variables. Since there is only one way to describe a set of solutions in this way, any two distinct EFs give riese to 2 different set of solutions, which means they cannot be row equivalent. Therefore, any linear sytem is row equivalent to a unique linear system in EF. The careful reader will notice that we did not cover the case where the linear system has no solution. To use the previous argument for this case, simply attach an augmented part of all zeros, ignoring previous augmented part, which forces there to be a solution. Then, by the same reasoning, this new linear system must have a unique EF. But removing the augmented part of all zeros does not affect if the linear system is in EF or not, so the unique EF of our old linear system must be new EF with this column of all zeros removed. Exercises : () educe the following linear systems to echelon form using EOs

6 (2) educe the following linear systems in echelon form to EF using EOs (3) Describe the set of solutions to the given linear system in EF. Specify which variables are free, and then write the rest of the variables in terms of them. Use x,..., x n for the variable names (d) [ 0 0 ] (4) Solve the following linear systems by reducing to EF by EOs and then describing the set of solutions as in previous problem

7 (d) Problems : () Specify which value(s) of the variables in each of the linear systems below give rise to no solutions, exactly one solutions, and infinitely many solutions h k 2 h k h 3 8 k 7

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider .2. Echelon Form and Reduced Row Echelon Form In this section, we address what we are trying to achieve by doing EROs. We are trying to turn any linear system into a simpler one. But what does simpler

More information

MATH 54 - WORKSHEET 1 MONDAY 6/22

MATH 54 - WORKSHEET 1 MONDAY 6/22 MATH 54 - WORKSHEET 1 MONDAY 6/22 Row Operations: (1 (Replacement Add a multiple of one row to another row. (2 (Interchange Swap two rows. (3 (Scaling Multiply an entire row by a nonzero constant. A matrix

More information

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4 MA B PRACTICAL - HOMEWORK SET SOLUTIONS (Reading) ( pts)[ch, Problem (d), (e)] Solution (d) We have matrix form Ax = b and vector equation 4 i= x iv i = b, where v i is the ith column of A, and 4 A = 8

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

Section 1.2. Row Reduction and Echelon Forms

Section 1.2. Row Reduction and Echelon Forms Section 1.2 Row Reduction and Echelon Forms Row Echelon Form Let s come up with an algorithm for turning an arbitrary matrix into a solved matrix. What do we mean by solved? A matrix is in row echelon

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information

1 Systems of equations

1 Systems of equations Highlights from linear algebra David Milovich, Math 2 TA for sections -6 November, 28 Systems of equations A leading entry in a matrix is the first (leftmost) nonzero entry of a row. For example, the leading

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Matrix equation Ax = b

Matrix equation Ax = b Fall 2017 Matrix equation Ax = b Authors: Alexander Knop Institute: UC San Diego Previously On Math 18 DEFINITION If v 1,..., v l R n, then a set of all linear combinations of them is called Span {v 1,...,

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding Elementary matrices, continued To summarize, we have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices

More information

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal [ x y Augmented matrix: 1 1 17 4 2 48 (Replacement) Replace a row by the sum of itself and a multiple

More information

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros.

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row

More information

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either:

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either: 4.3 Row operations As we have seen in Section 4.1 we can simplify a system of equations by either: 1. Swapping the order of the equations around. For example: can become 3x 1 + 7x 2 = 9 x 1 2x 1 = 2 x

More information

Introduction to Systems of Equations

Introduction to Systems of Equations Introduction to Systems of Equations Introduction A system of linear equations is a list of m linear equations in a common set of variables x, x,, x n. a, x + a, x + Ù + a,n x n = b a, x + a, x + Ù + a,n

More information

Row Reduced Echelon Form

Row Reduced Echelon Form Math 40 Row Reduced Echelon Form Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve systems in or variables using elimination and substitution of

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Linear Independence Reading: Lay 1.7

Linear Independence Reading: Lay 1.7 Linear Independence Reading: Lay 17 September 11, 213 In this section, we discuss the concept of linear dependence and independence I am going to introduce the definitions and then work some examples and

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

I am trying to keep these lessons as close to actual class room settings as possible.

I am trying to keep these lessons as close to actual class room settings as possible. Greetings: I am trying to keep these lessons as close to actual class room settings as possible. They do not intend to replace the text book actually they will involve the text book. An advantage of a

More information

Solution Set 7, Fall '12

Solution Set 7, Fall '12 Solution Set 7, 18.06 Fall '12 1. Do Problem 26 from 5.1. (It might take a while but when you see it, it's easy) Solution. Let n 3, and let A be an n n matrix whose i, j entry is i + j. To show that det

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate it

More information

13. Systems of Linear Equations 1

13. Systems of Linear Equations 1 13. Systems of Linear Equations 1 Systems of linear equations One of the primary goals of a first course in linear algebra is to impress upon the student how powerful matrix methods are in solving systems

More information

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise:

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise: Math 2270-004 Week 6 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 1 Material Dr. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University January 9, 2018 Linear Algebra (MTH 464)

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Homework 1 Due: Wednesday, August 27. x + y + z = 1. x y = 3 x + y + z = c 2 2x + cz = 4

Homework 1 Due: Wednesday, August 27. x + y + z = 1. x y = 3 x + y + z = c 2 2x + cz = 4 Homework 1 Due: Wednesday, August 27 1. Find all values of c for which the linear system: (a) has no solutions. (b) has exactly one solution. (c) has infinitely many solutions. (d) is consistent. x + y

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4 .. Conditions for Injectivity and Surjectivity In this section, we discuss what we can say about linear maps T : R n R m given only m and n. We motivate this problem by looking at maps f : {,..., n} {,...,

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

2 Systems of Linear Equations

2 Systems of Linear Equations 2 Systems of Linear Equations A system of equations of the form or is called a system of linear equations. x + 2y = 7 2x y = 4 5p 6q + r = 4 2p + 3q 5r = 7 6p q + 4r = 2 Definition. An equation involving

More information

22m:033 Notes: 1.2 Row Reduction and Echelon Forms

22m:033 Notes: 1.2 Row Reduction and Echelon Forms 22m:033 Notes: 1.2 Row Reduction and Echelon Forms Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman January 25, 2010 1 1 Echelon form and reduced Echelon form Definition

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS

Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS 22M:33 J. Simon page 1 of 7 22M:33 Summer 06 J. Simon Example 1. Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS 2x 1 + 3x 2 5x 3 = 10 3x 1 + 5x 2 + 6x 3 = 16 x 1 + 5x 2 x 3 = 10 Step 1. Write

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

CHAPTER 8: MATRICES and DETERMINANTS

CHAPTER 8: MATRICES and DETERMINANTS (Section 8.1: Matrices and Determinants) 8.01 CHAPTER 8: MATRICES and DETERMINANTS The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). SECTION 8.1: MATRICES and

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

Math "Matrix Approach to Solving Systems" Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25

Math Matrix Approach to Solving Systems Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25 Math 102 6.3 "Matrix Approach to Solving Systems" Bibiana Lopez Crafton Hills College November 2010 (CHC) 6.3 November 2010 1 / 25 Objectives: * Define a matrix and determine its order. * Write the augmented

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2 We will learn how to use a matrix to solve a system of equations. College algebra Class notes Matrices and Systems of Equations (section 6.) Recall, we solved the system below in a previous section. Here,

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.2 Echelon Forms Math 2331 Linear Algebra 1.2 Row Reduction and Echelon Forms Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ January 22, 2018 Shang-Huan

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Spring 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math Open Book Exam Open Notes 8 Oct, 004 Calculators Permitted Show all work (except #4). (0 pts) Let A = 3 a) (0 pts) Compute det(a) by Gaussian Elimination. 3 3 swap(i)&(ii) (iii) (iii)+(

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2]

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2] SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON.2 EQUIVALENT LINEAR SYSTEMS: Two m n linear systems are equivalent both systems have the exact same solution sets. When solving a linear system Ax = b,

More information

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise: Math 2270-004 Week 5 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

Systems of Equations Homework Solutions

Systems of Equations Homework Solutions Systems of Equations Homework Solutions Olena Bormashenko October 5, 2011 Find all solutions to the following systems of equations by writing the system as an augmented matrix and row-reducing it until

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math 221 Open Book Exam 1 Open Notes 3 Sept, 24 Calculators Permitted Show all work (except #4) 1 2 3 4 2 1. (25 pts) Given A 1 2 1, b 2 and c 4. 1 a) (7 pts) Bring matrix A to echelon form.

More information

Math 308 Discussion Problems #2 (Sections ) SOLUTIONS

Math 308 Discussion Problems #2 (Sections ) SOLUTIONS Math 8 Discussion Problems # (Sections.-.) SOLUTIONS () When Jake works from home, he typically spends 4 minutes of each hour on research, and on teaching, and drinks half a cup of coffee. (The remaining

More information

Linear Methods (Math 211) - Lecture 2

Linear Methods (Math 211) - Lecture 2 Linear Methods (Math 211) - Lecture 2 David Roe September 11, 2013 Recall Last time: Linear Systems Matrices Geometric Perspective Parametric Form Today 1 Row Echelon Form 2 Rank 3 Gaussian Elimination

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Linear Algebra Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Math 51, Homework-2. Section numbers are from the course textbook.

Math 51, Homework-2. Section numbers are from the course textbook. SSEA Summer 2017 Math 51, Homework-2 Section numbers are from the course textbook. 1. Write the parametric equation of the plane that contains the following point and line: 1 1 1 3 2, 4 2 + t 3 0 t R.

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

MATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class

MATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class MATH10212 Linear Algebra B Homework Week Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra its Applications. Pearson, 2006. ISBN 0-521-2871-4. Normally, homework

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2 January 9 Last Time 1. Last time we ended with saying that the following four systems are equivalent in the sense that we can move from one system to the other by a special move we discussed. (a) (b) (c)

More information

36 What is Linear Algebra?

36 What is Linear Algebra? 36 What is Linear Algebra? The authors of this textbook think that solving linear systems of equations is a big motivation for studying linear algebra This is certainly a very respectable opinion as systems

More information

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Math 5- Computation Test September 6 th, 6 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Name: Answer Key: Making Math Great Again Be sure to show your work!. (8 points) Consider the following

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

MH1200 Final 2014/2015

MH1200 Final 2014/2015 MH200 Final 204/205 November 22, 204 QUESTION. (20 marks) Let where a R. A = 2 3 4, B = 2 3 4, 3 6 a 3 6 0. For what values of a is A singular? 2. What is the minimum value of the rank of A over all a

More information

Homework Set #1 Solutions

Homework Set #1 Solutions Homework Set #1 Solutions Exercises 1.1 (p. 10) Assignment: Do #33, 34, 1, 3,, 29-31, 17, 19, 21, 23, 2, 27 33. (a) True. (p. 7) (b) False. It has five rows and six columns. (c) False. The definition given

More information

= W z1 + W z2 and W z1 z 2

= W z1 + W z2 and W z1 z 2 Math 44 Fall 06 homework page Math 44 Fall 06 Darij Grinberg: homework set 8 due: Wed, 4 Dec 06 [Thanks to Hannah Brand for parts of the solutions] Exercise Recall that we defined the multiplication of

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information